finalising last points for vlms support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
Peter Staar
2025-05-16 12:39:26 +02:00
parent fc61258273
commit d41b856961
6 changed files with 246 additions and 64 deletions

View File

@@ -25,10 +25,7 @@ from docling.datamodel.pipeline_options import (
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
sources = [
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
from tabulate import tabulate
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
@@ -104,75 +101,120 @@ qwen_vlm_conversion_options = HuggingFaceVlmOptions(
pipeline_options.vlm_options = qwen_vlm_conversion_options
"""
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
},
)
def convert(sources: list[Path], converter):
for source in sources:
#start_time = time.time()
print("================================================")
print(f"Processing... {source}")
print("================================================")
print("")
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
res = converter.convert(source)
print("")
# print(res.document.export_to_markdown())
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
fname = f"{res.input.file.stem}-{model_id}-{framework}"
for source in sources:
start_time = time.time()
print("================================================")
print(f"Processing... {source}")
print("================================================")
print("")
inference_time = 0.0
for i, page in enumerate(res.pages):
inference_time += page.predictions.vlm_response.generation_time
print("")
print(
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
)
print(page.predictions.vlm_response.text)
print(" ---------- ")
print("===== Final output of the converted document =======")
res = converter.convert(source)
with (out_path / f"{fname}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
print("")
# print(res.document.export_to_markdown())
res.document.save_as_json(
out_path / f"{fname}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.json")
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
fname = f"{model_id}-{res.input.file.stem}"
res.document.save_as_markdown(
out_path / f"{fname}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.md")
for i, page in enumerate(res.pages):
res.document.save_as_html(
out_path / f"{fname}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
split_page_view=True,
)
print(f" => produced {out_path / fname}.html")
pg_num = res.document.num_pages()
print("")
print(
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format}:"
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print(page.predictions.vlm_response.text)
print(" ---------- ")
print("====================================================")
print("===== Final output of the converted document =======")
# return [source, f"{out_path / fname}.html", model_id, framework, inference_time, ]
return [source, model_id, framework, pg_num, inference_time, ]
if __name__ == "__main__":
with (out_path / f"{fname}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
sources = [
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
## Use VlmPipeline
pipeline_options = VlmPipelineOptions()
res.document.save_as_json(
out_path / f"{fname}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.json")
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.generate_page_images = True
res.document.save_as_markdown(
out_path / f"{fname}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.md")
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
res.document.save_as_html(
out_path / f"{fname}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
split_page_view=True,
)
print(f" => produced {out_path / fname}.html")
rows = []
for vlm_options in [
# smoldocling_vlm_conversion_options, \
smoldocling_vlm_mlx_conversion_options, \
granite_vision_vlm_conversion_options, \
# phi_vlm_conversion_options, \
qwen25_vl_3b_vlm_mlx_conversion_options, \
pixtral_12b_vlm_mlx_conversion_options,
]:
pipeline_options.vlm_options = vlm_options
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
},
)
row = convert(sources=sources, converter=converter)
print("pipelines: \n", converter._get_initialized_pipelines())
rows.append(row)
print(tabulate(rows))
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("====================================================")
print("see if memory gets released ...")
time.sleep(10)