mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-31 14:34:40 +00:00
Adding multi-gpu support, and cuda device allocation
Signed-off-by: ahn <ahn@zurich.ibm.com>
This commit is contained in:
parent
e1436a8b05
commit
fd51a7fa1f
@ -1,11 +1,25 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
|
||||
|
||||
from pydantic import AnyUrl, BaseModel, ConfigDict, Field, model_validator
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
field_validator,
|
||||
model_validator,
|
||||
validator,
|
||||
)
|
||||
from pydantic_settings import (
|
||||
BaseSettings,
|
||||
PydanticBaseSettingsSource,
|
||||
SettingsConfigDict,
|
||||
)
|
||||
from typing_extensions import deprecated
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
@ -27,6 +41,20 @@ class AcceleratorOptions(BaseSettings):
|
||||
num_threads: int = 4
|
||||
device: AcceleratorDevice = AcceleratorDevice.AUTO
|
||||
|
||||
@validator("device")
|
||||
def validate_device(cls, value):
|
||||
# Allow both Enum and str inputs
|
||||
if isinstance(value, AcceleratorDevice):
|
||||
return value
|
||||
# Validate as a string
|
||||
if value in {d.value for d in AcceleratorDevice} or re.match(
|
||||
r"^cuda(:\d+)?$", value
|
||||
):
|
||||
return AcceleratorDevice(value)
|
||||
raise ValueError(
|
||||
"Invalid device option. Use 'auto', 'cpu', 'mps', 'cuda', or 'cuda:N'."
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def check_alternative_envvars(cls, data: Any) -> Any:
|
||||
|
@ -7,36 +7,62 @@ from docling.datamodel.pipeline_options import AcceleratorDevice
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def decide_device(accelerator_device: AcceleratorDevice) -> str:
|
||||
def decide_device(accelerator_device: str) -> str:
|
||||
r"""
|
||||
Resolve the device based on the acceleration options and the available devices in the system
|
||||
Resolve the device based on the acceleration options and the available devices in the system.
|
||||
|
||||
Rules:
|
||||
1. AUTO: Check for the best available device on the system.
|
||||
2. User-defined: Check if the device actually exists, otherwise fall-back to CPU
|
||||
"""
|
||||
cuda_index = 0
|
||||
device = "cpu"
|
||||
|
||||
has_cuda = torch.backends.cuda.is_built() and torch.cuda.is_available()
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
|
||||
if accelerator_device == AcceleratorDevice.AUTO:
|
||||
if accelerator_device == AcceleratorDevice.AUTO.value: # Handle 'auto'
|
||||
if has_cuda:
|
||||
device = f"cuda:{cuda_index}"
|
||||
device = "cuda:0"
|
||||
elif has_mps:
|
||||
device = "mps"
|
||||
|
||||
elif accelerator_device.startswith("cuda"):
|
||||
if has_cuda:
|
||||
# if cuda device index specified extract device id
|
||||
parts = accelerator_device.split(":")
|
||||
if len(parts) == 2 and parts[1].isdigit():
|
||||
# select cuda device's id
|
||||
cuda_index = int(parts[1])
|
||||
if cuda_index < torch.cuda.device_count():
|
||||
device = f"cuda:{cuda_index}"
|
||||
else:
|
||||
_log.warning(
|
||||
"CUDA device 'cuda:%d' is not available. Fall back to 'CPU'.",
|
||||
cuda_index,
|
||||
)
|
||||
elif len(parts) == 1: # just "cuda"
|
||||
device = "cuda:0"
|
||||
else:
|
||||
_log.warning(
|
||||
"Invalid CUDA device format '%s'. Fall back to 'CPU'",
|
||||
accelerator_device,
|
||||
)
|
||||
else:
|
||||
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
|
||||
|
||||
elif accelerator_device == AcceleratorDevice.MPS.value:
|
||||
if has_mps:
|
||||
device = "mps"
|
||||
else:
|
||||
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
|
||||
|
||||
elif accelerator_device == AcceleratorDevice.CPU.value:
|
||||
device = "cpu"
|
||||
|
||||
else:
|
||||
if accelerator_device == AcceleratorDevice.CUDA:
|
||||
if has_cuda:
|
||||
device = f"cuda:{cuda_index}"
|
||||
else:
|
||||
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
|
||||
elif accelerator_device == AcceleratorDevice.MPS:
|
||||
if has_mps:
|
||||
device = "mps"
|
||||
else:
|
||||
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
|
||||
_log.warning(
|
||||
"Unknown device option '%s'. Fall back to 'CPU'", accelerator_device
|
||||
)
|
||||
|
||||
_log.info("Accelerator device: '%s'", device)
|
||||
return device
|
||||
|
@ -30,6 +30,11 @@ def main():
|
||||
# num_threads=8, device=AcceleratorDevice.CUDA
|
||||
# )
|
||||
|
||||
# easyocr doesnt support cuda:N allocation
|
||||
# accelerator_options = AcceleratorOptions(
|
||||
# num_threads=8, device="cuda:1"
|
||||
# )
|
||||
|
||||
pipeline_options = PdfPipelineOptions()
|
||||
pipeline_options.accelerator_options = accelerator_options
|
||||
pipeline_options.do_ocr = True
|
||||
|
Loading…
Reference in New Issue
Block a user