mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
use single HF VLM model class
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
8006683007
commit
ea5719c39d
@ -20,9 +20,13 @@ class ResponseFormat(str, Enum):
|
|||||||
|
|
||||||
class InferenceFramework(str, Enum):
|
class InferenceFramework(str, Enum):
|
||||||
MLX = "mlx"
|
MLX = "mlx"
|
||||||
TRANSFORMERS = "transformers" # TODO: how to flag this as outdated?
|
TRANSFORMERS = "transformers"
|
||||||
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
|
|
||||||
TRANSFORMERS_CAUSALLM = "transformers-causallm"
|
|
||||||
|
class TransformersModelType(str, Enum):
|
||||||
|
AUTOMODEL = "automodel"
|
||||||
|
AUTOMODEL_VISION2SEQ = "automodel-vision2seq"
|
||||||
|
AUTOMODEL_CAUSALLM = "automodel-causallm"
|
||||||
|
|
||||||
|
|
||||||
class InlineVlmOptions(BaseVlmOptions):
|
class InlineVlmOptions(BaseVlmOptions):
|
||||||
@ -35,6 +39,7 @@ class InlineVlmOptions(BaseVlmOptions):
|
|||||||
quantized: bool = False
|
quantized: bool = False
|
||||||
|
|
||||||
inference_framework: InferenceFramework
|
inference_framework: InferenceFramework
|
||||||
|
transformers_model_type: TransformersModelType = TransformersModelType.AUTOMODEL
|
||||||
response_format: ResponseFormat
|
response_format: ResponseFormat
|
||||||
|
|
||||||
supported_devices: List[AcceleratorDevice] = [
|
supported_devices: List[AcceleratorDevice] = [
|
||||||
|
@ -11,6 +11,7 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
|||||||
InferenceFramework,
|
InferenceFramework,
|
||||||
InlineVlmOptions,
|
InlineVlmOptions,
|
||||||
ResponseFormat,
|
ResponseFormat,
|
||||||
|
TransformersModelType,
|
||||||
)
|
)
|
||||||
|
|
||||||
_log = logging.getLogger(__name__)
|
_log = logging.getLogger(__name__)
|
||||||
@ -31,7 +32,8 @@ SMOLDOCLING_TRANSFORMERS = InlineVlmOptions(
|
|||||||
repo_id="ds4sd/SmolDocling-256M-preview",
|
repo_id="ds4sd/SmolDocling-256M-preview",
|
||||||
prompt="Convert this page to docling.",
|
prompt="Convert this page to docling.",
|
||||||
response_format=ResponseFormat.DOCTAGS,
|
response_format=ResponseFormat.DOCTAGS,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||||
|
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||||
supported_devices=[
|
supported_devices=[
|
||||||
AcceleratorDevice.CPU,
|
AcceleratorDevice.CPU,
|
||||||
AcceleratorDevice.CUDA,
|
AcceleratorDevice.CUDA,
|
||||||
@ -46,7 +48,8 @@ GRANITE_VISION_TRANSFORMERS = InlineVlmOptions(
|
|||||||
repo_id="ibm-granite/granite-vision-3.2-2b",
|
repo_id="ibm-granite/granite-vision-3.2-2b",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||||
|
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||||
supported_devices=[
|
supported_devices=[
|
||||||
AcceleratorDevice.CPU,
|
AcceleratorDevice.CPU,
|
||||||
AcceleratorDevice.CUDA,
|
AcceleratorDevice.CUDA,
|
||||||
@ -71,7 +74,8 @@ PIXTRAL_12B_TRANSFORMERS = InlineVlmOptions(
|
|||||||
repo_id="mistral-community/pixtral-12b",
|
repo_id="mistral-community/pixtral-12b",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||||
|
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
|
||||||
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
temperature=0.0,
|
temperature=0.0,
|
||||||
@ -93,7 +97,8 @@ PHI4_TRANSFORMERS = InlineVlmOptions(
|
|||||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
inference_framework=InferenceFramework.TRANSFORMERS_CAUSALLM,
|
inference_framework=InferenceFramework.TRANSFORMERS,
|
||||||
|
transformers_model_type=TransformersModelType.AUTOMODEL_CAUSALLM,
|
||||||
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
supported_devices=[AcceleratorDevice.CPU, AcceleratorDevice.CUDA],
|
||||||
scale=2.0,
|
scale=2.0,
|
||||||
temperature=0.0,
|
temperature=0.0,
|
||||||
|
@ -3,14 +3,17 @@ import logging
|
|||||||
import time
|
import time
|
||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
from docling.datamodel.accelerator_options import (
|
from docling.datamodel.accelerator_options import (
|
||||||
AcceleratorOptions,
|
AcceleratorOptions,
|
||||||
)
|
)
|
||||||
from docling.datamodel.base_models import Page, VlmPrediction
|
from docling.datamodel.base_models import Page, VlmPrediction
|
||||||
from docling.datamodel.document import ConversionResult
|
from docling.datamodel.document import ConversionResult
|
||||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
from docling.datamodel.pipeline_options_vlm_model import (
|
||||||
|
InlineVlmOptions,
|
||||||
|
TransformersModelType,
|
||||||
|
)
|
||||||
from docling.models.base_model import BasePageModel
|
from docling.models.base_model import BasePageModel
|
||||||
from docling.models.utils.hf_model_download import (
|
from docling.models.utils.hf_model_download import (
|
||||||
HuggingFaceModelDownloadMixin,
|
HuggingFaceModelDownloadMixin,
|
||||||
@ -21,9 +24,7 @@ from docling.utils.profiling import TimeRecorder
|
|||||||
_log = logging.getLogger(__name__)
|
_log = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class HuggingFaceVlmModel_AutoModelForCausalLM(
|
class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||||
BasePageModel, HuggingFaceModelDownloadMixin
|
|
||||||
):
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
enabled: bool,
|
enabled: bool,
|
||||||
@ -37,8 +38,10 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
|||||||
|
|
||||||
if self.enabled:
|
if self.enabled:
|
||||||
import torch
|
import torch
|
||||||
from transformers import ( # type: ignore
|
from transformers import (
|
||||||
|
AutoModel,
|
||||||
AutoModelForCausalLM,
|
AutoModelForCausalLM,
|
||||||
|
AutoModelForVision2Seq,
|
||||||
AutoProcessor,
|
AutoProcessor,
|
||||||
BitsAndBytesConfig,
|
BitsAndBytesConfig,
|
||||||
GenerationConfig,
|
GenerationConfig,
|
||||||
@ -77,15 +80,26 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
|||||||
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
model_cls: Any = AutoModel
|
||||||
|
if (
|
||||||
|
self.vlm_options.transformers_model_type
|
||||||
|
== TransformersModelType.AUTOMODEL_CAUSALLM
|
||||||
|
):
|
||||||
|
model_cls = AutoModelForCausalLM
|
||||||
|
elif (
|
||||||
|
self.vlm_options.transformers_model_type
|
||||||
|
== TransformersModelType.AUTOMODEL_VISION2SEQ
|
||||||
|
):
|
||||||
|
model_cls = AutoModelForVision2Seq
|
||||||
|
|
||||||
self.processor = AutoProcessor.from_pretrained(
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
trust_remote_code=vlm_options.trust_remote_code,
|
trust_remote_code=vlm_options.trust_remote_code,
|
||||||
)
|
)
|
||||||
self.vlm_model = AutoModelForCausalLM.from_pretrained(
|
self.vlm_model = model_cls.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
device_map=self.device,
|
device_map=self.device,
|
||||||
torch_dtype="auto",
|
torch_dtype="auto",
|
||||||
quantization_config=self.param_quantization_config,
|
|
||||||
_attn_implementation=(
|
_attn_implementation=(
|
||||||
"flash_attention_2"
|
"flash_attention_2"
|
||||||
if self.device.startswith("cuda")
|
if self.device.startswith("cuda")
|
||||||
@ -109,51 +123,46 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
|||||||
with TimeRecorder(conv_res, "vlm"):
|
with TimeRecorder(conv_res, "vlm"):
|
||||||
assert page.size is not None
|
assert page.size is not None
|
||||||
|
|
||||||
hi_res_image = page.get_image(scale=2) # self.vlm_options.scale)
|
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
||||||
|
|
||||||
if hi_res_image is not None:
|
|
||||||
im_width, im_height = hi_res_image.size
|
|
||||||
|
|
||||||
# Define prompt structure
|
# Define prompt structure
|
||||||
prompt = self.formulate_prompt()
|
prompt = self.formulate_prompt()
|
||||||
print(f"prompt: '{prompt}', size: {im_width}, {im_height}")
|
|
||||||
|
|
||||||
inputs = self.processor(
|
inputs = self.processor(
|
||||||
text=prompt, images=hi_res_image, return_tensors="pt"
|
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||||
).to(self.device)
|
).to(self.device)
|
||||||
|
|
||||||
# Generate response
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
generate_ids = self.vlm_model.generate(
|
# Call model to generate:
|
||||||
|
generated_ids = self.vlm_model.generate(
|
||||||
**inputs,
|
**inputs,
|
||||||
max_new_tokens=self.max_new_tokens,
|
max_new_tokens=self.max_new_tokens,
|
||||||
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
use_cache=self.use_cache,
|
||||||
temperature=self.temperature,
|
temperature=self.temperature,
|
||||||
generation_config=self.generation_config,
|
generation_config=self.generation_config,
|
||||||
**self.vlm_options.extra_generation_config,
|
**self.vlm_options.extra_generation_config,
|
||||||
)
|
)
|
||||||
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
|
|
||||||
|
|
||||||
num_tokens = len(generate_ids[0])
|
|
||||||
generation_time = time.time() - start_time
|
generation_time = time.time() - start_time
|
||||||
|
generated_texts = self.processor.batch_decode(
|
||||||
response = self.processor.batch_decode(
|
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||||
generate_ids,
|
skip_special_tokens=False,
|
||||||
skip_special_tokens=True,
|
|
||||||
clean_up_tokenization_spaces=False,
|
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
|
num_tokens = len(generated_ids[0])
|
||||||
_log.debug(
|
_log.debug(
|
||||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||||
)
|
)
|
||||||
page.predictions.vlm_response = VlmPrediction(
|
page.predictions.vlm_response = VlmPrediction(
|
||||||
text=response, generation_time=generation_time
|
text=generated_texts,
|
||||||
|
generation_time=generation_time,
|
||||||
)
|
)
|
||||||
|
|
||||||
yield page
|
yield page
|
||||||
|
|
||||||
def formulate_prompt(self) -> str:
|
def formulate_prompt(self) -> str:
|
||||||
"""Formulate a prompt for the VLM."""
|
"""Formulate a prompt for the VLM."""
|
||||||
|
|
||||||
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
||||||
_log.debug("Using specialized prompt for Phi-4")
|
_log.debug("Using specialized prompt for Phi-4")
|
||||||
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
||||||
@ -167,7 +176,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(
|
|||||||
|
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
_log.debug("Using default prompt for CasualLM using apply_chat_template")
|
|
||||||
messages = [
|
messages = [
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
@ -1,166 +0,0 @@
|
|||||||
import logging
|
|
||||||
import time
|
|
||||||
from collections.abc import Iterable
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from docling.datamodel.accelerator_options import (
|
|
||||||
AcceleratorOptions,
|
|
||||||
)
|
|
||||||
from docling.datamodel.base_models import Page, VlmPrediction
|
|
||||||
from docling.datamodel.document import ConversionResult
|
|
||||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
|
||||||
from docling.models.base_model import BasePageModel
|
|
||||||
from docling.models.utils.hf_model_download import (
|
|
||||||
HuggingFaceModelDownloadMixin,
|
|
||||||
)
|
|
||||||
from docling.utils.accelerator_utils import decide_device
|
|
||||||
from docling.utils.profiling import TimeRecorder
|
|
||||||
|
|
||||||
_log = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
class HuggingFaceVlmModel_AutoModelForVision2Seq(
|
|
||||||
BasePageModel, HuggingFaceModelDownloadMixin
|
|
||||||
):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
enabled: bool,
|
|
||||||
artifacts_path: Optional[Path],
|
|
||||||
accelerator_options: AcceleratorOptions,
|
|
||||||
vlm_options: InlineVlmOptions,
|
|
||||||
):
|
|
||||||
self.enabled = enabled
|
|
||||||
|
|
||||||
self.vlm_options = vlm_options
|
|
||||||
|
|
||||||
if self.enabled:
|
|
||||||
import torch
|
|
||||||
from transformers import ( # type: ignore
|
|
||||||
AutoModelForVision2Seq,
|
|
||||||
AutoProcessor,
|
|
||||||
BitsAndBytesConfig,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.device = decide_device(
|
|
||||||
accelerator_options.device,
|
|
||||||
supported_devices=vlm_options.supported_devices,
|
|
||||||
)
|
|
||||||
_log.debug(f"Available device for VLM: {self.device}")
|
|
||||||
|
|
||||||
self.use_cache = vlm_options.use_kv_cache
|
|
||||||
self.max_new_tokens = vlm_options.max_new_tokens
|
|
||||||
self.temperature = vlm_options.temperature
|
|
||||||
|
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
|
||||||
|
|
||||||
# PARAMETERS:
|
|
||||||
if artifacts_path is None:
|
|
||||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
|
||||||
elif (artifacts_path / repo_cache_folder).exists():
|
|
||||||
artifacts_path = artifacts_path / repo_cache_folder
|
|
||||||
|
|
||||||
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
|
|
||||||
if vlm_options.quantized:
|
|
||||||
self.param_quantization_config = BitsAndBytesConfig(
|
|
||||||
load_in_8bit=vlm_options.load_in_8bit,
|
|
||||||
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.processor = AutoProcessor.from_pretrained(
|
|
||||||
artifacts_path,
|
|
||||||
trust_remote_code=vlm_options.trust_remote_code,
|
|
||||||
)
|
|
||||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
|
||||||
artifacts_path,
|
|
||||||
device_map=self.device,
|
|
||||||
# torch_dtype=torch.bfloat16,
|
|
||||||
_attn_implementation=(
|
|
||||||
"flash_attention_2"
|
|
||||||
if self.device.startswith("cuda")
|
|
||||||
and accelerator_options.cuda_use_flash_attention2
|
|
||||||
else "eager"
|
|
||||||
),
|
|
||||||
trust_remote_code=vlm_options.trust_remote_code,
|
|
||||||
)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
|
||||||
) -> Iterable[Page]:
|
|
||||||
for page in page_batch:
|
|
||||||
assert page._backend is not None
|
|
||||||
if not page._backend.is_valid():
|
|
||||||
yield page
|
|
||||||
else:
|
|
||||||
with TimeRecorder(conv_res, "vlm"):
|
|
||||||
assert page.size is not None
|
|
||||||
|
|
||||||
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
|
||||||
|
|
||||||
if hi_res_image is not None:
|
|
||||||
im_width, im_height = hi_res_image.size
|
|
||||||
|
|
||||||
# populate page_tags with predicted doc tags
|
|
||||||
page_tags = ""
|
|
||||||
|
|
||||||
"""
|
|
||||||
if hi_res_image:
|
|
||||||
if hi_res_image.mode != "RGB":
|
|
||||||
hi_res_image = hi_res_image.convert("RGB")
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Define prompt structure
|
|
||||||
prompt = self.formulate_prompt()
|
|
||||||
|
|
||||||
inputs = self.processor(
|
|
||||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
|
||||||
)
|
|
||||||
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
# Call model to generate:
|
|
||||||
generated_ids = self.vlm_model.generate(
|
|
||||||
**inputs,
|
|
||||||
max_new_tokens=self.max_new_tokens,
|
|
||||||
use_cache=self.use_cache,
|
|
||||||
temperature=self.temperature,
|
|
||||||
)
|
|
||||||
|
|
||||||
generation_time = time.time() - start_time
|
|
||||||
generated_texts = self.processor.batch_decode(
|
|
||||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
|
||||||
skip_special_tokens=False,
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
num_tokens = len(generated_ids[0])
|
|
||||||
page_tags = generated_texts
|
|
||||||
|
|
||||||
_log.debug(
|
|
||||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
|
||||||
)
|
|
||||||
page.predictions.vlm_response = VlmPrediction(
|
|
||||||
text=page_tags,
|
|
||||||
generation_time=generation_time,
|
|
||||||
)
|
|
||||||
|
|
||||||
yield page
|
|
||||||
|
|
||||||
def formulate_prompt(self) -> str:
|
|
||||||
"""Formulate a prompt for the VLM."""
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{
|
|
||||||
"type": "text",
|
|
||||||
"text": "This is a page from a document.",
|
|
||||||
},
|
|
||||||
{"type": "image"},
|
|
||||||
{"type": "text", "text": self.vlm_options.prompt},
|
|
||||||
],
|
|
||||||
}
|
|
||||||
]
|
|
||||||
prompt = self.processor.apply_chat_template(
|
|
||||||
messages, add_generation_prompt=False
|
|
||||||
)
|
|
||||||
return prompt
|
|
@ -37,11 +37,8 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
|||||||
)
|
)
|
||||||
from docling.datamodel.settings import settings
|
from docling.datamodel.settings import settings
|
||||||
from docling.models.api_vlm_model import ApiVlmModel
|
from docling.models.api_vlm_model import ApiVlmModel
|
||||||
from docling.models.vlm_models_inline.hf_transformers_causallm_model import (
|
from docling.models.vlm_models_inline.hf_transformers_model import (
|
||||||
HuggingFaceVlmModel_AutoModelForCausalLM,
|
HuggingFaceTransformersVlmModel,
|
||||||
)
|
|
||||||
from docling.models.vlm_models_inline.hf_transformers_vision2seq_model import (
|
|
||||||
HuggingFaceVlmModel_AutoModelForVision2Seq,
|
|
||||||
)
|
)
|
||||||
from docling.models.vlm_models_inline.mlx_model import HuggingFaceMlxModel
|
from docling.models.vlm_models_inline.mlx_model import HuggingFaceMlxModel
|
||||||
from docling.pipeline.base_pipeline import PaginatedPipeline
|
from docling.pipeline.base_pipeline import PaginatedPipeline
|
||||||
@ -97,25 +94,9 @@ class VlmPipeline(PaginatedPipeline):
|
|||||||
vlm_options=vlm_options,
|
vlm_options=vlm_options,
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
elif (
|
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS:
|
||||||
vlm_options.inference_framework
|
|
||||||
== InferenceFramework.TRANSFORMERS_VISION2SEQ
|
|
||||||
or vlm_options.inference_framework == InferenceFramework.TRANSFORMERS
|
|
||||||
):
|
|
||||||
self.build_pipe = [
|
self.build_pipe = [
|
||||||
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
HuggingFaceTransformersVlmModel(
|
||||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
|
||||||
artifacts_path=artifacts_path,
|
|
||||||
accelerator_options=pipeline_options.accelerator_options,
|
|
||||||
vlm_options=vlm_options,
|
|
||||||
),
|
|
||||||
]
|
|
||||||
elif (
|
|
||||||
vlm_options.inference_framework
|
|
||||||
== InferenceFramework.TRANSFORMERS_CAUSALLM
|
|
||||||
):
|
|
||||||
self.build_pipe = [
|
|
||||||
HuggingFaceVlmModel_AutoModelForCausalLM(
|
|
||||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||||
artifacts_path=artifacts_path,
|
artifacts_path=artifacts_path,
|
||||||
accelerator_options=pipeline_options.accelerator_options,
|
accelerator_options=pipeline_options.accelerator_options,
|
||||||
|
Loading…
Reference in New Issue
Block a user