mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-29 21:44:32 +00:00
Actor: Resolving conflicts with main (pass 2)
Signed-off-by: Václav Vančura <commit@vancura.dev>
This commit is contained in:
parent
d7b306231e
commit
ebd323a5e8
24
README.md
24
README.md
@ -23,23 +23,25 @@
|
||||
[](https://pepy.tech/projects/docling)
|
||||
[](https://apify.com/vancura/docling)
|
||||
|
||||
Docling parses documents and exports them to the desired format with ease and speed.
|
||||
Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
|
||||
|
||||
## Features
|
||||
|
||||
* 🗂️ Reads popular document formats (PDF, DOCX, PPTX, XLSX, Images, HTML, AsciiDoc & Markdown) and exports to HTML, Markdown and JSON (with embedded and referenced images)
|
||||
* 📑 Advanced PDF document understanding including page layout, reading order & table structures
|
||||
* 🧩 Unified, expressive [DoclingDocument](https://ds4sd.github.io/docling/concepts/docling_document/) representation format
|
||||
* 🤖 Plug-and-play [integrations](https://ds4sd.github.io/docling/integrations/) incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
|
||||
* 🔍 OCR support for scanned PDFs
|
||||
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, XLSX, HTML, images, and more
|
||||
* 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
|
||||
* 🧬 Unified, expressive [DoclingDocument][docling_document] representation format
|
||||
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, and lossless JSON
|
||||
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
|
||||
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
|
||||
* 🔍 Extensive OCR support for scanned PDFs and images
|
||||
* 💻 Simple and convenient CLI
|
||||
|
||||
Explore the [documentation](https://ds4sd.github.io/docling/) to discover plenty examples and unlock the full power of Docling!
|
||||
|
||||
### Coming soon
|
||||
|
||||
* ♾️ Equation & code extraction
|
||||
* 📝 Metadata extraction, including title, authors, references & language
|
||||
* 📝 Inclusion of Visual Language Models ([SmolDocling](https://huggingface.co/blog/smolervlm#smoldocling))
|
||||
* 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
|
||||
* 📝 Complex chemistry understanding (Molecular structures)
|
||||
|
||||
## Installation
|
||||
|
||||
@ -143,3 +145,7 @@ For individual model usage, please refer to the model licenses found in the orig
|
||||
## IBM ❤️ Open Source AI
|
||||
|
||||
Docling has been brought to you by IBM.
|
||||
|
||||
[supported_formats]: https://ds4sd.github.io/docling/usage/supported_formats/
|
||||
[docling_document]: https://ds4sd.github.io/docling/concepts/docling_document/
|
||||
[integrations]: https://ds4sd.github.io/docling/integrations/
|
||||
|
@ -163,7 +163,7 @@ class DoclingParsePageBackend(PdfPageBackend):
|
||||
l=0, r=0, t=0, b=0, coord_origin=CoordOrigin.BOTTOMLEFT
|
||||
)
|
||||
else:
|
||||
padbox = cropbox.to_bottom_left_origin(page_size.height)
|
||||
padbox = cropbox.to_bottom_left_origin(page_size.height).model_copy()
|
||||
padbox.r = page_size.width - padbox.r
|
||||
padbox.t = page_size.height - padbox.t
|
||||
|
||||
|
@ -12,6 +12,7 @@ from pypdfium2 import PdfPage
|
||||
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
|
||||
from docling.datamodel.base_models import Cell, Size
|
||||
from docling.utils.locks import pypdfium2_lock
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from docling.datamodel.document import InputDocument
|
||||
@ -178,24 +179,28 @@ class DoclingParseV2PageBackend(PdfPageBackend):
|
||||
l=0, r=0, t=0, b=0, coord_origin=CoordOrigin.BOTTOMLEFT
|
||||
)
|
||||
else:
|
||||
padbox = cropbox.to_bottom_left_origin(page_size.height)
|
||||
padbox = cropbox.to_bottom_left_origin(page_size.height).model_copy()
|
||||
padbox.r = page_size.width - padbox.r
|
||||
padbox.t = page_size.height - padbox.t
|
||||
|
||||
image = (
|
||||
self._ppage.render(
|
||||
scale=scale * 1.5,
|
||||
rotation=0, # no additional rotation
|
||||
crop=padbox.as_tuple(),
|
||||
)
|
||||
.to_pil()
|
||||
.resize(size=(round(cropbox.width * scale), round(cropbox.height * scale)))
|
||||
) # We resize the image from 1.5x the given scale to make it sharper.
|
||||
with pypdfium2_lock:
|
||||
image = (
|
||||
self._ppage.render(
|
||||
scale=scale * 1.5,
|
||||
rotation=0, # no additional rotation
|
||||
crop=padbox.as_tuple(),
|
||||
)
|
||||
.to_pil()
|
||||
.resize(
|
||||
size=(round(cropbox.width * scale), round(cropbox.height * scale))
|
||||
)
|
||||
) # We resize the image from 1.5x the given scale to make it sharper.
|
||||
|
||||
return image
|
||||
|
||||
def get_size(self) -> Size:
|
||||
return Size(width=self._ppage.get_width(), height=self._ppage.get_height())
|
||||
with pypdfium2_lock:
|
||||
return Size(width=self._ppage.get_width(), height=self._ppage.get_height())
|
||||
|
||||
def unload(self):
|
||||
self._ppage = None
|
||||
@ -206,23 +211,24 @@ class DoclingParseV2DocumentBackend(PdfDocumentBackend):
|
||||
def __init__(self, in_doc: "InputDocument", path_or_stream: Union[BytesIO, Path]):
|
||||
super().__init__(in_doc, path_or_stream)
|
||||
|
||||
self._pdoc = pdfium.PdfDocument(self.path_or_stream)
|
||||
self.parser = pdf_parser_v2("fatal")
|
||||
with pypdfium2_lock:
|
||||
self._pdoc = pdfium.PdfDocument(self.path_or_stream)
|
||||
self.parser = pdf_parser_v2("fatal")
|
||||
|
||||
success = False
|
||||
if isinstance(self.path_or_stream, BytesIO):
|
||||
success = self.parser.load_document_from_bytesio(
|
||||
self.document_hash, self.path_or_stream
|
||||
)
|
||||
elif isinstance(self.path_or_stream, Path):
|
||||
success = self.parser.load_document(
|
||||
self.document_hash, str(self.path_or_stream)
|
||||
)
|
||||
success = False
|
||||
if isinstance(self.path_or_stream, BytesIO):
|
||||
success = self.parser.load_document_from_bytesio(
|
||||
self.document_hash, self.path_or_stream
|
||||
)
|
||||
elif isinstance(self.path_or_stream, Path):
|
||||
success = self.parser.load_document(
|
||||
self.document_hash, str(self.path_or_stream)
|
||||
)
|
||||
|
||||
if not success:
|
||||
raise RuntimeError(
|
||||
f"docling-parse v2 could not load document {self.document_hash}."
|
||||
)
|
||||
if not success:
|
||||
raise RuntimeError(
|
||||
f"docling-parse v2 could not load document {self.document_hash}."
|
||||
)
|
||||
|
||||
def page_count(self) -> int:
|
||||
# return len(self._pdoc) # To be replaced with docling-parse API
|
||||
@ -236,9 +242,10 @@ class DoclingParseV2DocumentBackend(PdfDocumentBackend):
|
||||
return len_2
|
||||
|
||||
def load_page(self, page_no: int) -> DoclingParseV2PageBackend:
|
||||
return DoclingParseV2PageBackend(
|
||||
self.parser, self.document_hash, page_no, self._pdoc[page_no]
|
||||
)
|
||||
with pypdfium2_lock:
|
||||
return DoclingParseV2PageBackend(
|
||||
self.parser, self.document_hash, page_no, self._pdoc[page_no]
|
||||
)
|
||||
|
||||
def is_valid(self) -> bool:
|
||||
return self.page_count() > 0
|
||||
@ -246,5 +253,6 @@ class DoclingParseV2DocumentBackend(PdfDocumentBackend):
|
||||
def unload(self):
|
||||
super().unload()
|
||||
self.parser.unload_document(self.document_hash)
|
||||
self._pdoc.close()
|
||||
self._pdoc = None
|
||||
with pypdfium2_lock:
|
||||
self._pdoc.close()
|
||||
self._pdoc = None
|
||||
|
@ -1,11 +1,20 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Annotated, Any, Dict, List, Literal, Optional, Tuple, Type, Union
|
||||
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
from pydantic import (
|
||||
AnyUrl,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
field_validator,
|
||||
model_validator,
|
||||
validator,
|
||||
)
|
||||
from pydantic_settings import (
|
||||
BaseSettings,
|
||||
PydanticBaseSettingsSource,
|
||||
@ -31,7 +40,19 @@ class AcceleratorOptions(BaseSettings):
|
||||
)
|
||||
|
||||
num_threads: int = 4
|
||||
device: AcceleratorDevice = AcceleratorDevice.AUTO
|
||||
device: Union[str, AcceleratorDevice] = "auto"
|
||||
cuda_use_flash_attention2: bool = False
|
||||
|
||||
@field_validator("device")
|
||||
def validate_device(cls, value):
|
||||
# "auto", "cpu", "cuda", "mps", or "cuda:N"
|
||||
if value in {d.value for d in AcceleratorDevice} or re.match(
|
||||
r"^cuda(:\d+)?$", value
|
||||
):
|
||||
return value
|
||||
raise ValueError(
|
||||
"Invalid device option. Use 'auto', 'cpu', 'mps', 'cuda', or 'cuda:N'."
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
@ -47,7 +68,6 @@ class AcceleratorOptions(BaseSettings):
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
input_num_threads = data.get("num_threads")
|
||||
|
||||
# Check if to set the num_threads from the alternative envvar
|
||||
if input_num_threads is None:
|
||||
docling_num_threads = os.getenv("DOCLING_NUM_THREADS")
|
||||
@ -79,7 +99,7 @@ class TableStructureOptions(BaseModel):
|
||||
# are merged across table columns.
|
||||
# False: Let table structure model define the text cells, ignore PDF cells.
|
||||
)
|
||||
mode: TableFormerMode = TableFormerMode.FAST
|
||||
mode: TableFormerMode = TableFormerMode.ACCURATE
|
||||
|
||||
|
||||
class OcrOptions(BaseModel):
|
||||
@ -125,6 +145,7 @@ class RapidOcrOptions(OcrOptions):
|
||||
det_model_path: Optional[str] = None # same default as rapidocr
|
||||
cls_model_path: Optional[str] = None # same default as rapidocr
|
||||
rec_model_path: Optional[str] = None # same default as rapidocr
|
||||
rec_keys_path: Optional[str] = None # same default as rapidocr
|
||||
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
@ -189,6 +210,90 @@ class OcrMacOptions(OcrOptions):
|
||||
)
|
||||
|
||||
|
||||
class PictureDescriptionBaseOptions(BaseModel):
|
||||
kind: str
|
||||
batch_size: int = 8
|
||||
scale: float = 2
|
||||
|
||||
bitmap_area_threshold: float = (
|
||||
0.2 # percentage of the area for a bitmap to processed with the models
|
||||
)
|
||||
|
||||
|
||||
class PictureDescriptionApiOptions(PictureDescriptionBaseOptions):
|
||||
kind: Literal["api"] = "api"
|
||||
|
||||
url: AnyUrl = AnyUrl("http://localhost:8000/v1/chat/completions")
|
||||
headers: Dict[str, str] = {}
|
||||
params: Dict[str, Any] = {}
|
||||
timeout: float = 20
|
||||
|
||||
prompt: str = "Describe this image in a few sentences."
|
||||
provenance: str = ""
|
||||
|
||||
|
||||
class PictureDescriptionVlmOptions(PictureDescriptionBaseOptions):
|
||||
kind: Literal["vlm"] = "vlm"
|
||||
|
||||
repo_id: str
|
||||
prompt: str = "Describe this image in a few sentences."
|
||||
# Config from here https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig
|
||||
generation_config: Dict[str, Any] = dict(max_new_tokens=200, do_sample=False)
|
||||
|
||||
@property
|
||||
def repo_cache_folder(self) -> str:
|
||||
return self.repo_id.replace("/", "--")
|
||||
|
||||
|
||||
smolvlm_picture_description = PictureDescriptionVlmOptions(
|
||||
repo_id="HuggingFaceTB/SmolVLM-256M-Instruct"
|
||||
)
|
||||
# phi_picture_description = PictureDescriptionVlmOptions(repo_id="microsoft/Phi-3-vision-128k-instruct")
|
||||
granite_picture_description = PictureDescriptionVlmOptions(
|
||||
repo_id="ibm-granite/granite-vision-3.1-2b-preview",
|
||||
prompt="What is shown in this image?",
|
||||
)
|
||||
|
||||
|
||||
class BaseVlmOptions(BaseModel):
|
||||
kind: str
|
||||
prompt: str
|
||||
|
||||
|
||||
class ResponseFormat(str, Enum):
|
||||
DOCTAGS = "doctags"
|
||||
MARKDOWN = "markdown"
|
||||
|
||||
|
||||
class HuggingFaceVlmOptions(BaseVlmOptions):
|
||||
kind: Literal["hf_model_options"] = "hf_model_options"
|
||||
|
||||
repo_id: str
|
||||
load_in_8bit: bool = True
|
||||
llm_int8_threshold: float = 6.0
|
||||
quantized: bool = False
|
||||
|
||||
response_format: ResponseFormat
|
||||
|
||||
@property
|
||||
def repo_cache_folder(self) -> str:
|
||||
return self.repo_id.replace("/", "--")
|
||||
|
||||
|
||||
smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="ds4sd/SmolDocling-256M-preview",
|
||||
prompt="Convert this page to docling.",
|
||||
response_format=ResponseFormat.DOCTAGS,
|
||||
)
|
||||
|
||||
granite_vision_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="ibm-granite/granite-vision-3.1-2b-preview",
|
||||
# prompt="OCR the full page to markdown.",
|
||||
prompt="OCR this image.",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
)
|
||||
|
||||
|
||||
# Define an enum for the backend options
|
||||
class PdfBackend(str, Enum):
|
||||
"""Enum of valid PDF backends."""
|
||||
@ -217,14 +322,40 @@ class PipelineOptions(BaseModel):
|
||||
)
|
||||
document_timeout: Optional[float] = None
|
||||
accelerator_options: AcceleratorOptions = AcceleratorOptions()
|
||||
enable_remote_services: bool = False
|
||||
|
||||
|
||||
class PdfPipelineOptions(PipelineOptions):
|
||||
class PaginatedPipelineOptions(PipelineOptions):
|
||||
images_scale: float = 1.0
|
||||
generate_page_images: bool = False
|
||||
generate_picture_images: bool = False
|
||||
|
||||
|
||||
class VlmPipelineOptions(PaginatedPipelineOptions):
|
||||
artifacts_path: Optional[Union[Path, str]] = None
|
||||
|
||||
generate_page_images: bool = True
|
||||
force_backend_text: bool = (
|
||||
False # (To be used with vlms, or other generative models)
|
||||
)
|
||||
# If True, text from backend will be used instead of generated text
|
||||
vlm_options: Union[HuggingFaceVlmOptions] = smoldocling_vlm_conversion_options
|
||||
|
||||
|
||||
class PdfPipelineOptions(PaginatedPipelineOptions):
|
||||
"""Options for the PDF pipeline."""
|
||||
|
||||
artifacts_path: Optional[Union[Path, str]] = None
|
||||
do_table_structure: bool = True # True: perform table structure extraction
|
||||
do_ocr: bool = True # True: perform OCR, replace programmatic PDF text
|
||||
do_code_enrichment: bool = False # True: perform code OCR
|
||||
do_formula_enrichment: bool = False # True: perform formula OCR, return Latex code
|
||||
do_picture_classification: bool = False # True: classify pictures in documents
|
||||
do_picture_description: bool = False # True: run describe pictures in documents
|
||||
force_backend_text: bool = (
|
||||
False # (To be used with vlms, or other generative models)
|
||||
)
|
||||
# If True, text from backend will be used instead of generated text
|
||||
|
||||
table_structure_options: TableStructureOptions = TableStructureOptions()
|
||||
ocr_options: Union[
|
||||
@ -234,6 +365,10 @@ class PdfPipelineOptions(PipelineOptions):
|
||||
OcrMacOptions,
|
||||
RapidOcrOptions,
|
||||
] = Field(EasyOcrOptions(), discriminator="kind")
|
||||
picture_description_options: Annotated[
|
||||
Union[PictureDescriptionApiOptions, PictureDescriptionVlmOptions],
|
||||
Field(discriminator="kind"),
|
||||
] = smolvlm_picture_description
|
||||
|
||||
images_scale: float = 1.0
|
||||
generate_page_images: bool = False
|
||||
|
Loading…
Reference in New Issue
Block a user