mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-25 19:44:34 +00:00
fixed the MyPy complaining
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
c10e2920a4
commit
dcf6fd6a41
@ -11,12 +11,13 @@ from docling.datamodel.pipeline_options_asr_model import (
|
||||
# ApiAsrOptions,
|
||||
InferenceAsrFramework,
|
||||
InlineAsrNativeWhisperOptions,
|
||||
InlineAsrOptions,
|
||||
TransformersModelType,
|
||||
)
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
WHISPER_TINY = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_TINY: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="tiny",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -27,7 +28,7 @@ WHISPER_TINY = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_SMALL = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_SMALL: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="small",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -38,7 +39,7 @@ WHISPER_SMALL = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_MEDIUM: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="medium",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -49,7 +50,7 @@ WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_BASE = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_BASE: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="base",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -60,7 +61,7 @@ WHISPER_BASE = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_LARGE = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_LARGE: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="large",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -71,7 +72,7 @@ WHISPER_LARGE = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_TURBO = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_TURBO: InlineAsrOptions = InlineAsrNativeWhisperOptions(
|
||||
repo_id="turbo",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
|
@ -16,7 +16,15 @@ from docling.datamodel import asr_model_specs
|
||||
|
||||
# Import the following for backwards compatibility
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.asr_model_specs import WHISPER_TINY as whisper_tiny
|
||||
from docling.datamodel.asr_model_specs import (
|
||||
WHISPER_BASE,
|
||||
WHISPER_LARGE,
|
||||
WHISPER_MEDIUM,
|
||||
WHISPER_SMALL,
|
||||
WHISPER_TINY,
|
||||
WHISPER_TINY as whisper_tiny,
|
||||
WHISPER_TURBO,
|
||||
)
|
||||
from docling.datamodel.layout_model_specs import (
|
||||
LayoutModelConfig,
|
||||
docling_layout_egret_large,
|
||||
@ -279,13 +287,12 @@ class VlmPipelineOptions(PaginatedPipelineOptions):
|
||||
class LayoutOptions(BaseModel):
|
||||
"""Options for layout processing."""
|
||||
|
||||
repo_id: str = "ds4sd/docling-layout-heron"
|
||||
create_orphan_clusters: bool = True # Whether to create clusters for orphaned cells
|
||||
model_spec: LayoutModelConfig = docling_layout_v2
|
||||
|
||||
|
||||
class AsrPipelineOptions(PipelineOptions):
|
||||
asr_options: Union[InlineAsrOptions] = asr_model_specs.WHISPER_TINY
|
||||
asr_options: Union[InlineAsrOptions] = WHISPER_TINY
|
||||
artifacts_path: Optional[Union[Path, str]] = None
|
||||
|
||||
|
||||
|
@ -16,7 +16,7 @@ from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.layout_model_specs import LayoutModelConfig, docling_layout_v2
|
||||
from docling.datamodel.pipeline_options import LayoutOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.base_model import BaseLayoutModel
|
||||
from docling.models.utils.hf_model_download import download_hf_model
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.layout_postprocessor import LayoutPostprocessor
|
||||
@ -26,7 +26,7 @@ from docling.utils.visualization import draw_clusters
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LayoutModel(BasePageModel):
|
||||
class LayoutModel(BaseLayoutModel):
|
||||
TEXT_ELEM_LABELS = [
|
||||
DocItemLabel.TEXT,
|
||||
DocItemLabel.FOOTNOTE,
|
||||
@ -179,7 +179,9 @@ class LayoutModel(BasePageModel):
|
||||
)
|
||||
clusters.append(cluster)
|
||||
"""
|
||||
predicted_clusters = self.predict_on_page(page_image=page_image)
|
||||
predicted_clusters = self.predict_on_page_image(
|
||||
page_image=page_image
|
||||
)
|
||||
|
||||
if settings.debug.visualize_raw_layout:
|
||||
self.draw_clusters_and_cells_side_by_side(
|
||||
@ -216,7 +218,9 @@ class LayoutModel(BasePageModel):
|
||||
)
|
||||
"""
|
||||
page, processed_clusters, processed_cells = (
|
||||
self.postprocess_on_page(page=page, clusters=predicted_clusters)
|
||||
self.postprocess_on_page_image(
|
||||
page=page, clusters=predicted_clusters
|
||||
)
|
||||
)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
@ -244,7 +248,7 @@ class LayoutModel(BasePageModel):
|
||||
|
||||
yield page
|
||||
|
||||
def predict_on_page(self, *, page_image: Image.Image) -> list[Cluster]:
|
||||
def predict_on_page_image(self, *, page_image: Image.Image) -> list[Cluster]:
|
||||
pred_items = self.layout_predictor.predict(page_image)
|
||||
|
||||
clusters = []
|
||||
@ -263,7 +267,7 @@ class LayoutModel(BasePageModel):
|
||||
|
||||
return clusters
|
||||
|
||||
def postprocess_on_page(
|
||||
def postprocess_on_page_image(
|
||||
self, *, page: Page, clusters: list[Cluster]
|
||||
) -> tuple[Page, list[Cluster], list[TextCell]]:
|
||||
processed_clusters, processed_cells = LayoutPostprocessor(
|
||||
|
@ -5,10 +5,12 @@ from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from docling.datamodel.accelerator_options import (
|
||||
AcceleratorOptions,
|
||||
)
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.base_models import Page, VlmPrediction, VlmPredictionToken
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options_vlm_model import (
|
||||
InlineVlmOptions,
|
||||
@ -122,6 +124,43 @@ class HuggingFaceTransformersVlmModel(BaseVlmModel, HuggingFaceModelDownloadMixi
|
||||
# Load generation config
|
||||
self.generation_config = GenerationConfig.from_pretrained(artifacts_path)
|
||||
|
||||
def get_user_prompt(self, page: Optional[Page]) -> str:
|
||||
# Define prompt structure
|
||||
user_prompt = ""
|
||||
if callable(self.vlm_options.prompt) and page is not None:
|
||||
user_prompt = self.vlm_options.prompt(page.parsed_page)
|
||||
elif isinstance(self.vlm_options.prompt, str):
|
||||
user_prompt = self.vlm_options.prompt
|
||||
|
||||
prompt = self.formulate_prompt(user_prompt)
|
||||
return prompt
|
||||
|
||||
def predict_on_page_image(
|
||||
self, *, page_image: Image.Image, prompt: str, output_tokens: bool = False
|
||||
) -> tuple[str, Optional[list[VlmPredictionToken]]]:
|
||||
output = ""
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[page_image], return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=self.use_cache,
|
||||
temperature=self.temperature,
|
||||
generation_config=self.generation_config,
|
||||
**self.vlm_options.extra_generation_config,
|
||||
)
|
||||
|
||||
output = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
)[0]
|
||||
|
||||
return output, []
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
@ -133,22 +172,29 @@ class HuggingFaceTransformersVlmModel(BaseVlmModel, HuggingFaceModelDownloadMixi
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(
|
||||
page_image = page.get_image(
|
||||
scale=self.vlm_options.scale, max_size=self.vlm_options.max_size
|
||||
)
|
||||
|
||||
assert page_image is not None
|
||||
|
||||
# Define prompt structure
|
||||
"""
|
||||
if callable(self.vlm_options.prompt):
|
||||
user_prompt = self.vlm_options.prompt(page.parsed_page)
|
||||
else:
|
||||
user_prompt = self.vlm_options.prompt
|
||||
prompt = self.formulate_prompt(user_prompt)
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||
).to(self.device)
|
||||
"""
|
||||
prompt = self.get_user_prompt(page=page)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
"""
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[page_image], return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
@ -169,9 +215,14 @@ class HuggingFaceTransformersVlmModel(BaseVlmModel, HuggingFaceModelDownloadMixi
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
"""
|
||||
generated_text = self.predict_on_page_image(
|
||||
page_image=page_image, prompt=prompt, output_tokens=False
|
||||
)
|
||||
|
||||
page.predictions.vlm_response = VlmPrediction(
|
||||
text=generated_texts,
|
||||
generation_time=generation_time,
|
||||
text=generated_text,
|
||||
generation_time=time.time() - start_time,
|
||||
)
|
||||
|
||||
yield page
|
||||
|
@ -115,7 +115,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
TwoStageVlmOptions, self.pipeline_options.vlm_options
|
||||
)
|
||||
|
||||
layout_options = twostagevlm_options.lay_options
|
||||
layout_options = twostagevlm_options.layout_options
|
||||
vlm_options = twostagevlm_options.vlm_options
|
||||
|
||||
layout_model = LayoutModel(
|
||||
@ -125,24 +125,24 @@ class VlmPipeline(PaginatedPipeline):
|
||||
)
|
||||
|
||||
if vlm_options.inference_framework == InferenceFramework.MLX:
|
||||
vlm_model = HuggingFaceMlxModel(
|
||||
vlm_model_mlx = HuggingFaceMlxModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
vlm_options=vlm_options,
|
||||
)
|
||||
self.build_pipe = [
|
||||
TwoStageVlmModel(layout_model=layout_model, vlm_model=vlm_model)
|
||||
TwoStageVlmModel(layout_model=layout_model, vlm_model=vlm_model_mlx)
|
||||
]
|
||||
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS:
|
||||
vlm_model = HuggingFaceTransformersVlmModel(
|
||||
vlm_model_hf = HuggingFaceTransformersVlmModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
vlm_options=vlm_options,
|
||||
)
|
||||
self.build_pipe = [
|
||||
TwoStageVlmModel(layout_model=layout_model, vlm_model=vlm_model)
|
||||
TwoStageVlmModel(layout_model=layout_model, vlm_model=vlm_model_hf)
|
||||
]
|
||||
else:
|
||||
raise ValueError(
|
||||
|
Loading…
Reference in New Issue
Block a user