Adding multi-gpu support, and cuda device allocation

Signed-off-by: ahn <ahn@zurich.ibm.com>
This commit is contained in:
ahn 2025-01-03 17:02:33 +01:00 committed by ahn
parent e1436a8b05
commit fd51a7fa1f
3 changed files with 76 additions and 17 deletions

View File

@ -1,11 +1,25 @@
import logging
import os
import re
import warnings
from enum import Enum
from pathlib import Path
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
from pydantic import AnyUrl, BaseModel, ConfigDict, Field, model_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from pydantic import (
BaseModel,
ConfigDict,
Field,
field_validator,
model_validator,
validator,
)
from pydantic_settings import (
BaseSettings,
PydanticBaseSettingsSource,
SettingsConfigDict,
)
from typing_extensions import deprecated
_log = logging.getLogger(__name__)
@ -27,6 +41,20 @@ class AcceleratorOptions(BaseSettings):
num_threads: int = 4
device: AcceleratorDevice = AcceleratorDevice.AUTO
@validator("device")
def validate_device(cls, value):
# Allow both Enum and str inputs
if isinstance(value, AcceleratorDevice):
return value
# Validate as a string
if value in {d.value for d in AcceleratorDevice} or re.match(
r"^cuda(:\d+)?$", value
):
return AcceleratorDevice(value)
raise ValueError(
"Invalid device option. Use 'auto', 'cpu', 'mps', 'cuda', or 'cuda:N'."
)
@model_validator(mode="before")
@classmethod
def check_alternative_envvars(cls, data: Any) -> Any:

View File

@ -7,36 +7,62 @@ from docling.datamodel.pipeline_options import AcceleratorDevice
_log = logging.getLogger(__name__)
def decide_device(accelerator_device: AcceleratorDevice) -> str:
def decide_device(accelerator_device: str) -> str:
r"""
Resolve the device based on the acceleration options and the available devices in the system
Resolve the device based on the acceleration options and the available devices in the system.
Rules:
1. AUTO: Check for the best available device on the system.
2. User-defined: Check if the device actually exists, otherwise fall-back to CPU
"""
cuda_index = 0
device = "cpu"
has_cuda = torch.backends.cuda.is_built() and torch.cuda.is_available()
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
if accelerator_device == AcceleratorDevice.AUTO:
if accelerator_device == AcceleratorDevice.AUTO.value: # Handle 'auto'
if has_cuda:
device = f"cuda:{cuda_index}"
device = "cuda:0"
elif has_mps:
device = "mps"
elif accelerator_device.startswith("cuda"):
if has_cuda:
# if cuda device index specified extract device id
parts = accelerator_device.split(":")
if len(parts) == 2 and parts[1].isdigit():
# select cuda device's id
cuda_index = int(parts[1])
if cuda_index < torch.cuda.device_count():
device = f"cuda:{cuda_index}"
else:
_log.warning(
"CUDA device 'cuda:%d' is not available. Fall back to 'CPU'.",
cuda_index,
)
elif len(parts) == 1: # just "cuda"
device = "cuda:0"
else:
_log.warning(
"Invalid CUDA device format '%s'. Fall back to 'CPU'",
accelerator_device,
)
else:
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.MPS.value:
if has_mps:
device = "mps"
else:
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.CPU.value:
device = "cpu"
else:
if accelerator_device == AcceleratorDevice.CUDA:
if has_cuda:
device = f"cuda:{cuda_index}"
else:
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.MPS:
if has_mps:
device = "mps"
else:
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
_log.warning(
"Unknown device option '%s'. Fall back to 'CPU'", accelerator_device
)
_log.info("Accelerator device: '%s'", device)
return device

View File

@ -30,6 +30,11 @@ def main():
# num_threads=8, device=AcceleratorDevice.CUDA
# )
# easyocr doesnt support cuda:N allocation
# accelerator_options = AcceleratorOptions(
# num_threads=8, device="cuda:1"
# )
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True