mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-08 20:58:11 +00:00
feat: new vlm-models support (#1570)
* feat: adding new vlm-models support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * got microsoft/Phi-4-multimodal-instruct to work Signed-off-by: Peter Staar <taa@zurich.ibm.com> * working on vlm's Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the VLM part Signed-off-by: Peter Staar <taa@zurich.ibm.com> * all working, now serious refacgtoring necessary Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring the download_model Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the formulate_prompt Signed-off-by: Peter Staar <taa@zurich.ibm.com> * pixtral 12b runs via MLX and native transformers Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the VlmPredictionToken Signed-off-by: Peter Staar <taa@zurich.ibm.com> * refactoring minimal_vlm_pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the MyPy Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added pipeline_model_specializations file Signed-off-by: Peter Staar <taa@zurich.ibm.com> * need to get Phi4 working again ... Signed-off-by: Peter Staar <taa@zurich.ibm.com> * finalising last points for vlms support Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the pipeline for Phi4 Signed-off-by: Peter Staar <taa@zurich.ibm.com> * streamlining all code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * reformatted the code Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixing the tests Signed-off-by: Peter Staar <taa@zurich.ibm.com> * added the html backend to the VLM pipeline Signed-off-by: Peter Staar <taa@zurich.ibm.com> * fixed the static load_from_doctags Signed-off-by: Peter Staar <taa@zurich.ibm.com> * restore stable imports Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use AutoModelForVision2Seq for Pixtral and review example (including rename) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove unused value Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * refactor instances of VLM models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * skip compare example in CI Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use lowercase and uppercase only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add new minimal_vlm example and refactor pipeline_options_vlm_model for cleaner import Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename pipeline_vlm_model_spec Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * move more argument to options and simplify model init Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add supported_devices Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove not-needed function Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * exclude minimal_vlm Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * missing file Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add message for transformers version Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename to specs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use module import and remove MLX from non-darwin Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove hf_vlm_model and add extra_generation_args Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use single HF VLM model class Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * remove torch type Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add docs for vision models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Peter Staar <taa@zurich.ibm.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
committed by
GitHub
parent
08dcacc5cb
commit
cfdf4cea25
160
docs/examples/compare_vlm_models.py
vendored
Normal file
160
docs/examples/compare_vlm_models.py
vendored
Normal file
@@ -0,0 +1,160 @@
|
||||
# Compare VLM models
|
||||
# ==================
|
||||
#
|
||||
# This example runs the VLM pipeline with different vision-language models.
|
||||
# Their runtime as well output quality is compared.
|
||||
|
||||
import json
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
||||
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||||
from tabulate import tabulate
|
||||
|
||||
from docling.datamodel import vlm_model_specs
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
VlmPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.pipeline_options_vlm_model import InferenceFramework
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
|
||||
def convert(sources: list[Path], converter: DocumentConverter):
|
||||
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
||||
framework = pipeline_options.vlm_options.inference_framework
|
||||
for source in sources:
|
||||
print("================================================")
|
||||
print("Processing...")
|
||||
print(f"Source: {source}")
|
||||
print("---")
|
||||
print(f"Model: {model_id}")
|
||||
print(f"Framework: {framework}")
|
||||
print("================================================")
|
||||
print("")
|
||||
|
||||
res = converter.convert(source)
|
||||
|
||||
print("")
|
||||
|
||||
fname = f"{res.input.file.stem}-{model_id}-{framework}"
|
||||
|
||||
inference_time = 0.0
|
||||
for i, page in enumerate(res.pages):
|
||||
inference_time += page.predictions.vlm_response.generation_time
|
||||
print("")
|
||||
print(
|
||||
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
|
||||
)
|
||||
print(page.predictions.vlm_response.text)
|
||||
print(" ---------- ")
|
||||
|
||||
print("===== Final output of the converted document =======")
|
||||
|
||||
with (out_path / f"{fname}.json").open("w") as fp:
|
||||
fp.write(json.dumps(res.document.export_to_dict()))
|
||||
|
||||
res.document.save_as_json(
|
||||
out_path / f"{fname}.json",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
print(f" => produced {out_path / fname}.json")
|
||||
|
||||
res.document.save_as_markdown(
|
||||
out_path / f"{fname}.md",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
print(f" => produced {out_path / fname}.md")
|
||||
|
||||
res.document.save_as_html(
|
||||
out_path / f"{fname}.html",
|
||||
image_mode=ImageRefMode.EMBEDDED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
split_page_view=True,
|
||||
)
|
||||
print(f" => produced {out_path / fname}.html")
|
||||
|
||||
pg_num = res.document.num_pages()
|
||||
print("")
|
||||
print(
|
||||
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||||
)
|
||||
print("====================================================")
|
||||
|
||||
return [
|
||||
source,
|
||||
model_id,
|
||||
str(framework),
|
||||
pg_num,
|
||||
inference_time,
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sources = [
|
||||
"tests/data/pdf/2305.03393v1-pg9.pdf",
|
||||
]
|
||||
|
||||
out_path = Path("scratch")
|
||||
out_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
## Use VlmPipeline
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
pipeline_options.generate_page_images = True
|
||||
|
||||
## On GPU systems, enable flash_attention_2 with CUDA:
|
||||
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||||
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
||||
|
||||
vlm_models = [
|
||||
## DocTags / SmolDocling models
|
||||
vlm_model_specs.SMOLDOCLING_MLX,
|
||||
vlm_model_specs.SMOLDOCLING_TRANSFORMERS,
|
||||
## Markdown models (using MLX framework)
|
||||
vlm_model_specs.QWEN25_VL_3B_MLX,
|
||||
vlm_model_specs.PIXTRAL_12B_MLX,
|
||||
vlm_model_specs.GEMMA3_12B_MLX,
|
||||
## Markdown models (using Transformers framework)
|
||||
vlm_model_specs.GRANITE_VISION_TRANSFORMERS,
|
||||
vlm_model_specs.PHI4_TRANSFORMERS,
|
||||
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS,
|
||||
]
|
||||
|
||||
# Remove MLX models if not on Mac
|
||||
if sys.platform != "darwin":
|
||||
vlm_models = [
|
||||
m for m in vlm_models if m.inference_framework != InferenceFramework.MLX
|
||||
]
|
||||
|
||||
rows = []
|
||||
for vlm_options in vlm_models:
|
||||
pipeline_options.vlm_options = vlm_options
|
||||
|
||||
## Set up pipeline for PDF or image inputs
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
InputFormat.IMAGE: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
row = convert(sources=sources, converter=converter)
|
||||
rows.append(row)
|
||||
|
||||
print(
|
||||
tabulate(
|
||||
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
|
||||
)
|
||||
)
|
||||
|
||||
print("see if memory gets released ...")
|
||||
time.sleep(10)
|
||||
3
docs/examples/custom_convert.py
vendored
3
docs/examples/custom_convert.py
vendored
@@ -3,10 +3,9 @@ import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorDevice,
|
||||
AcceleratorOptions,
|
||||
PdfPipelineOptions,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
|
||||
101
docs/examples/minimal_vlm_pipeline.py
vendored
101
docs/examples/minimal_vlm_pipeline.py
vendored
@@ -1,101 +1,46 @@
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from docling_core.types.doc import DocItemLabel, ImageRefMode
|
||||
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||||
|
||||
from docling.datamodel import vlm_model_specs
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
sources = [
|
||||
# "tests/data/2305.03393v1-pg9-img.png",
|
||||
"tests/data/pdf/2305.03393v1-pg9.pdf",
|
||||
]
|
||||
source = "https://arxiv.org/pdf/2501.17887"
|
||||
|
||||
## Use experimental VlmPipeline
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
# If force_backend_text = True, text from backend will be used instead of generated text
|
||||
pipeline_options.force_backend_text = False
|
||||
###### USING SIMPLE DEFAULT VALUES
|
||||
# - SmolDocling model
|
||||
# - Using the transformers framework
|
||||
|
||||
## On GPU systems, enable flash_attention_2 with CUDA:
|
||||
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||||
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
## Pick a VLM model. We choose SmolDocling-256M by default
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
doc = converter.convert(source=source).document
|
||||
|
||||
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
|
||||
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
print(doc.export_to_markdown())
|
||||
|
||||
## Alternative VLM models:
|
||||
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||||
|
||||
## Set up pipeline for PDF or image inputs
|
||||
###### USING MACOS MPS ACCELERATOR
|
||||
# For more options see the compare_vlm_models.py example.
|
||||
|
||||
pipeline_options = VlmPipelineOptions(
|
||||
vlm_options=vlm_model_specs.SMOLDOCLING_MLX,
|
||||
)
|
||||
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
InputFormat.IMAGE: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
out_path = Path("scratch")
|
||||
out_path.mkdir(parents=True, exist_ok=True)
|
||||
doc = converter.convert(source=source).document
|
||||
|
||||
for source in sources:
|
||||
start_time = time.time()
|
||||
print("================================================")
|
||||
print(f"Processing... {source}")
|
||||
print("================================================")
|
||||
print("")
|
||||
|
||||
res = converter.convert(source)
|
||||
|
||||
print("")
|
||||
print(res.document.export_to_markdown())
|
||||
|
||||
for page in res.pages:
|
||||
print("")
|
||||
print("Predicted page in DOCTAGS:")
|
||||
print(page.predictions.vlm_response.text)
|
||||
|
||||
res.document.save_as_html(
|
||||
filename=Path(f"{out_path}/{res.input.file.stem}.html"),
|
||||
image_mode=ImageRefMode.REFERENCED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
)
|
||||
|
||||
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
|
||||
fp.write(json.dumps(res.document.export_to_dict()))
|
||||
|
||||
res.document.save_as_json(
|
||||
out_path / f"{res.input.file.stem}.json",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
|
||||
res.document.save_as_markdown(
|
||||
out_path / f"{res.input.file.stem}.md",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
|
||||
pg_num = res.document.num_pages()
|
||||
print("")
|
||||
inference_time = time.time() - start_time
|
||||
print(
|
||||
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||||
)
|
||||
|
||||
print("================================================")
|
||||
print("done!")
|
||||
print("================================================")
|
||||
print(doc.export_to_markdown())
|
||||
|
||||
3
docs/examples/run_with_accelerator.py
vendored
3
docs/examples/run_with_accelerator.py
vendored
@@ -1,9 +1,8 @@
|
||||
from pathlib import Path
|
||||
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorDevice,
|
||||
AcceleratorOptions,
|
||||
PdfPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
|
||||
1
docs/examples/translate.py
vendored
1
docs/examples/translate.py
vendored
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
from docling_core.types.doc import ImageRefMode, TableItem, TextItem
|
||||
|
||||
3
docs/examples/vlm_pipeline_api_model.py
vendored
3
docs/examples/vlm_pipeline_api_model.py
vendored
@@ -7,10 +7,9 @@ from dotenv import load_dotenv
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
ApiVlmOptions,
|
||||
ResponseFormat,
|
||||
VlmPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
|
||||
2
docs/index.md
vendored
2
docs/index.md
vendored
@@ -27,7 +27,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
|
||||
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
|
||||
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
|
||||
* 🔍 Extensive OCR support for scanned PDFs and images
|
||||
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🆕🔥
|
||||
* 🥚 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🔥
|
||||
* 💻 Simple and convenient CLI
|
||||
|
||||
### Coming soon
|
||||
|
||||
121
docs/usage/vision_models.md
vendored
Normal file
121
docs/usage/vision_models.md
vendored
Normal file
@@ -0,0 +1,121 @@
|
||||
|
||||
The `VlmPipeline` in Docling allows to convert documents end-to-end using a vision-language model.
|
||||
|
||||
Docling supports vision-language models which output:
|
||||
|
||||
- DocTags (e.g. [SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)), the preferred choice
|
||||
- Markdown
|
||||
- HTML
|
||||
|
||||
|
||||
For running Docling using local models with the `VlmPipeline`:
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
docling --pipeline vlm FILE
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
See also the example [minimal_vlm_pipeline.py](./../examples/minimal_vlm_pipeline.py).
|
||||
|
||||
```python
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
doc = converter.convert(source="FILE").document
|
||||
```
|
||||
|
||||
## Available local models
|
||||
|
||||
By default, the vision-language models are running locally.
|
||||
Docling allows to choose between the Hugging Face [Transformers](https://github.com/huggingface/transformers) framweork and the [MLX](https://github.com/Blaizzy/mlx-vlm) (for Apple devices with MPS acceleration) one.
|
||||
|
||||
The following table reports the models currently available out-of-the-box.
|
||||
|
||||
| Model instance | Model | Framework | Device | Num pages | Inference time (sec) |
|
||||
| ---------------|------ | --------- | ------ | --------- | ---------------------|
|
||||
| `vlm_model_specs.SMOLDOCLING_TRANSFORMERS` | [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 102.212 |
|
||||
| `vlm_model_specs.SMOLDOCLING_MLX` | [ds4sd/SmolDocling-256M-preview-mlx-bf16](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16) | `MLX`| MPS | 1 | 6.15453 |
|
||||
| `vlm_model_specs.QWEN25_VL_3B_MLX` | [mlx-community/Qwen2.5-VL-3B-Instruct-bf16](https://huggingface.co/mlx-community/Qwen2.5-VL-3B-Instruct-bf16) | `MLX`| MPS | 1 | 23.4951 |
|
||||
| `vlm_model_specs.PIXTRAL_12B_MLX` | [mlx-community/pixtral-12b-bf16](https://huggingface.co/mlx-community/pixtral-12b-bf16) | `MLX` | MPS | 1 | 308.856 |
|
||||
| `vlm_model_specs.GEMMA3_12B_MLX` | [mlx-community/gemma-3-12b-it-bf16](https://huggingface.co/mlx-community/gemma-3-12b-it-bf16) | `MLX` | MPS | 1 | 378.486 |
|
||||
| `vlm_model_specs.GRANITE_VISION_TRANSFORMERS` | [ibm-granite/granite-vision-3.2-2b](https://huggingface.co/ibm-granite/granite-vision-3.2-2b) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 104.75 |
|
||||
| `vlm_model_specs.PHI4_TRANSFORMERS` | [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) | `Transformers/AutoModelForCasualLM` | CPU | 1 | 1175.67 |
|
||||
| `vlm_model_specs.PIXTRAL_12B_TRANSFORMERS` | [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) | `Transformers/AutoModelForVision2Seq` | CPU | 1 | 1828.21 |
|
||||
|
||||
_Inference time is computed on a Macbook M3 Max using the example page `tests/data/pdf/2305.03393v1-pg9.pdf`. The comparision is done with the example [compare_vlm_models.py](./../examples/compare_vlm_models.py)._
|
||||
|
||||
For choosing the model, the code snippet above can be extended as follow
|
||||
|
||||
```python
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
from docling.datamodel.pipeline_options import (
|
||||
VlmPipelineOptions,
|
||||
)
|
||||
from docling.datamodel import vlm_model_specs
|
||||
|
||||
pipeline_options = VlmPipelineOptions(
|
||||
vlm_options=vlm_model_specs.SMOLDOCLING_MLX, # <-- change the model here
|
||||
)
|
||||
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
doc = converter.convert(source="FILE").document
|
||||
```
|
||||
|
||||
### Other models
|
||||
|
||||
Other models can be configured by directly providing the Hugging Face `repo_id`, the prompt and a few more options.
|
||||
|
||||
For example:
|
||||
|
||||
```python
|
||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions, InferenceFramework, TransformersModelType
|
||||
|
||||
pipeline_options = VlmPipelineOptions(
|
||||
vlm_options=InlineVlmOptions(
|
||||
repo_id="ibm-granite/granite-vision-3.2-2b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||
supported_devices=[
|
||||
AcceleratorDevice.CPU,
|
||||
AcceleratorDevice.CUDA,
|
||||
AcceleratorDevice.MPS,
|
||||
],
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
## Remote models
|
||||
|
||||
Additionally to local models, the `VlmPipeline` allows to offload the inference to a remote service hosting the models.
|
||||
Many remote inference services are provided, the key requirement is to offer an OpenAI-compatible API. This includes vLLM, Ollama, etc.
|
||||
|
||||
More examples on how to connect with the remote inference services can be found in the following examples:
|
||||
|
||||
- [vlm_pipeline_api_model.py](./../examples/vlm_pipeline_api_model.py)
|
||||
Reference in New Issue
Block a user