fix(html): preserve code blocks in list items (#2131)

* chore(html): refactor parser to leverage context managers

Signed-off-by: Cesar Berrospi Ramis <ceb@zurich.ibm.com>

* fix(html): parse inline code snippets, also from list items

Signed-off-by: Cesar Berrospi Ramis <ceb@zurich.ibm.com>

* chore(html): remove hidden tags

Remove tags that are not meant to be displayed.
Add regression tests for code blocks, inline code, and hidden tags.

Signed-off-by: Cesar Berrospi Ramis <ceb@zurich.ibm.com>

---------

Signed-off-by: Cesar Berrospi Ramis <ceb@zurich.ibm.com>
This commit is contained in:
Cesar Berrospi Ramis
2025-08-26 06:43:48 +02:00
committed by GitHub
parent c0268416cf
commit fa3327e1a6
5 changed files with 950 additions and 76 deletions

View File

@@ -0,0 +1,39 @@
item-0 at level 0: unspecified: group _root_
item-1 at level 1: title: Code snippets
item-2 at level 2: inline: group group
item-3 at level 3: text: The Pythagorean theorem can be w ... tion relating the lengths of the sides
item-4 at level 3: text: a
item-5 at level 3: text: ,
item-6 at level 3: text: b
item-7 at level 3: text: and the hypotenuse
item-8 at level 3: text: c
item-9 at level 3: text: .
item-10 at level 2: inline: group group
item-11 at level 3: text: To use Docling, simply install
item-12 at level 3: code: docling
item-13 at level 3: text: from your package manager, e.g. pip:
item-14 at level 3: code: pip install docling
item-15 at level 2: inline: group group
item-16 at level 3: text: To convert individual documents with python, use
item-17 at level 3: code: convert()
item-18 at level 3: text: , for example:
item-19 at level 2: code: from docling.document_converter ... (result.document.export_to_markdown())
item-20 at level 2: inline: group group
item-21 at level 3: text: The program will output:
item-22 at level 3: code: ## Docling Technical Report[...]
item-23 at level 2: text: Prefetch the models:
item-24 at level 2: list: group list
item-25 at level 3: list_item:
item-26 at level 4: inline: group group
item-27 at level 5: text: Use the
item-28 at level 5: code: docling-tools models download
item-29 at level 5: text: utility:
item-30 at level 3: list_item:
item-31 at level 4: inline: group group
item-32 at level 5: text: Alternatively, models can be programmatically downloaded using
item-33 at level 5: code: docling.utils.model_downloader.download_models()
item-34 at level 5: text: .
item-35 at level 3: list_item:
item-36 at level 4: inline: group group
item-37 at level 5: text: Also, you can use download-hf-re ... rom HuggingFace by specifying repo id:
item-38 at level 5: code: $ docling-tools models download- ... 256M-preview model from HuggingFace...

View File

@@ -0,0 +1,674 @@
{
"schema_name": "DoclingDocument",
"version": "1.5.0",
"name": "html_code_snippets",
"origin": {
"mimetype": "text/html",
"binary_hash": 8468578485215893920,
"filename": "html_code_snippets.html"
},
"furniture": {
"self_ref": "#/furniture",
"children": [],
"content_layer": "furniture",
"name": "_root_",
"label": "unspecified"
},
"body": {
"self_ref": "#/body",
"children": [
{
"$ref": "#/texts/0"
},
{
"$ref": "#/texts/1"
}
],
"content_layer": "body",
"name": "_root_",
"label": "unspecified"
},
"groups": [
{
"self_ref": "#/groups/0",
"parent": {
"$ref": "#/texts/1"
},
"children": [
{
"$ref": "#/texts/2"
},
{
"$ref": "#/texts/3"
},
{
"$ref": "#/texts/4"
},
{
"$ref": "#/texts/5"
},
{
"$ref": "#/texts/6"
},
{
"$ref": "#/texts/7"
},
{
"$ref": "#/texts/8"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/1",
"parent": {
"$ref": "#/texts/1"
},
"children": [
{
"$ref": "#/texts/9"
},
{
"$ref": "#/texts/10"
},
{
"$ref": "#/texts/11"
},
{
"$ref": "#/texts/12"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/2",
"parent": {
"$ref": "#/texts/1"
},
"children": [
{
"$ref": "#/texts/13"
},
{
"$ref": "#/texts/14"
},
{
"$ref": "#/texts/15"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/3",
"parent": {
"$ref": "#/texts/1"
},
"children": [
{
"$ref": "#/texts/17"
},
{
"$ref": "#/texts/18"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/4",
"parent": {
"$ref": "#/texts/1"
},
"children": [
{
"$ref": "#/texts/20"
},
{
"$ref": "#/texts/24"
},
{
"$ref": "#/texts/28"
}
],
"content_layer": "body",
"name": "list",
"label": "list"
},
{
"self_ref": "#/groups/5",
"parent": {
"$ref": "#/texts/20"
},
"children": [
{
"$ref": "#/texts/21"
},
{
"$ref": "#/texts/22"
},
{
"$ref": "#/texts/23"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/6",
"parent": {
"$ref": "#/texts/24"
},
"children": [
{
"$ref": "#/texts/25"
},
{
"$ref": "#/texts/26"
},
{
"$ref": "#/texts/27"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
},
{
"self_ref": "#/groups/7",
"parent": {
"$ref": "#/texts/28"
},
"children": [
{
"$ref": "#/texts/29"
},
{
"$ref": "#/texts/30"
}
],
"content_layer": "body",
"name": "group",
"label": "inline"
}
],
"texts": [
{
"self_ref": "#/texts/0",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "furniture",
"label": "title",
"prov": [],
"orig": "Code snippets in HTML",
"text": "Code snippets in HTML"
},
{
"self_ref": "#/texts/1",
"parent": {
"$ref": "#/body"
},
"children": [
{
"$ref": "#/groups/0"
},
{
"$ref": "#/groups/1"
},
{
"$ref": "#/groups/2"
},
{
"$ref": "#/texts/16"
},
{
"$ref": "#/groups/3"
},
{
"$ref": "#/texts/19"
},
{
"$ref": "#/groups/4"
}
],
"content_layer": "body",
"label": "title",
"prov": [],
"orig": "Code snippets",
"text": "Code snippets"
},
{
"self_ref": "#/texts/2",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "The Pythagorean theorem can be written as an equation relating the lengths of the sides",
"text": "The Pythagorean theorem can be written as an equation relating the lengths of the sides"
},
{
"self_ref": "#/texts/3",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "a",
"text": "a",
"formatting": {
"bold": false,
"italic": true,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
},
{
"self_ref": "#/texts/4",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": ",",
"text": ","
},
{
"self_ref": "#/texts/5",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "b",
"text": "b",
"formatting": {
"bold": false,
"italic": true,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
},
{
"self_ref": "#/texts/6",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "and the hypotenuse",
"text": "and the hypotenuse"
},
{
"self_ref": "#/texts/7",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "c",
"text": "c",
"formatting": {
"bold": false,
"italic": true,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
},
{
"self_ref": "#/texts/8",
"parent": {
"$ref": "#/groups/0"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": ".",
"text": "."
},
{
"self_ref": "#/texts/9",
"parent": {
"$ref": "#/groups/1"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "To use Docling, simply install",
"text": "To use Docling, simply install"
},
{
"self_ref": "#/texts/10",
"parent": {
"$ref": "#/groups/1"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "docling",
"text": "docling",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/11",
"parent": {
"$ref": "#/groups/1"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "from your package manager, e.g. pip:",
"text": "from your package manager, e.g. pip:"
},
{
"self_ref": "#/texts/12",
"parent": {
"$ref": "#/groups/1"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "pip install docling",
"text": "pip install docling",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/13",
"parent": {
"$ref": "#/groups/2"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "To convert individual documents with python, use",
"text": "To convert individual documents with python, use"
},
{
"self_ref": "#/texts/14",
"parent": {
"$ref": "#/groups/2"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "convert()",
"text": "convert()",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/15",
"parent": {
"$ref": "#/groups/2"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": ", for example:",
"text": ", for example:"
},
{
"self_ref": "#/texts/16",
"parent": {
"$ref": "#/texts/1"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "from docling.document_converter import DocumentConverter\n\nsource = \"https://arxiv.org/pdf/2408.09869\"\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown())",
"text": "from docling.document_converter import DocumentConverter\n\nsource = \"https://arxiv.org/pdf/2408.09869\"\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown())",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/17",
"parent": {
"$ref": "#/groups/3"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "The program will output:",
"text": "The program will output:"
},
{
"self_ref": "#/texts/18",
"parent": {
"$ref": "#/groups/3"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "## Docling Technical Report[...]",
"text": "## Docling Technical Report[...]",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/19",
"parent": {
"$ref": "#/texts/1"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "Prefetch the models:",
"text": "Prefetch the models:"
},
{
"self_ref": "#/texts/20",
"parent": {
"$ref": "#/groups/4"
},
"children": [
{
"$ref": "#/groups/5"
}
],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "",
"text": "",
"enumerated": false,
"marker": ""
},
{
"self_ref": "#/texts/21",
"parent": {
"$ref": "#/groups/5"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "Use the",
"text": "Use the"
},
{
"self_ref": "#/texts/22",
"parent": {
"$ref": "#/groups/5"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "docling-tools models download",
"text": "docling-tools models download",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/23",
"parent": {
"$ref": "#/groups/5"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "utility:",
"text": "utility:"
},
{
"self_ref": "#/texts/24",
"parent": {
"$ref": "#/groups/4"
},
"children": [
{
"$ref": "#/groups/6"
}
],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "",
"text": "",
"enumerated": false,
"marker": ""
},
{
"self_ref": "#/texts/25",
"parent": {
"$ref": "#/groups/6"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "Alternatively, models can be programmatically downloaded using",
"text": "Alternatively, models can be programmatically downloaded using"
},
{
"self_ref": "#/texts/26",
"parent": {
"$ref": "#/groups/6"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "docling.utils.model_downloader.download_models()",
"text": "docling.utils.model_downloader.download_models()",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
},
{
"self_ref": "#/texts/27",
"parent": {
"$ref": "#/groups/6"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": ".",
"text": "."
},
{
"self_ref": "#/texts/28",
"parent": {
"$ref": "#/groups/4"
},
"children": [
{
"$ref": "#/groups/7"
}
],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "",
"text": "",
"enumerated": false,
"marker": ""
},
{
"self_ref": "#/texts/29",
"parent": {
"$ref": "#/groups/7"
},
"children": [],
"content_layer": "body",
"label": "text",
"prov": [],
"orig": "Also, you can use download-hf-repo parameter to download arbitrary models from HuggingFace by specifying repo id:",
"text": "Also, you can use download-hf-repo parameter to download arbitrary models from HuggingFace by specifying repo id:"
},
{
"self_ref": "#/texts/30",
"parent": {
"$ref": "#/groups/7"
},
"children": [],
"content_layer": "body",
"label": "code",
"prov": [],
"orig": "$ docling-tools models download-hf-repo ds4sd/SmolDocling-256M-preview Downloading ds4sd/SmolDocling-256M-preview model from HuggingFace...",
"text": "$ docling-tools models download-hf-repo ds4sd/SmolDocling-256M-preview Downloading ds4sd/SmolDocling-256M-preview model from HuggingFace...",
"captions": [],
"references": [],
"footnotes": [],
"code_language": "unknown"
}
],
"pictures": [],
"tables": [],
"key_value_items": [],
"form_items": [],
"pages": {}
}

View File

@@ -0,0 +1,24 @@
# Code snippets
The Pythagorean theorem can be written as an equation relating the lengths of the sides *a* , *b* and the hypotenuse *c* .
To use Docling, simply install `docling` from your package manager, e.g. pip: `pip install docling`
To convert individual documents with python, use `convert()` , for example:
```
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869"
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())
```
The program will output: `## Docling Technical Report[...]`
Prefetch the models:
- Use the `docling-tools models download` utility:
- Alternatively, models can be programmatically downloaded using `docling.utils.model_downloader.download_models()` .
- Also, you can use download-hf-repo parameter to download arbitrary models from HuggingFace by specifying repo id: `$ docling-tools models download-hf-repo ds4sd/SmolDocling-256M-preview Downloading ds4sd/SmolDocling-256M-preview model from HuggingFace...`

41
tests/data/html/html_code_snippets.html vendored Normal file
View File

@@ -0,0 +1,41 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Code snippets in HTML</title>
</head>
<body>
<h1>Code snippets</h1>
<p>The Pythagorean theorem can be written as an equation relating the lengths of the sides <var>a</var>, <var>b</var> and the hypotenuse <var>c</var>.</p>
<p>To use Docling, simply install <code>docling</code>from your package manager, e.g. pip:
<kbd>pip install docling</kbd>
</p>
<p>To convert individual documents with python, use <code>convert()</code>, for example:</p>
<pre><code>
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869"
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())
</code></pre>
<p>The program will output:
<samp>## Docling Technical Report[...]</samp>
</p>
<p>Prefetch the models:</p>
<ul>
<li>Use the <code>docling-tools models download</code> utility:</li>
<li>Alternatively, models can be programmatically downloaded using <samp>docling.utils.model_downloader.download_models()</samp>.</li>
<li>Also, you can use download-hf-repo parameter to download arbitrary models from HuggingFace by specifying repo id:
<pre><code>
$ docling-tools models download-hf-repo ds4sd/SmolDocling-256M-preview
Downloading ds4sd/SmolDocling-256M-preview model from HuggingFace...
</code></pre>
<pre hidden><code>$ docling-tools</code></pre>
</li>
</ul>
</body>
</html>