mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-25 19:44:34 +00:00
use lowercase and uppercase only
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
8686842478
commit
f63312add6
@ -319,11 +319,8 @@ class ResponseFormat(str, Enum):
|
||||
class InferenceFramework(str, Enum):
|
||||
MLX = "mlx"
|
||||
TRANSFORMERS = "transformers"
|
||||
TRANSFORMERS_AutoModelForVision2Seq = "transformers-AutoModelForVision2Seq"
|
||||
TRANSFORMERS_AutoModelForCausalLM = "transformers-AutoModelForCausalLM"
|
||||
TRANSFORMERS_LlavaForConditionalGeneration = (
|
||||
"transformers-LlavaForConditionalGeneration"
|
||||
)
|
||||
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
|
||||
TRANSFORMERS_CAUSALLM = "transformers-causallm"
|
||||
|
||||
|
||||
class HuggingFaceVlmOptions(BaseVlmOptions):
|
||||
|
@ -29,7 +29,7 @@ SMOLDOCLING_TRANSFORMERS = HuggingFaceVlmOptions(
|
||||
repo_id="ds4sd/SmolDocling-256M-preview",
|
||||
prompt="Convert this page to docling.",
|
||||
response_format=ResponseFormat.DOCTAGS,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
@ -39,7 +39,7 @@ GRANITE_VISION_TRANSFORMERS = HuggingFaceVlmOptions(
|
||||
repo_id="ibm-granite/granite-vision-3.2-2b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
@ -59,7 +59,7 @@ PIXTRAL_12B_TRANSFORMERS = HuggingFaceVlmOptions(
|
||||
repo_id="mistral-community/pixtral-12b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_VISION2SEQ,
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
@ -78,7 +78,7 @@ PHI4_TRANSFORMERS = HuggingFaceVlmOptions(
|
||||
repo_id="microsoft/Phi-4-multimodal-instruct",
|
||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_CAUSALLM,
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
@ -1,152 +0,0 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorOptions,
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
vlm_options: HuggingFaceVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
|
||||
self.trust_remote_code = True
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
|
||||
if self.enabled:
|
||||
from transformers import ( # type: ignore
|
||||
AutoProcessor,
|
||||
LlavaForConditionalGeneration,
|
||||
)
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = HuggingFaceVlmModel.map_device_to_cpu_if_mlx(self.device)
|
||||
|
||||
self.use_cache = vlm_options.use_kv_cache
|
||||
self.max_new_tokens = vlm_options.max_new_tokens
|
||||
self.temperature = vlm_options.temperature
|
||||
|
||||
_log.debug(f"Available device for VLM: {self.device}")
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
if artifacts_path is None:
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
artifacts_path,
|
||||
trust_remote_code=self.trust_remote_code,
|
||||
)
|
||||
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
# torch_dtype="auto",
|
||||
# quantization_config=self.param_quantization_config,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
and accelerator_options.cuda_use_flash_attention2
|
||||
else "eager"
|
||||
),
|
||||
).to(self.device)
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
|
||||
"""
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
"""
|
||||
|
||||
images = [hi_res_image]
|
||||
|
||||
# Define prompt structure
|
||||
prompt = self.formulate_prompt()
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=images, return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
# Generate response
|
||||
start_time = time.time()
|
||||
generate_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||
temperature=self.temperature,
|
||||
)
|
||||
|
||||
# num_tokens = len(generate_ids[0])
|
||||
generation_time = time.time() - start_time
|
||||
|
||||
response = self.processor.batch_decode(
|
||||
generate_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False,
|
||||
)[0]
|
||||
|
||||
page.predictions.vlm_response = VlmPrediction(
|
||||
text=response,
|
||||
# generated_tokens=num_tokens,
|
||||
generation_time=generation_time,
|
||||
)
|
||||
|
||||
yield page
|
||||
|
||||
def formulate_prompt(self) -> str:
|
||||
"""Formulate a prompt for the VLM."""
|
||||
if self.vlm_options.repo_id == "mistral-community/pixtral-12b":
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "content": self.vlm_options.prompt},
|
||||
{"type": "image"},
|
||||
],
|
||||
}
|
||||
]
|
||||
prompt = self.processor.apply_chat_template(chat)
|
||||
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
||||
|
||||
return prompt
|
||||
else:
|
||||
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
|
||||
|
||||
return ""
|
@ -36,18 +36,15 @@ from docling.datamodel.pipeline_options import (
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.api_vlm_model import ApiVlmModel
|
||||
|
||||
# from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.models.hf_vlm_models.hf_vlm_mlx_model import HuggingFaceMlxModel
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForCausalLM import (
|
||||
from docling.models.vlm_models_inline.hf_transformers_causallm_model import (
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM,
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForVision2Seq import (
|
||||
from docling.models.vlm_models_inline.hf_transformers_vision2seq_model import (
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq,
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_LlavaForConditionalGeneration import (
|
||||
HuggingFaceVlmModel_LlavaForConditionalGeneration,
|
||||
)
|
||||
|
||||
# from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.models.vlm_models_inline.mlx_model import HuggingFaceMlxModel
|
||||
from docling.pipeline.base_pipeline import PaginatedPipeline
|
||||
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
||||
|
||||
@ -103,7 +100,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
]
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq
|
||||
== InferenceFramework.TRANSFORMERS_VISION2SEQ
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
||||
@ -115,7 +112,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
]
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_AutoModelForCausalLM
|
||||
== InferenceFramework.TRANSFORMERS_CAUSALLM
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
@ -125,18 +122,6 @@ class VlmPipeline(PaginatedPipeline):
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_LlavaForConditionalGeneration(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Could not instantiate the right type of VLM pipeline: {vlm_options.inference_framework}"
|
||||
|
Loading…
Reference in New Issue
Block a user