chore: clean up code and comments

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer
2025-02-26 12:46:41 +01:00
parent f994654918
commit c5873f2496
5 changed files with 37 additions and 29 deletions

View File

@@ -11,32 +11,34 @@ from docling.datamodel.pipeline_options import (
granite_vision_vlm_conversion_options,
smoldocling_vlm_conversion_options,
)
from docling.datamodel.settings import settings
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
sources = [
# "https://arxiv.org/pdf/2408.09869",
"tests/data/2305.03393v1-pg9-img.png",
# "tests/data/2305.03393v1-pg9.pdf",
]
pipeline_options = VlmPipelineOptions() # artifacts_path="~/local_model_artifacts/"
pipeline_options.generate_page_images = True
settings.debug.profile_pipeline_timings = True
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
## Enable flash_attention_2 with CUDA:
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
## Pick a VLM model. We choose SmolDocling-256M by default
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Choose alternative VLM models:
## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
@@ -68,6 +70,12 @@ for source in sources:
print("")
print(res.document.export_to_markdown())
print("------------------------------------------------")
print("Timings:")
print("------------------------------------------------")
print("")
print(res.timings)
for page in res.pages:
print("")
print("Predicted page in DOCTAGS:")
@@ -82,9 +90,6 @@ for source in sources:
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
with (out_path / f"{res.input.file.stem}.yaml").open("w") as fp:
fp.write(yaml.safe_dump(res.document.export_to_dict()))
pg_num = res.document.num_pages()
print("")