mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
streamlining all code
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
661f7c9780
commit
d5b6c871cf
@ -84,6 +84,7 @@ smoldocling_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
|||||||
response_format=ResponseFormat.DOCTAGS,
|
response_format=ResponseFormat.DOCTAGS,
|
||||||
inference_framework=InferenceFramework.MLX,
|
inference_framework=InferenceFramework.MLX,
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
|
smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||||
@ -92,6 +93,7 @@ smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
|
|||||||
response_format=ResponseFormat.DOCTAGS,
|
response_format=ResponseFormat.DOCTAGS,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
# GraniteVision
|
# GraniteVision
|
||||||
@ -101,6 +103,7 @@ granite_vision_vlm_conversion_options = HuggingFaceVlmOptions(
|
|||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(
|
granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(
|
||||||
@ -110,6 +113,7 @@ granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(
|
|||||||
scale=1.0,
|
scale=1.0,
|
||||||
timeout=120,
|
timeout=120,
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Pixtral
|
# Pixtral
|
||||||
@ -119,6 +123,7 @@ pixtral_12b_vlm_conversion_options = HuggingFaceVlmOptions(
|
|||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||||
@ -127,6 +132,7 @@ pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
|||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.MLX,
|
inference_framework=InferenceFramework.MLX,
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Phi4
|
# Phi4
|
||||||
@ -135,6 +141,8 @@ phi_vlm_conversion_options = HuggingFaceVlmOptions(
|
|||||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare MarkDown",
|
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare MarkDown",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
||||||
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Qwen
|
# Qwen
|
||||||
@ -143,4 +151,6 @@ qwen25_vl_3b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
|||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.MLX,
|
inference_framework=InferenceFramework.MLX,
|
||||||
|
scale=2.0,
|
||||||
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
@ -6,6 +6,17 @@ _log = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
class HuggingFaceVlmModel:
|
class HuggingFaceVlmModel:
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def map_device_to_cpu_if_mlx(device: str) -> str:
|
||||||
|
if device == "mps":
|
||||||
|
_log.warning(
|
||||||
|
"Mapping mlx to cpu for AutoModelForCausalLM, use MLX framework!"
|
||||||
|
)
|
||||||
|
return "cpu"
|
||||||
|
|
||||||
|
return device
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def download_models(
|
def download_models(
|
||||||
repo_id: str,
|
repo_id: str,
|
||||||
|
@ -29,7 +29,8 @@ class HuggingFaceMlxModel(BasePageModel):
|
|||||||
|
|
||||||
self.vlm_options = vlm_options
|
self.vlm_options = vlm_options
|
||||||
self.max_tokens = vlm_options.max_new_tokens
|
self.max_tokens = vlm_options.max_new_tokens
|
||||||
|
self.temperature = vlm_options.temperature
|
||||||
|
|
||||||
if self.enabled:
|
if self.enabled:
|
||||||
try:
|
try:
|
||||||
from mlx_vlm import generate, load # type: ignore
|
from mlx_vlm import generate, load # type: ignore
|
||||||
@ -103,8 +104,9 @@ class HuggingFaceMlxModel(BasePageModel):
|
|||||||
self.processor,
|
self.processor,
|
||||||
prompt,
|
prompt,
|
||||||
[hi_res_image],
|
[hi_res_image],
|
||||||
max_tokens=4096,
|
max_tokens=self.max_tokens,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
|
temp=self.temperature,
|
||||||
):
|
):
|
||||||
if len(token.logprobs.shape) == 1:
|
if len(token.logprobs.shape) == 1:
|
||||||
tokens.append(
|
tokens.append(
|
||||||
|
@ -42,19 +42,13 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self.device = decide_device(accelerator_options.device)
|
self.device = decide_device(accelerator_options.device)
|
||||||
|
self.device = HuggingFaceVlmMode.map_device_to_cpu_if_mlx(self.device)
|
||||||
if self.device == "mps":
|
_log.debug(f"Available device for VLM: {self.device}")
|
||||||
_log.warning(
|
|
||||||
"Mapping mlx to cpu for AutoModelForCausalLM, use MLX framework!"
|
|
||||||
)
|
|
||||||
self.device = "cpu"
|
|
||||||
|
|
||||||
print("device: ", self.device)
|
|
||||||
|
|
||||||
self.use_cache = vlm_options.use_kv_cache
|
self.use_cache = vlm_options.use_kv_cache
|
||||||
self.max_new_tokens = vlm_options.max_new_tokens
|
self.max_new_tokens = vlm_options.max_new_tokens
|
||||||
|
self.temperature = vlm_options.temperature
|
||||||
|
|
||||||
_log.debug(f"Available device for VLM: {self.device}")
|
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||||
|
|
||||||
if artifacts_path is None:
|
if artifacts_path is None:
|
||||||
@ -126,12 +120,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
|
|
||||||
if hi_res_image is not None:
|
if hi_res_image is not None:
|
||||||
im_width, im_height = hi_res_image.size
|
im_width, im_height = hi_res_image.size
|
||||||
|
|
||||||
"""
|
|
||||||
if hi_res_image:
|
|
||||||
if hi_res_image.mode != "RGB":
|
|
||||||
hi_res_image = hi_res_image.convert("RGB")
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Define prompt structure
|
# Define prompt structure
|
||||||
prompt = self.formulate_prompt()
|
prompt = self.formulate_prompt()
|
||||||
@ -147,9 +135,9 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
**inputs,
|
**inputs,
|
||||||
max_new_tokens=self.max_new_tokens,
|
max_new_tokens=self.max_new_tokens,
|
||||||
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||||
|
temperature=self.temperature,
|
||||||
generation_config=self.generation_config,
|
generation_config=self.generation_config,
|
||||||
num_logits_to_keep=1,
|
num_logits_to_keep=1,
|
||||||
# temperature=0.0,
|
|
||||||
)
|
)
|
||||||
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
|
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
|
||||||
|
|
||||||
@ -162,8 +150,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
clean_up_tokenization_spaces=False,
|
clean_up_tokenization_spaces=False,
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
#_log.debug(
|
_log.debug(
|
||||||
print(
|
|
||||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||||
)
|
)
|
||||||
page.predictions.vlm_response = VlmPrediction(text=response, generation_time=generation_time)
|
page.predictions.vlm_response = VlmPrediction(text=response, generation_time=generation_time)
|
||||||
|
@ -39,8 +39,14 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self.device = decide_device(accelerator_options.device)
|
self.device = decide_device(accelerator_options.device)
|
||||||
|
self.device = HuggingFaceVlmMode.map_device_to_cpu_if_mlx(self.device)
|
||||||
|
|
||||||
_log.debug(f"Available device for HuggingFace VLM: {self.device}")
|
_log.debug(f"Available device for HuggingFace VLM: {self.device}")
|
||||||
|
|
||||||
|
self.use_cache = vlm_options.use_kv_cache
|
||||||
|
self.max_new_tokens = vlm_options.max_new_tokens
|
||||||
|
self.temperature = vlm_options.temperature
|
||||||
|
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||||
|
|
||||||
# PARAMETERS:
|
# PARAMETERS:
|
||||||
@ -111,10 +117,12 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
# populate page_tags with predicted doc tags
|
# populate page_tags with predicted doc tags
|
||||||
page_tags = ""
|
page_tags = ""
|
||||||
|
|
||||||
|
"""
|
||||||
if hi_res_image:
|
if hi_res_image:
|
||||||
if hi_res_image.mode != "RGB":
|
if hi_res_image.mode != "RGB":
|
||||||
hi_res_image = hi_res_image.convert("RGB")
|
hi_res_image = hi_res_image.convert("RGB")
|
||||||
|
"""
|
||||||
|
|
||||||
# Define prompt structure
|
# Define prompt structure
|
||||||
prompt = self.formulate_prompt()
|
prompt = self.formulate_prompt()
|
||||||
|
|
||||||
@ -126,7 +134,10 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
# Call model to generate:
|
# Call model to generate:
|
||||||
generated_ids = self.vlm_model.generate(
|
generated_ids = self.vlm_model.generate(
|
||||||
**inputs, max_new_tokens=4096, use_cache=True
|
**inputs,
|
||||||
|
max_new_tokens=self.max_new_tokens,
|
||||||
|
use_cache=self.use_cache,
|
||||||
|
temperature=self.temperature,
|
||||||
)
|
)
|
||||||
|
|
||||||
generation_time = time.time() - start_time
|
generation_time = time.time() - start_time
|
||||||
|
@ -39,16 +39,12 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
self.device = decide_device(accelerator_options.device)
|
self.device = decide_device(accelerator_options.device)
|
||||||
|
self.device = HuggingFaceVlmMode.map_device_to_cpu_if_mlx(self.device)
|
||||||
if self.device == "mlx":
|
|
||||||
_log.warning(
|
|
||||||
"Mapping mlx to cpu for LlavaForConditionalGeneration, use MLX framework!"
|
|
||||||
)
|
|
||||||
self.device = "cpu"
|
|
||||||
|
|
||||||
self.use_cache = vlm_options.use_kv_cache
|
self.use_cache = vlm_options.use_kv_cache
|
||||||
self.max_new_tokens = vlm_options.max_new_tokens
|
self.max_new_tokens = vlm_options.max_new_tokens
|
||||||
|
self.temperature = vlm_options.temperature
|
||||||
|
|
||||||
_log.debug(f"Available device for VLM: {self.device}")
|
_log.debug(f"Available device for VLM: {self.device}")
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||||
|
|
||||||
@ -93,10 +89,12 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
if hi_res_image is not None:
|
if hi_res_image is not None:
|
||||||
im_width, im_height = hi_res_image.size
|
im_width, im_height = hi_res_image.size
|
||||||
|
|
||||||
|
"""
|
||||||
if hi_res_image:
|
if hi_res_image:
|
||||||
if hi_res_image.mode != "RGB":
|
if hi_res_image.mode != "RGB":
|
||||||
hi_res_image = hi_res_image.convert("RGB")
|
hi_res_image = hi_res_image.convert("RGB")
|
||||||
|
"""
|
||||||
|
|
||||||
images = [hi_res_image]
|
images = [hi_res_image]
|
||||||
|
|
||||||
# Define prompt structure
|
# Define prompt structure
|
||||||
@ -112,9 +110,10 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
**inputs,
|
**inputs,
|
||||||
max_new_tokens=self.max_new_tokens,
|
max_new_tokens=self.max_new_tokens,
|
||||||
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||||
|
temperature=self.temperature,
|
||||||
)
|
)
|
||||||
|
|
||||||
num_tokens = len(generate_ids[0])
|
#num_tokens = len(generate_ids[0])
|
||||||
generation_time = time.time() - start_time
|
generation_time = time.time() - start_time
|
||||||
|
|
||||||
response = self.processor.batch_decode(
|
response = self.processor.batch_decode(
|
||||||
@ -125,7 +124,7 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
|
|
||||||
page.predictions.vlm_response = VlmPrediction(
|
page.predictions.vlm_response = VlmPrediction(
|
||||||
text=response,
|
text=response,
|
||||||
generated_tokens=num_tokens,
|
#generated_tokens=num_tokens,
|
||||||
generation_time=generation_time,
|
generation_time=generation_time,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -134,7 +133,6 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
def formulate_prompt(self) -> str:
|
def formulate_prompt(self) -> str:
|
||||||
"""Formulate a prompt for the VLM."""
|
"""Formulate a prompt for the VLM."""
|
||||||
if self.vlm_options.repo_id == "mistral-community/pixtral-12b":
|
if self.vlm_options.repo_id == "mistral-community/pixtral-12b":
|
||||||
# prompt = f"<s>[INST]{self.vlm_options.prompt}\n[IMG][/INST]"
|
|
||||||
chat = [
|
chat = [
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
|
@ -187,9 +187,9 @@ if __name__ == "__main__":
|
|||||||
rows = []
|
rows = []
|
||||||
for vlm_options in [
|
for vlm_options in [
|
||||||
# smoldocling_vlm_conversion_options, \
|
# smoldocling_vlm_conversion_options, \
|
||||||
# smoldocling_vlm_mlx_conversion_options, \
|
smoldocling_vlm_mlx_conversion_options, \
|
||||||
# granite_vision_vlm_conversion_options, \
|
# granite_vision_vlm_conversion_options, \
|
||||||
phi_vlm_conversion_options, \
|
# phi_vlm_conversion_options, \
|
||||||
# qwen25_vl_3b_vlm_mlx_conversion_options, \
|
# qwen25_vl_3b_vlm_mlx_conversion_options, \
|
||||||
# pixtral_12b_vlm_mlx_conversion_options,
|
# pixtral_12b_vlm_mlx_conversion_options,
|
||||||
# pixtral_12b_vlm_conversion_options,
|
# pixtral_12b_vlm_conversion_options,
|
||||||
|
Loading…
Reference in New Issue
Block a user