mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-25 19:44:34 +00:00
use single HF VLM model class
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
8006683007
commit
ea5719c39d
@ -20,9 +20,13 @@ class ResponseFormat(str, Enum):
|
||||
|
||||
class InferenceFramework(str, Enum):
|
||||
MLX = "mlx"
|
||||
TRANSFORMERS = "transformers" # TODO: how to flag this as outdated?
|
||||
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
|
||||
TRANSFORMERS_CAUSALLM = "transformers-causallm"
|
||||
TRANSFORMERS = "transformers"
|
||||
|
||||
|
||||
class TransformersModelType(str, Enum):
|
||||
AUTOMODEL = "automodel"
|
||||
AUTOMODEL_VISION2SEQ = "automodel-vision2seq"
|
||||
AUTOMODEL_CAUSALLM = "automodel-causallm"
|
||||
|
||||
|
||||
class InlineVlmOptions(BaseVlmOptions):
|
||||
@ -35,6 +39,7 @@ class InlineVlmOptions(BaseVlmOptions):
|
||||
quantized: bool = False
|
||||
|
||||
inference_framework: InferenceFramework
|
||||
transformers_model_type: TransformersModelType = TransformersModelType.AUTOMODEL
|
||||
response_format: ResponseFormat
|
||||
|
||||
supported_devices: List[AcceleratorDevice] = [
|
||||
|
@ -11,6 +11,7 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
||||
InferenceFramework,
|
||||
InlineVlmOptions,
|
||||
ResponseFormat,
|
||||
TransformersModelType,
|
||||
)
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -31,7 +32,8 @@ SMOLDOCLING_TRANSFORMERS = InlineVlmOptions(
|
||||
repo_id="ds4sd/SmolDocling-256M-preview",
|
||||
prompt="Convert this page to docling.",
|
||||
response_format=ResponseFormat.DOCTAGS,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||
supported_devices=[
|
||||
AcceleratorDevice.CPU,
|
||||
AcceleratorDevice.CUDA,
|
||||
@ -46,7 +48,8 @@ GRANITE_VISION_TRANSFORMERS = InlineVlmOptions(
|
||||
repo_id="ibm-granite/granite-vision-3.2-2b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||
supported_devices=[
|
||||
AcceleratorDevice.CPU,
|
||||
AcceleratorDevice.CUDA,
|
||||
@ -71,7 +74,8 @@ PIXTRAL_12B_TRANSFORMERS = InlineVlmOptions(
|
||||
repo_id="mistral-community/pixtral-12b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
@ -93,7 +97,8 @@ PHI4_TRANSFORMERS = InlineVlmOptions(
|
||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
||||
trust_remote_code=True,
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_CAUSALLM,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||
transformers_model_type=TransformersModelType.AUTOMODEL_CAUSALLM,
|
||||
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
|
@ -3,14 +3,17 @@ import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
from docling.datamodel.accelerator_options import (
|
||||
AcceleratorOptions,
|
||||
)
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||
from docling.datamodel.pipeline_options_vlm_model import (
|
||||
InlineVlmOptions,
|
||||
TransformersModelType,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.utils.hf_model_download import (
|
||||
HuggingFaceModelDownloadMixin,
|
||||
@ -21,9 +24,7 @@ from docling.utils.profiling import TimeRecorder
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
BasePageModel, HuggingFaceModelDownloadMixin
|
||||
):
|
||||
class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
@ -37,8 +38,10 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
from transformers import (
|
||||
AutoModel,
|
||||
AutoModelForCausalLM,
|
||||
AutoModelForVision2Seq,
|
||||
AutoProcessor,
|
||||
BitsAndBytesConfig,
|
||||
GenerationConfig,
|
||||
@ -77,15 +80,26 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
||||
)
|
||||
|
||||
model_cls: Any = AutoModel
|
||||
if (
|
||||
self.vlm_options.transformers_model_type
|
||||
== TransformersModelType.AUTOMODEL_CAUSALLM
|
||||
):
|
||||
model_cls = AutoModelForCausalLM
|
||||
elif (
|
||||
self.vlm_options.transformers_model_type
|
||||
== TransformersModelType.AUTOMODEL_VISION2SEQ
|
||||
):
|
||||
model_cls = AutoModelForVision2Seq
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
artifacts_path,
|
||||
trust_remote_code=vlm_options.trust_remote_code,
|
||||
)
|
||||
self.vlm_model = AutoModelForCausalLM.from_pretrained(
|
||||
self.vlm_model = model_cls.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
torch_dtype="auto",
|
||||
quantization_config=self.param_quantization_config,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
@ -109,51 +123,46 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2) # self.vlm_options.scale)
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
||||
|
||||
# Define prompt structure
|
||||
prompt = self.formulate_prompt()
|
||||
print(f"prompt: '{prompt}', size: {im_width}, {im_height}")
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=hi_res_image, return_tensors="pt"
|
||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
# Generate response
|
||||
start_time = time.time()
|
||||
generate_ids = self.vlm_model.generate(
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||
use_cache=self.use_cache,
|
||||
temperature=self.temperature,
|
||||
generation_config=self.generation_config,
|
||||
**self.vlm_options.extra_generation_config,
|
||||
)
|
||||
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
|
||||
|
||||
num_tokens = len(generate_ids[0])
|
||||
generation_time = time.time() - start_time
|
||||
|
||||
response = self.processor.batch_decode(
|
||||
generate_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False,
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
)[0]
|
||||
|
||||
num_tokens = len(generated_ids[0])
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
page.predictions.vlm_response = VlmPrediction(
|
||||
text=response, generation_time=generation_time
|
||||
text=generated_texts,
|
||||
generation_time=generation_time,
|
||||
)
|
||||
|
||||
yield page
|
||||
|
||||
def formulate_prompt(self) -> str:
|
||||
"""Formulate a prompt for the VLM."""
|
||||
|
||||
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
||||
_log.debug("Using specialized prompt for Phi-4")
|
||||
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
||||
@ -167,7 +176,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
|
||||
return prompt
|
||||
|
||||
_log.debug("Using default prompt for CasualLM using apply_chat_template")
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
@ -1,166 +0,0 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from docling.datamodel.accelerator_options import (
|
||||
AcceleratorOptions,
|
||||
)
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.utils.hf_model_download import (
|
||||
HuggingFaceModelDownloadMixin,
|
||||
)
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel_AutoModelForVision2Seq(
|
||||
BasePageModel, HuggingFaceModelDownloadMixin
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
vlm_options: InlineVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
AutoModelForVision2Seq,
|
||||
AutoProcessor,
|
||||
BitsAndBytesConfig,
|
||||
)
|
||||
|
||||
self.device = decide_device(
|
||||
accelerator_options.device,
|
||||
supported_devices=vlm_options.supported_devices,
|
||||
)
|
||||
_log.debug(f"Available device for VLM: {self.device}")
|
||||
|
||||
self.use_cache = vlm_options.use_kv_cache
|
||||
self.max_new_tokens = vlm_options.max_new_tokens
|
||||
self.temperature = vlm_options.temperature
|
||||
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
|
||||
if vlm_options.quantized:
|
||||
self.param_quantization_config = BitsAndBytesConfig(
|
||||
load_in_8bit=vlm_options.load_in_8bit,
|
||||
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
||||
)
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
artifacts_path,
|
||||
trust_remote_code=vlm_options.trust_remote_code,
|
||||
)
|
||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
# torch_dtype=torch.bfloat16,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
and accelerator_options.cuda_use_flash_attention2
|
||||
else "eager"
|
||||
),
|
||||
trust_remote_code=vlm_options.trust_remote_code,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
|
||||
# populate page_tags with predicted doc tags
|
||||
page_tags = ""
|
||||
|
||||
"""
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
"""
|
||||
|
||||
# Define prompt structure
|
||||
prompt = self.formulate_prompt()
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||
)
|
||||
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
||||
|
||||
start_time = time.time()
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=self.use_cache,
|
||||
temperature=self.temperature,
|
||||
)
|
||||
|
||||
generation_time = time.time() - start_time
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
)[0]
|
||||
|
||||
num_tokens = len(generated_ids[0])
|
||||
page_tags = generated_texts
|
||||
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
page.predictions.vlm_response = VlmPrediction(
|
||||
text=page_tags,
|
||||
generation_time=generation_time,
|
||||
)
|
||||
|
||||
yield page
|
||||
|
||||
def formulate_prompt(self) -> str:
|
||||
"""Formulate a prompt for the VLM."""
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "This is a page from a document.",
|
||||
},
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": self.vlm_options.prompt},
|
||||
],
|
||||
}
|
||||
]
|
||||
prompt = self.processor.apply_chat_template(
|
||||
messages, add_generation_prompt=False
|
||||
)
|
||||
return prompt
|
@ -37,11 +37,8 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.api_vlm_model import ApiVlmModel
|
||||
from docling.models.vlm_models_inline.hf_transformers_causallm_model import (
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM,
|
||||
)
|
||||
from docling.models.vlm_models_inline.hf_transformers_vision2seq_model import (
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq,
|
||||
from docling.models.vlm_models_inline.hf_transformers_model import (
|
||||
HuggingFaceTransformersVlmModel,
|
||||
)
|
||||
from docling.models.vlm_models_inline.mlx_model import HuggingFaceMlxModel
|
||||
from docling.pipeline.base_pipeline import PaginatedPipeline
|
||||
@ -97,25 +94,9 @@ class VlmPipeline(PaginatedPipeline):
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_VISION2SEQ
|
||||
or vlm_options.inference_framework == InferenceFramework.TRANSFORMERS
|
||||
):
|
||||
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS:
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_CAUSALLM
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
HuggingFaceTransformersVlmModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
|
Loading…
Reference in New Issue
Block a user