# %% [markdown] # Use the VLM pipeline with remote API models (LM Studio, Ollama, watsonx.ai). # # What this example does # - Shows how to configure `ApiVlmOptions` for different VLM providers. # - Converts a single PDF page using the VLM pipeline and prints Markdown. # # Prerequisites # - Install Docling with VLM extras and `python-dotenv` if using environment files. # - For local APIs: run LM Studio (HTTP server) or Ollama locally. # - For cloud APIs: set required environment variables (see below). # - Requires `requests` for HTTP calls and `python-dotenv` if loading env vars from `.env`. # # How to run # - From the repo root: `python docs/examples/vlm_pipeline_api_model.py`. # - The script prints the converted Markdown to stdout. # # Choosing a provider # - Uncomment exactly one `pipeline_options.vlm_options = ...` block below. # - Keep `enable_remote_services=True` to permit calling remote APIs. # # Notes # - LM Studio default endpoint: `http://localhost:1234/v1/chat/completions`. # - Ollama default endpoint: `http://localhost:11434/v1/chat/completions`. # - watsonx.ai requires `WX_API_KEY` and `WX_PROJECT_ID` in env/`.env`. # %% import json import logging import os from pathlib import Path from typing import Optional import requests from docling_core.types.doc.page import SegmentedPage from dotenv import load_dotenv from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_options import ( VlmPipelineOptions, ) from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline ### Example of ApiVlmOptions definitions #### Using LM Studio or VLLM (OpenAI-compatible APIs) def openai_compatible_vlm_options( model: str, prompt: str, format: ResponseFormat, hostname_and_port, temperature: float = 0.7, max_tokens: int = 4096, api_key: str = "", skip_special_tokens=False, ): headers = {} if api_key: headers["Authorization"] = f"Bearer {api_key}" options = ApiVlmOptions( url=f"http://{hostname_and_port}/v1/chat/completions", # LM studio defaults to port 1234, VLLM to 8000 params=dict( model=model, max_tokens=max_tokens, skip_special_tokens=skip_special_tokens, # needed for VLLM ), headers=headers, prompt=prompt, timeout=90, scale=2.0, temperature=temperature, response_format=format, ) return options #### Using LM Studio with OlmOcr model def lms_olmocr_vlm_options(model: str): class OlmocrVlmOptions(ApiVlmOptions): def build_prompt(self, page: Optional[SegmentedPage]) -> str: if page is None: return self.prompt.replace("#RAW_TEXT#", "") anchor = [ f"Page dimensions: {int(page.dimension.width)}x{int(page.dimension.height)}" ] for text_cell in page.textline_cells: if not text_cell.text.strip(): continue bbox = text_cell.rect.to_bounding_box().to_bottom_left_origin( page.dimension.height ) anchor.append(f"[{int(bbox.l)}x{int(bbox.b)}] {text_cell.text}") for image_cell in page.bitmap_resources: bbox = image_cell.rect.to_bounding_box().to_bottom_left_origin( page.dimension.height ) anchor.append( f"[Image {int(bbox.l)}x{int(bbox.b)} to {int(bbox.r)}x{int(bbox.t)}]" ) if len(anchor) == 1: anchor.append( f"[Image 0x0 to {int(page.dimension.width)}x{int(page.dimension.height)}]" ) # Original prompt uses cells sorting. We are skipping it for simplicity. raw_text = "\n".join(anchor) return self.prompt.replace("#RAW_TEXT#", raw_text) def decode_response(self, text: str) -> str: # OlmOcr trained to generate json response with language, rotation and other info try: generated_json = json.loads(text) except json.decoder.JSONDecodeError: return "" return generated_json["natural_text"] options = OlmocrVlmOptions( url="http://localhost:1234/v1/chat/completions", params=dict( model=model, ), prompt=( "Below is the image of one page of a document, as well as some raw textual" " content that was previously extracted for it. Just return the plain text" " representation of this document as if you were reading it naturally.\n" "Do not hallucinate.\n" "RAW_TEXT_START\n#RAW_TEXT#\nRAW_TEXT_END" ), timeout=90, scale=1.0, max_size=1024, # from OlmOcr pipeline response_format=ResponseFormat.MARKDOWN, ) return options #### Using Ollama def ollama_vlm_options(model: str, prompt: str): options = ApiVlmOptions( url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint params=dict( model=model, ), prompt=prompt, timeout=90, scale=1.0, response_format=ResponseFormat.MARKDOWN, ) return options #### Using a cloud service like IBM watsonx.ai def watsonx_vlm_options(model: str, prompt: str): load_dotenv() api_key = os.environ.get("WX_API_KEY") project_id = os.environ.get("WX_PROJECT_ID") def _get_iam_access_token(api_key: str) -> str: res = requests.post( url="https://iam.cloud.ibm.com/identity/token", headers={ "Content-Type": "application/x-www-form-urlencoded", }, data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}", ) res.raise_for_status() api_out = res.json() print(f"{api_out=}") return api_out["access_token"] options = ApiVlmOptions( url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29", params=dict( model_id=model, project_id=project_id, parameters=dict( max_new_tokens=400, ), ), headers={ "Authorization": "Bearer " + _get_iam_access_token(api_key=api_key), }, prompt=prompt, timeout=60, response_format=ResponseFormat.MARKDOWN, ) return options ### Usage and conversion def main(): logging.basicConfig(level=logging.INFO) data_folder = Path(__file__).parent / "../../tests/data" input_doc_path = data_folder / "pdf/2305.03393v1-pg9.pdf" # Configure the VLM pipeline. Enabling remote services allows HTTP calls to # locally hosted APIs (LM Studio, Ollama) or cloud services. pipeline_options = VlmPipelineOptions( enable_remote_services=True # required when calling remote VLM endpoints ) # The ApiVlmOptions() allows to interface with APIs supporting # the multi-modal chat interface. Here follow a few example on how to configure those. # One possibility is self-hosting the model, e.g., via LM Studio, Ollama or VLLM. # # e.g. with VLLM, serve granite-docling with these commands: # > vllm serve ibm-granite/granite-docling-258M --revision untied # # with LM Studio, serve granite-docling with these commands: # > lms server start # > lms load ibm-granite/granite-docling-258M-mlx # Example using the Granite-Docling model with LM Studio or VLLM: pipeline_options.vlm_options = openai_compatible_vlm_options( model="granite-docling-258m-mlx", # For VLLM use "ibm-granite/granite-docling-258M" hostname_and_port="localhost:1234", # LM studio defaults to port 1234, VLLM to 8000 prompt="Convert this page to docling.", format=ResponseFormat.DOCTAGS, api_key="", ) # Example using the OlmOcr (dynamic prompt) model with LM Studio: # (uncomment the following lines) # pipeline_options.vlm_options = lms_olmocr_vlm_options( # model="hf.co/lmstudio-community/olmOCR-7B-0225-preview-GGUF", # ) # Example using the Granite Vision model with Ollama: # (uncomment the following lines) # pipeline_options.vlm_options = ollama_vlm_options( # model="granite3.2-vision:2b", # prompt="OCR the full page to markdown.", # ) # Another possibility is using online services, e.g., watsonx.ai. # Using watsonx.ai requires setting env variables WX_API_KEY and WX_PROJECT_ID # (see the top-level docstring for details). You can use a .env file as well. # (uncomment the following lines) # pipeline_options.vlm_options = watsonx_vlm_options( # model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown." # ) # Create the DocumentConverter and launch the conversion. doc_converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_options=pipeline_options, pipeline_cls=VlmPipeline, ) } ) result = doc_converter.convert(input_doc_path) print(result.document.export_to_markdown()) if __name__ == "__main__": main() # %%