
ibm.com/redbooks Redpaper

Front cover

Row and Column Access Control
Support in IBM DB2 for i

Jim Bainbridge
Hernando Bedoya

Rob Bestgen
Mike Cain

Dan Cruikshank
Jim Denton
Doug Mack

Tom McKinley
Kent Milligan

Implement roles and separation
of duties

Leverage row permissions on
the database

Protect columns by defining
column masks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Row and Column Access Control Support in IBM DB2
for i

November 2014

REDP-5110-00

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2014)

This edition applies to Version 7, Release 2 of IBM i (product number 5770-SS1).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

DB2 for i Center of Excellence . ix

Preface . xi
Authors. xi
Now you can become a published author, too! . xiii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiv

Chapter 1. Securing and protecting IBM DB2 data . 1
1.1 Security fundamentals. 2
1.2 Current state of IBM i security . 2
1.3 DB2 for i security controls . 3

1.3.1 Existing row and column control . 4
1.3.2 New controls: Row and Column Access Control. 5

Chapter 2. Roles and separation of duties . 7
2.1 Roles . 8

2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA 8
2.1.2 Toolbox application server access: QIBM_DB_ZDA. 8
2.1.3 Database Administrator function: QIBM_DB_SQLADM . 9
2.1.4 Database Information function: QIBM_DB_SYSMON . 9
2.1.5 Security Administrator function: QIBM_DB_SECADM . 9
2.1.6 Change Function Usage CL command. 10
2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view 10

2.2 Separation of duties . 10

Chapter 3. Row and Column Access Control . 13
3.1 Explanation of RCAC and the concept of access control . 14

3.1.1 Row permission and column mask definitions . 14
3.1.2 Enabling and activating RCAC . 16

3.2 Special registers and built-in global variables . 18
3.2.1 Special registers . 18
3.2.2 Built-in global variables . 19

3.3 VERIFY_GROUP_FOR_USER function. 20
3.4 Establishing and controlling accessibility by using the RCAC rule text 21
3.5 SELECT, INSERT, and UPDATE behavior with RCAC . 22
3.6 Human resources example . 22

3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants. 23
3.6.2 Creating group profiles for the users and their roles . 23
3.6.3 Demonstrating data access without RCAC. 24
3.6.4 Defining and creating row permissions . 25
3.6.5 Defining and creating column masks . 26
3.6.6 Activating RCAC . 28
3.6.7 Demonstrating data access with RCAC . 29
3.6.8 Demonstrating data access with a view and RCAC . 32
© Copyright IBM Corp. 2014. All rights reserved. iii

Chapter 4. Implementing Row and Column Access Control: Banking example 37
4.1 Business requirements for the RCAC banking scenario . 38
4.2 Description of the users roles and responsibilities . 39
4.3 Implementation of RCAC . 42

4.3.1 Reviewing the tables that are used in this example . 42
4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers group . . 47
4.3.3 Creating group profiles for the users and their roles . 50
4.3.4 Creating the CUSTOMER_LOGIN_ID global variable . 52
4.3.5 Defining and creating row permissions . 54
4.3.6 Defining and creating column masks . 58
4.3.7 Restricting the inserting and updating of masked data . 60
4.3.8 Activating row and column access control . 63
4.3.9 Reviewing row permissions. 64
4.3.10 Demonstrating data access with RCAC . 66
4.3.11 Query implementation with RCAC activated . 75

Chapter 5. RCAC and non-SQL interfaces . 79
5.1 Unsupported interfaces . 80
5.2 Native query result differences . 80
5.3 Accidental updates with masked values . 81
5.4 System CL commands considerations . 82

5.4.1 Create Duplicate Object (CRTDUPOBJ) command . 82
5.4.2 Copy File (CPYF) command . 82
5.4.3 Copy Library (CPYLIB) command. 83

Chapter 6. Additional considerations . 85
6.1 Timing of column masking . 86
6.2 RCAC effects on data movement . 88

6.2.1 Effects when RCAC is defined on the source table . 88
6.2.2 Effects when RCAC is defined on the target table . 89
6.2.3 Effects when RCAC is defined on both source and target tables 90

6.3 RCAC effects on joins . 91
6.3.1 Inner joins . 92
6.3.2 Outer joins. 94
6.3.3 Exception joins . 96

6.4 Monitoring, analyzing, and debugging with RCAC . 97
6.4.1 Query monitoring and analysis tools . 97
6.4.2 Index advisor. 99
6.4.3 Metadata using catalogs . 100

6.5 Views, materialized query tables, and query rewrite with RCAC 102
6.5.1 Views . 102
6.5.2 Materialized query tables . 103
6.5.3 Query rewrite . 105

6.6 RCAC effects on performance and scalability. 105
6.7 Exclusive lock to implement RCAC (availability issues) . 107
6.8 Avoiding propagation of masked data. 108

6.8.1 Check constraint solution . 108
6.8.2 Before trigger solution. 109

6.9 Triggers and functions (SECURED) . 109
6.9.1 Triggers. 109
6.9.2 Functions . 110

6.10 RCAC is only one part of the solution . 111

Chapter 7. Row and Column Access Control management . 113
iv Row and Column Access Control Support in IBM DB2 for i

7.1 Managing row permissions and column masks. 114
7.1.1 Source management. 114
7.1.2 Modifying definitions . 114
7.1.3 Turning on and off . 114
7.1.4 Regenerating . 114

7.2 Managing tables with row permissions and column masks. 115
7.2.1 Save and restore. 115
7.2.2 Table migration . 116

7.3 Monitoring and auditing function usage . 117

Chapter 8. Designing and planning for success . 119
8.1 Implementing RCAC with good design and proper planning 120
8.2 DB2 for i Center of Excellence . 120

Appendix A. Database definitions for the RCAC banking example 121

Related publications . 127
Other publications . 127
Online resources . 127
Help from IBM . 128
 Contents v

vi Row and Column Access Control Support in IBM DB2 for i

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400®
DB2®
DRDA®

IBM®
Power Systems™
Redbooks®

Redpaper™
Redbooks (logo) ®
System i®

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/legal/copytrade.shtml

DB2 for i Center of Excellence

Solution Brief
IBM Systems Lab Services and Training Power Services

DB2 for i
Center of Excellence
Expert help to achieve your business requirements

We build confident, satisfied clients
No one else has the vast consulting experiences, skills sharing and

renown service offerings to do what we can do for you.

Because no one else is IBM.

With combined experiences and direct access to development groups,

we’re the experts in IBM DB2® for i. The DB2 for i Center of

Excellence (CoE) can help you achieve—perhaps reexamine and

exceed—your business requirements and gain more confidence and

satisfaction in IBM product data management products and solutions.

Who we are, some of what we do
Global CoE engagements cover topics including:

Database performance and scalability

Advanced SQL knowledge and skills transfer

Business intelligence and analytics

DB2 Web Query

Query/400 modernization for better reporting and analysis capabilities

Database modernization and re-engineering

Data-centric architecture and design

Extremely large database and overcoming limits to growth

ISV education and enablement

Highlights

�� ������	�
�	��	�
������	��
������
��
����	���	��
����

�� �������	�
	���	
��������������	�
��

����������	�����
�����
���
����	�����
�������
����

�� �	����������	��	�
�������
��� ��!�����
�������������	��"���	�#��	�

�� ��!	���#��
��	��
����	���
����
"����"��	������	��
�	��	�
��	

T

Please Recycle

© Copyright IBM Corporation 2013

IBM Corporation
Route 100
Somers, NY 10589

Produced in the United States of America
March 2013

IBM, the IBM logo, ibm.com, DB2 and Power Systems are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is available on the
web at “Copyright and trademark information” at www.ibm.com/legal/
copytrade.shtml.

This document is current as of the initial date of publication and may be
changed by IBM at any time.

Not all offerings are available in every country in which IBM operates.

 QLS12392-USEN-00

What you can expect
Depending on the engagement, our team of consultants offer:

Briefings, consulting and guidance on demand

Illumination of the DB2 for i capabilities and leadership to

exploit them

Analysis and remediation of performance and scalability

issues caused by inefficient database design and

implementation

Configuration of systems, operating system and products to

fully leverage database capabilities

Key client benefits
Gain greater database and application performance within

your current environment. Achieve greater productivity in

the development and maintenance of database and

applications using modern techniques. Architect and design

data structures to accommodate and benefit from business

analytics (BA) tools and processes.

For more information
Pricing depends on the scope of work. Learn more about

the DB2 for i Center of Excellence and other related

products and services. Contact stgls@us.ibm.com or visit:

ibm.com$���
	��$�	�#��	�$����	�#��	�

mailto:stgls@us.ibm.com
http://www.ibm.com/systems/services/labservices
http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redpaper™ publication provides information about the IBM i 7.2 feature of IBM
DB2® for i Row and Column Access Control (RCAC). It offers a broad description of the
function and advantages of controlling access to data in a comprehensive and transparent
way. This publication helps you understand the capabilities of RCAC and provides examples
of defining, creating, and implementing the row permissions and column masks in a relational
database environment.

This paper is intended for database engineers, data-centric application developers, and
security officers who want to design and implement RCAC as a part of their data control and
governance policy. A solid background in IBM i object level security, DB2 for i relational
database concepts, and SQL is assumed.

Authors

This paper was produced by the IBM DB2 for i Center of Excellence team in partnership with
the International Technical Support Organization (ITSO), Rochester, Minnesota US.

Jim Bainbridge is a senior DB2 consultant on the DB2 for i
Center of Excellence team in the IBM Lab Services and
Training organization. His primary role is training and
implementation services for IBM DB2 Web Query for i and
business analytics. Jim began his career with IBM 30 years ago
in the IBM Rochester Development Lab, where he developed
cooperative processing products that paired IBM PCs with IBM
S/36 and AS/.400 systems. In the years since, Jim has held
numerous technical roles, including independent software
vendors technical support on a broad range of IBM
technologies and products, and supporting customers in the
IBM Executive Briefing Center and IBM Project Office.

Hernando Bedoya is a Senior IT Specialist at STG Lab
Services and Training in Rochester, Minnesota. He writes
extensively and teaches IBM classes worldwide in all areas of
DB2 for i. Before joining STG Lab Services, he worked in the
ITSO for nine years writing multiple IBM Redbooks®
publications. He also worked for IBM Colombia as an IBM
AS/400® IT Specialist doing presales support for the Andean
countries. He has 28 years of experience in the computing field
and has taught database classes in Colombian universities. He
holds a Master’s degree in Computer Science from EAFIT,
Colombia. His areas of expertise are database technology,
performance, and data warehousing. Hernando can be
contacted at hbedoya@us.ibm.com.
© Copyright IBM Corp. 2014. All rights reserved. xi

mailto:hbedoya@us.ibm.com

Rob Bestgen is a member of the DB2 for i Center of
Excellence team helping customers use the capabilities of DB2
for i. In addition, Rob is the chief architect of the DB2 SQL
Query Engine (SQE) for DB2 for i and is the product
development manager for DB2 Web Query for i.

Mike Cain is a Senior Technical Staff Member within the IBM
Systems and Technology Group. He is also the founder and
team leader of the DB2 for i Center of Excellence in Rochester,
Minnesota US. Before his current position, he worked as an
IBM AS/400 Systems Engineer and technical consultant.
Before joining IBM in 1988, Mike worked as a System/38
programmer and data processing manager for a property and
casualty insurance company. Mike has 26 years of experience
with IBM, engaging clients and Business Partners around the
world. In addition to assisting clients, he uses his knowledge
and experience to influence the IBM solution, development,
and support processes.

Dan Cruikshank has been an IT Professional since 1972. He
has consulted on a number of different project areas since
joining IBM Rochester in 1988. Since 1993, Dan was focused
primarily on resolving IBM System i® application and database
performance issues at several IBM customer accounts. Since
1998, Dan has been one of the primary instructors for the
Database Optimization Workshop. Most recently, Dan is a
member of the DB2 for i Center of Excellence team with IBM
Rochester Lab Services.

Jim Denton is a senior consultant at the IBM DB2 for i Center
of Excellence, where his responsibilities include both teaching
courses and hands on consulting. Jim specializes in SQL
performance, data-centric programming, and database
modernization. Jim started his IBM career in 1981 as an S/38
operating system programmer. Before joining the consulting
team, his key assignments included 10 years as a systems
performance specialist, five years as the lead “JDE on i”
analyst, three years as a consultant at the IBM Benchmark and
Briefing Center in Montpellier France, and a total of 11 years as
an operating system developer, including five years designing
and implementing enhancements to DB2 for i.

Doug Mack is a DB2 for i and Business Intelligence Consultant
in the IBM Power Systems™ Lab Services organization.
Doug's 30+ year career with IBM spans many roles, including
product development, technical sales support, Business
Intelligence Sales Specialist, and DB2 for i Product Marketing
Manager. Doug is a featured speaker at User Group
conferences and meetings, IBM Technical Conferences, and
Executive Briefings.
xii Row and Column Access Control Support in IBM DB2 for i

Thanks to the following people for their contributions to this project:

Debra Landon
International Technical Support Organization, Rochester Center

Craig Aldrich, Mark Anderson, Theresa Euler, Scott Forstie, Chad Olstad
IBM Rochester Development

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

Tom McKinley is an IBM Lab Services Consultant working on
DB2 for IBM i in Rochester MN. His main focus is complex
query performance that is associated with Business
Intelligence running on Very Large Databases. He worked as a
developer or performance analyst in the DB area from 1986
until 2006. Some of his major pieces of work include the
Symmetric Multiple processing capabilities of DB2 for IBM i
and Large Object Data types. In addition, he was on the
original team that designed and built the SQL Query Engine.
Before his database work, he worked on Licensed Internal
Code for System 34 and System 36.

Kent Milligan is a senior DB2 consultant on the DB2 for i
Center of Excellence team within the IBM Lab Services and
Training organization. His primary responsibility is helping
software developers use the latest DB2 technologies and port
applications from other databases to DB2 for i. After graduating
from the University of Iowa, Kent spent the first eight years of
his IBM career as a member of the DB2 development team in
Rochester.
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv Row and Column Access Control Support in IBM DB2 for i

http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Securing and protecting IBM DB2
data

Recent news headlines are filled with reports of data breaches and cyber-attacks impacting
global businesses of all sizes. The Identity Theft Resource Center1 reports that almost 5000
data breaches have occurred since 2005, exposing over 600 million records of data. The
financial cost of these data breaches is skyrocketing. Studies from the Ponemon Institute2
revealed that the average cost of a data breach increased in 2013 by 15% globally and
resulted in a brand equity loss of $9.4 million per attack. The average cost that is incurred for
each lost record containing sensitive information increased more than 9% to $145 per record.

Businesses must make a serious effort to secure their data and recognize that securing
information assets is a cost of doing business. In many parts of the world and in many
industries, securing the data is required by law and subject to audits. Data security is no
longer an option; it is a requirement.

This chapter describes how you can secure and protect data in DB2 for i. The following topics
are covered in this chapter:

� Security fundamentals
� Current state of IBM i security
� DB2 for i security controls

1

1 http://www.idtheftcenter.org
2 http://www.ponemon.org/
© Copyright IBM Corp. 2014. All rights reserved. 1

http://www.idtheftcenter.org
http://www.ponemon.org

1.1 Security fundamentals

Before reviewing database security techniques, there are two fundamental steps in securing
information assets that must be described:

� First, and most important, is the definition of a company's security policy. Without a
security policy, there is no definition of what are acceptable practices for using, accessing,
and storing information by who, what, when, where, and how. A security policy should
minimally address three things: confidentiality, integrity, and availability.

The monitoring and assessment of adherence to the security policy determines whether
your security strategy is working. Often, IBM security consultants are asked to perform
security assessments for companies without regard to the security policy. Although these
assessments can be useful for observing how the system is defined and how data is being
accessed, they cannot determine the level of security without a security policy. Without a
security policy, it really is not an assessment as much as it is a baseline for monitoring the
changes in the security settings that are captured.

A security policy is what defines whether the system and its settings are secure (or not).

� The second fundamental in securing data assets is the use of resource security. If
implemented properly, resource security prevents data breaches from both internal and
external intrusions. Resource security controls are closely tied to the part of the security
policy that defines who should have access to what information resources. A hacker might
be good enough to get through your company firewalls and sift his way through to your
system, but if they do not have explicit access to your database, the hacker cannot
compromise your information assets.

With your eyes now open to the importance of securing information assets, the rest of this
chapter reviews the methods that are available for securing database resources on IBM i.

1.2 Current state of IBM i security

Because of the inherently secure nature of IBM i, many clients rely on the default system
settings to protect their business data that is stored in DB2 for i. In most cases, this means no
data protection because the default setting for the Create default public authority (QCRTAUT)
system value is *CHANGE.

Even more disturbing is that many IBM i clients remain in this state, despite the news
headlines and the significant costs that are involved with databases being compromised. This
default security configuration makes it quite challenging to implement basic security policies.
A tighter implementation is required if you really want to protect one of your company’s most
valuable assets, which is the data.

Traditionally, IBM i applications have employed menu-based security to counteract this default
configuration that gives all users access to the data. The theory is that data is protected by
the menu options controlling what database operations that the user can perform. This
approach is ineffective, even if the user profile is restricted from running interactive
commands. The reason is that in today's connected world there are a multitude of interfaces
into the system, from web browsers to PC clients, that bypass application menus. If there are
no object-level controls, users of these newer interfaces have an open door to your data.
2 Row and Column Access Control Support in IBM DB2 for i

Some clients using this default configuration have toughened their database security with
exit-point solutions from third-party vendors. IBM i exit points allow a user-written program to
be called every time that a particular interface (for example, FTP) is used or an event occurs
(for example, a profile is created). Security tools that are based on these exit points increase
the level of security on a system by locking down interfaces that are not under the control of
menu-based or application authority. In addition, exit-point solutions allow clients to
implement more granular security controls, such as allowing users access only to the
database during certain hours of the day.

Although exit-point solutions can provide great benefits, they are not an alternative to
object-level control of your databases. Exit-point solutions help secure interfaces, but they do
not completely protect the data that is stored in your DB2 objects. Exit points do not exist for
every data access interface on the system. Therefore, if an application starts using an
unprotected interface, the only thing protecting your data is object-level access control. When
your security implementation totally relies on exit points, then it is also important to track any
new data interfaces that appear as IBM delivers new releases and products to ensure that
your exit-point solution provides coverage for those new interfaces.

An exit-point solution is a good option for databases with security holes that are caused by a
reliance on the default security setup or menu-based control. However, your security work
should not stop there. Instead, you must continue to work on a complete database security
solution by controlling data access at the object level.

1.3 DB2 for i security controls

As described in 1.2, “Current state of IBM i security” on page 2, object-level controls on your
DB2 objects are a critical success factor in securing your business data. Although database
object-level security is a strong security feature, some clients have found that object-level
security does not have the granularity that is required to adhere to regulatory or compliance
policies. A user that is granted object-level access to a DB2 table has the authority to view all
of the rows and values in that table.

As shown in Figure 1-1, it is an all-or-nothing access to the rows of a table.

Figure 1-1 All-or-nothing access to the rows of a table

The Business Problem�The Business Problem�

T blDatabase TableAccess: ALL or NOTHING
Database

User

No easy way to restrict access to a specific set of rows
Chapter 1. Securing and protecting IBM DB2 data 3

Many businesses are trying to limit data access to a need-to-know basis. This security goal
means that users should be given access only to the minimum set of data that is required to
perform their job. Often, users with object-level access are given access to row and column
values that are beyond what their business task requires because that object-level security
provides an all-or-nothing solution. For example, object-level controls allow a manager to
access data about all employees. Most security policies limit a manager to accessing data
only for the employees that they manage.

1.3.1 Existing row and column control

Some IBM i clients have tried augmenting the all-or-nothing object-level security with SQL
views (or logical files) and application logic, as shown in Figure 1-2. However,
application-based logic is easy to bypass with all of the different data access interfaces that
are provided by the IBM i operating system, such as Open Database Connectivity (ODBC)
and System i Navigator.

Using SQL views to limit access to a subset of the data in a table also has its own set of
challenges. First, there is the complexity of managing all of the SQL view objects that are
used for securing data access. Second, scaling a view-based security solution can be difficult
as the amount of data grows and the number of users increases.

Even if you are willing to live with these performance and management issues, a user with
*ALLOBJ access still can directly access all of the data in the underlying DB2 table and easily
bypass the security controls that are built into an SQL view.

Figure 1-2 Existing row and column controls

User with
*ALLOBJ access
4 Row and Column Access Control Support in IBM DB2 for i

1.3.2 New controls: Row and Column Access Control

Based on the challenges that are associated with the existing technology available for
controlling row and column access at a more granular level, IBM delivered new security
support in the IBM i 7.2 release; this support is known as Row and Column Access Control
(RCAC).

The new DB2 RCAC support provides a method for controlling data access across all
interfaces and all types of users with a data-centric solution. Moving security processing to
the database layer makes it easier to build controls that meet your compliance policies. The
RCAC support provides an additional layer of security that complements object-level
authorizations to limit data access to a need-to-know basis. Therefore, it is critical that you
first have a sound object-level security implementation in place.
Chapter 1. Securing and protecting IBM DB2 data 5

6 Row and Column Access Control Support in IBM DB2 for i

Chapter 2. Roles and separation of duties

One of the primary objectives of row and column access control (RCAC) is to create data
security policies that control and govern user access to data and limit the data access of DB2
designers and administrators to only the minimum that is required to do their jobs.

To accomplish these tasks, RCAC engineers devised a set of functional roles that, as a group,
implement effectively data access requirements and also limit the span of control of each role
so that each role is given only the authorities that are needed to perform its specific set of
tasks.

This chapter describes the concepts of roles and separation of duties on DB2 for i and covers
the following topics:

� Roles
� Separation of duties

2

© Copyright IBM Corp. 2014. All rights reserved. 7

2.1 Roles

Traditionally, data access roles are defined in a binary way, where access to the data is either
not permitted or access to the data is permitted. A full access capability can also be
instantiated by the *ALLOBJ special authority, either explicitly or implicitly, for the security
officer. If you hold the role of security officer, or have all *ALLOBJ special authority, you have
access to all the data, with no exceptions. Unfortunately, this might not meet the
organization’s requirements for limiting access to data or separation of duties.

To assist with defining roles and the separation of duties with appropriate authority, IBM i
provides function usage IDs. A function usage ID implements granular security controls rather
than granting users powerful special authorities, such as all object, job control, or service.

Roles are divided among the following DB2 functions and their corresponding function usage
IDs:

� DDM and IBM DRDA® application server access: QIBM_DB_DDMDRDA
� Toolbox application server access: QIBM_DB_ZDA
� Database Administrator function: QIBM_DB_SQLADM
� Database Information function: QIBM_DB_SYSMON
� Security Administrator function: QIBM_DB_SECADM

2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA

The QIBM_DB_DDMDRDA function usage ID restricts access to the DDM and DRDA
application server (QRWTSRVR). This function usage ID provides an easy alternative (rather
than writing an exit program) to control access to DDM and DRDA from the server side. The
function usage IDs ship with the default authority of *ALLOWED. The security officer can
easily deny access to specific users or groups.

This is an alternative to a User Exit Program approach. No coding is required, it is easy to
change, and it is auditable.

2.1.2 Toolbox application server access: QIBM_DB_ZDA

The QIBM_DB_ZDA function usage ID restricts access to the optimized server that handles
DB2 requests from clients (QZDASOINIT and QZDASSINIT). Server access is used by the
ODBC, OLE DB, and .NET providers that ship with IBM i Access for Windows and JDBC
Toolbox, Run SQL scripts, and other parts of System i Navigator and Navigator for i Web
console.

This function usage ID provides an easy alternative (rather than writing an exit program) to
control access to these functions from the server side. The function usage IDs ship with the
default authority of *ALLOWED. The security officer can easily deny access to specific users
or groups.

This is an alternative to a User Exit Program approach. No coding is required, it is easy to
change, and it is auditable.
8 Row and Column Access Control Support in IBM DB2 for i

2.1.3 Database Administrator function: QIBM_DB_SQLADM

The Database Administrator function (QIBM_DB_SQLADM) is needed whenever a user is
analyzing and viewing SQL performance data. Some of the more common database
administrator functions include displaying statements from the SQL Plan Cache, analyzing
SQL Performance Monitors and SQL Plan Cache Snapshots, and displaying the SQL details
of a job other than your own.

The Database Administrator function provides an alternative to granting *JOBCTL, but simply
having the Database Administrator authorization does not carry with it all the needed object
authorities for every administration task. The default behavior is to deny authorization.

To perform database administrator tasks that are not related to performance analysis, you
must refer to the details of the task to determine its specific authorization requirements. For
example, to allow a database administrator to reorganize a table, the DBA must have
additional object authorities to the table that are not covered by QIBM_DB_SQLADM.

Granting QIBM_DB_SQLADM function usage
Only the security administrator (*SECADM) is allowed to change the list of users that can
perform Database Administration functions.

2.1.4 Database Information function: QIBM_DB_SYSMON

The Database Information function (QIBM_DB_SYSMON) provides much less authority than
Database Administrator function. Its primary use allows a user to examine high-level
database properties.

For example, a user that does not have *JOBCTL or QIBM_DB_SQLADM can still view the
SQL Plan Cache properties if granted authority to QIBM_DB_SYSMON. Without granting this
authority, the default behavior is to deny authorization.

Granting QIBM_DB_SYSMON function usage
Only the security administrator (*SECADM) is allowed to change the list of users that can
perform Database Information functions.

2.1.5 Security Administrator function: QIBM_DB_SECADM

The Security Administrator function (QIBM_DB_SECADM) grants authorities, revokes
authorities, changes ownership, or changes the primary group without giving access to the
object or, in the case of a database table, to the data that is in the table or allowing other
operations on the table.

Only those users with the QIBM_DB_SECADM function can administer and manage RCAC
rules. RCAC can be used to prevent even users with *ALLOBJ authority from freely accessing
all the data in a protected database. These users are excluded from data access unless they
are specifically authorized by RCAC. Without granting this authority, the default behavior is to
deny authorization.

Granting QIBM_DB_SECADM function usage
Only QSECOFR or a user with *SECADM special authority can grant the
QIBM_DB_SECADM function usage to a user or group.
Chapter 2. Roles and separation of duties 9

2.1.6 Change Function Usage CL command

The following CL commands can be used to work with, display, or change function usage IDs:

� Work Function Usage (WRKFCNUSG)
� Change Function Usage (CHGFCNUSG)
� Display Function Usage (DSPFCNUSG)

For example, the following CHGFCNUSG command shows granting authorization to user
HBEDOYA to administer and manage RCAC rules:

CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(HBEDOYA) USAGE(*ALLOWED)

2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view

The FUNCTION_USAGE view contains function usage configuration details. Table 2-1
describes the columns in the FUNCTION_USAGE view.

Table 2-1 FUNCTION_USAGE view

To discover who has authorization to define and manage RCAC, you can use the query that is
shown in Example 2-1.

Example 2-1 Query to determine who has authority to define and manage RCAC

SELECT function_id,
 user_name,
 usage,
 user_type
FROM function_usage
WHERE function_id=’QIBM_DB_SECADM’
ORDER BY user_name;

2.2 Separation of duties

Separation of duties helps businesses comply with industry regulations or organizational
requirements and simplifies the management of authorities. Separation of duties is commonly
used to prevent fraudulent activities or errors by a single person. It provides the ability for
administrative functions to be divided across individuals without overlapping responsibilities,
so that one user does not possess unlimited authority, such as with the *ALLOBJ authority.

Column name Data type Description

FUNCTION_ID VARCHAR(30) ID of the function.

USER_NAME VARCHAR(10) Name of the user profile that has a usage setting for this
function.

USAGE VARCHAR(7) Usage setting:
� ALLOWED: The user profile is allowed to use the function.
� DENIED: The user profile is not allowed to use the function.

USER_TYPE VARCHAR(5) Type of user profile:
� USER: The user profile is a user.
� GROUP: The user profile is a group.
10 Row and Column Access Control Support in IBM DB2 for i

For example, assume that a business has assigned the duty to manage security on IBM i to
Theresa. Before release IBM i 7.2, to grant privileges, Theresa had to have the same
privileges Theresa was granting to others. Therefore, to grant *USE privileges to the
PAYROLL table, Theresa had to have *OBJMGT and *USE authority (or a higher level of
authority, such as *ALLOBJ). This requirement allowed Theresa to access the data in the
PAYROLL table even though Theresa's job description was only to manage its security.

In IBM i 7.2, the QIBM_DB_SECADM function usage grants authorities, revokes authorities,
changes ownership, or changes the primary group without giving access to the object or, in
the case of a database table, to the data that is in the table or allowing other operations on the
table.

QIBM_DB_SECADM function usage can be granted only by a user with *SECADM special
authority and can be given to a user or a group.

QIBM_DB_SECADM also is responsible for administering RCAC, which restricts which rows
a user is allowed to access in a table and whether a user is allowed to see information in
certain columns of a table.

A preferred practice is that the RCAC administrator has the QIBM_DB_SECADM function
usage ID, but absolutely no other data privileges. The result is that the RCAC administrator
can deploy and maintain the RCAC constructs, but cannot grant themselves unauthorized
access to data itself.

Table 2-2 shows a comparison of the different function usage IDs and *JOBCTL authority to
the different CL commands and DB2 for i tools.

Table 2-2 Comparison of the different function usage IDs and *JOBCTL authority

User action

*J
O

B
C

T
L

Q
IB

M
_D

B
_S

E
C

A
D

M

Q
IB

M
_D

B
_S

Q
L

A
D

M

Q
IB

M
_D

B
_S

Y
S

M
O

N

N
o

 A
u

th
o

ri
ty

SET CURRENT DEGREE (SQL statement) X X

CHGQRYA command targeting a different user's job X X

STRDBMON or ENDDBMON commands targeting a different user's job X X

STRDBMON or ENDDBMON commands targeting a job that matches the current user X X X X

QUSRJOBI() API format 900 or System i Navigator's SQL Details for Job X X X

Visual Explain within Run SQL scripts X X X X

Visual Explain outside of Run SQL scripts X X

ANALYZE PLAN CACHE procedure X X

DUMP PLAN CACHE procedure X X

MODIFY PLAN CACHE procedure X X

MODIFY PLAN CACHE PROPERTIES procedure (currently does not check authority) X X

CHANGE PLAN CACHE SIZE procedure (currently does not check authority) X X
Chapter 2. Roles and separation of duties 11

START PLAN CACHE EVENT MONITOR procedure X X

END PLAN CACHE EVENT MONITOR procedure X X

END ALL PLAN CACHE EVENT MONITORS procedure X X

Work with RCAC row permissions (Create, modify, or delete) X

Work with RCAC column masks (Create, modify, or delete) X

Change Object Owner (CHGOBJOWN) CL command X

Change Object Primary Group (CHGOBJPGP) CL command X

Grant Object Authority (GRTOBJAUT) CL command X

Revoke Object Authority (RVKOBJAUT) CL command X

Edit Object Authority (EDTOBJAUT) CL command X

Display Object Authority (DSPOBJAUT) CL command X

Work with Objects (WRKOBJ) CL command X

Work with Libraries (WRKLIB) CL command X

Add Authorization List Entry (ADDAUTLE) CL command X

Change Authorization List Entry (CHGAUTLE) CL command X

Remove Authorization List Entry (RMVAUTLE) CL command X

Retrieve Authorization List Entry (RTVAUTLE) CL command X

Display Authorization List (DSPAUTL) CL command X

Display Authorization List Objects (DSPAUTLOBJ) CL command X

Edit Authorization List (EDTAUTL) CL command X

Work with Authorization Lists (WRKAUTL) CL command X

User action

*J
O

B
C

T
L

Q
IB

M
_D

B
_S

E
C

A
D

M

Q
IB

M
_D

B
_S

Q
L

A
D

M

Q
IB

M
_D

B
_S

Y
S

M
O

N

N
o

 A
u

th
o

ri
ty
12 Row and Column Access Control Support in IBM DB2 for i

Chapter 3. Row and Column Access Control

This chapter describes what Row and Column Access Control (RCAC) is, its components,
and then illustrates RCAC with a simple example.

The following topics are covered in this chapter:

� Explanation of RCAC and the concept of access control
� Special registers and built-in global variables
� VERIFY_GROUP_FOR_USER function
� Establishing and controlling accessibility by using the RCAC rule text
� SELECT, INSERT, and UPDATE behavior with RCAC
� Human resources example

3

© Copyright IBM Corp. 2014. All rights reserved. 13

3.1 Explanation of RCAC and the concept of access control

RCAC limits data access to those users who have a business “need to know”. RCAC makes it
easy to set up a rich and robust security policy that is based on roles and responsibilities.
RCAC functionality is made available through the optional, no charge feature called “IBM
Advanced Data Security for i”, also known as option 47 of IBM i 7.2.

In DB2 for i, RCAC is implemented using two different approaches that address the
shortcomings of traditional control methods and mechanisms:

� Row permissions
� Column masks

Another benefit of RCAC is that no database user is automatically exempt from the control.
Users with *ALLOBJ authority can no longer freely access all of the data in the database
unless they have the appropriate permission to do so. The ability to manage row permissions
and column masks rests with the database security administrator. The RCAC definitions,
enablement, and activation are controlled by SQL statements.

Row permissions and column masks require virtually no application changes. RCAC is based
on specific rules that are transparent to existing applications and SQL interfaces.
Enforcement of your security policy does not depend on how applications or tools access the
data.

RCAC also facilitates multi-tenancy, which means that several independent customers or
business units can share a single database table without being aware of one another. The
RCAC row permission ensures each user sees only the rows they are entitled to view
because the enforcement is handled by DB2 and not the application logic.

3.1.1 Row permission and column mask definitions

The following sections define row permission and column masks.

Row permission
A row permission is a database object that manifests a row access control rule for a specific
table. It is essentially a search condition that describes which rows you can access. For
example, a manager can see only the rows that represent his or her employees.

Label-based access control (LBAC): RCAC and LBAC are not the same thing. LBAC is a
security model that is primarily intended for government applications. LBAC requires that
data and users be classified with a fixed set of rules that are implemented. RCAC is a
general-purpose security model that is primarily intended for commercial customers. You
can use RCAC to create your own security rules, which in turn allows for more flexibility.
14 Row and Column Access Control Support in IBM DB2 for i

The SQL CREATE PERMISSION statement that is shown in Figure 3-1 is used to define and
initially enable or disable the row access rules.

Figure 3-1 CREATE PERMISSION SQL statement

Column mask
A column mask is a database object that manifests a column value access control rule for a
specific column in a specific table. It uses a CASE expression that describes what you see
when you access the column. For example, a teller can see only the last four digits of a tax
identification number.

CREATE PERMISSION <permission name>

Names the row permission for row access control

ON <table name>
Identifies the table on which the row permission is created

AS <correlation name>

Specifies an optional correlation name that can be used within search-condition

FOR ROWS

Indicates that a row permission is created

Specifies a condition that can be true, false, or unknown

WHERE <logic to test: user and/or group and/or column value>

ENFORCED FOR ALL ACCESS

Specifies that the row permission applies to all references of the table

ENFORCED FOR ALL ACCESS

ENABLE

Specifies that the row permission is to be initially enabled

S ifi th t th i i i t b i iti ll di bl dENABLE
DISABLE;

Specifies that the row permission is to be initially disabled
Chapter 3. Row and Column Access Control 15

Column masks replace the need to create and use views to implement access control. The
SQL CREATE MASK statement that is shown in Figure 3-2 is used to define and initially enable
or disable the column value access rules.

Figure 3-2 CREATE MASK SQL statement

3.1.2 Enabling and activating RCAC

You can enable, disable, or regenerate row permissions and column masks by using the SQL
ALTER PERMISSION statement and the SQL ALTER MASK statement, as shown in Figure 3-3 on
page 17.

Enabling and disabling effectively turns on or off the logic that is contained in the row
permission or column mask. Regenerating causes the row permission or column mask to be
regenerated. The row permission definition in the catalog is used and existing dependencies
and authorizations, if any, are retained. The row permission definition is reevaluated as
though the row permission were being created. Any user-defined functions (UDFs) that are
referenced in the row permission must be resolved to the same secure UDFs as were
resolved during the original row permission or column mask creation. The regenerate option
can be used to ensure that the RCAC logic is intact and still valid before any user attempts to
access the table.

CREATE MASK <mask name>

Names the column mask for column access control

ON <table name>

Identifies the table on which the column mask is created

AS <correlation name>

Specifies an optional correlation name that can be used within case-expression

FOR COLUMN <column name>

Identifies the column to which the mask applies

RETURN <logic to test: user and/or group and/or column values>
<logic to mask or return column value>

Specifies a CASE expression to be evaluated

<logic to mask or return column value>

ENABLE
Specifies that the column mask is to be initially enabled

S ifi th t th l k i t b i iti ll di bl d
DISABLE;

Specifies that the column mask is to be initially disabled

Note: An exclusive lock is required on the table object to perform the alter operation. All
open cursors must be closed.
16 Row and Column Access Control Support in IBM DB2 for i

Figure 3-3 ALTER PERMISSION and ALTER MASK SQL statements

You can activate and deactivate RCAC for new or existing tables by using the SQL ALTER
TABLE statement (Figure 3-4). The ACTIVATE or DEACTIVATE clause must be the option that is
specified in the statement. No other alterations are permitted at the same time. The activating
and deactivating effectively turns on or off all RCAC processing for the table. Only enabled
row permissions and column masks take effect when activating RCAC.

Figure 3-4 ALTER TABLE SQL statement

Note: An exclusive lock is required on the table object to perform the alter operation. All
open cursors must be closed.

ALTER PERMISSION <permission name>

Names the row permission for row access control

p

ENABLE
Specifies that the row permission is to be enabled

Specifies that the row permission is to be disabledDISABLE
REGENERATE;

Specifies that the row permission is to be disabled

Specifies that the row permission is to be regenerated

ALTER MASK <mask name>

Names the column mask for column access control

ENABLE
DISABLE

Specifies that the column mask is to be enabled

Specifies that the column mask is to be disabled
DISABLE
REGENERATE; Specifies that the column mask is to be regenerated

Id tifi th t bl t b lt d

ALTER TABLE <table name>

Identifies the table to be altered

ALTER TABLE <table name>
Specifies to activate row access control for the table

ACTIVATE ROW ACCESS CONTROL
DEACTIVATE ROW ACCESS CONTROL

Specifies to deactivate row access control for the table

ACTIVATE COLUMN ACCESS CONTROL

Specifies to activate column access control for the table

DEACTIVATE COLUMN ACCESS CONTROL;

Specifies to deactivate column access control for the table
Chapter 3. Row and Column Access Control 17

When row access control is activated on a table, a default permission is established for that
table. The name of this permission is QIBM_DEFAULT_ <table-name>_<schema-name>.
This default permission contains a simple piece of logic (0=1) which is never true. The default
permission effectively denies access to every user unless there is a permission defined that
allows access explicitly. If row access control is activated on a table, and there is no
permission that is defined, no one has permission to any rows. All queries against the table
produce an empty set.

It is possible to define, create, and enable multiple permissions on a table. Logically, all of the
permissions are ORed together to form a comprehensive test of the user's ability to access
the data. A column can have only one mask that is defined over it. From an implementation
standpoint, it does not matter if you create the column masks first or the row permissions first.

3.2 Special registers and built-in global variables

This section describes how you can use special registers and built-in global variables to
implement RCAC.

3.2.1 Special registers

A special register is a storage area that is defined for an application process by DB2 and is
used to store information that can be referenced in SQL statements. A reference to a special
register is a reference to a value that is provided by the current server.

IBM DB2 for i supports four different special registers that can be used to identify what user
profiles are relevant to determining object authorities in the current connection to the server.
SQL uses the term runtime authorization ID, which corresponds to a user profile on
DB2 for i. Here are the four special registers:

� USER is the runtime user profile that determines the object authorities for the current
connection to the server. It has a data type of VARCHAR(18). This value can be changed
by the SQL statement SET SESSION AUTHORIZATION.

� SESSION_USER is the same as the USER register, except that it has a data type of
VARCHAR(128).

� CURRENT USER was added in IBM i 7.2 and is similar to the USER register, but it has
one important difference in that it also reports adopted authority. High-level language
programs and SQL routines such as functions, procedures, and triggers can optionally be
created to run using either the caller's or the owner's user profile to determine data
authorities. For example, an SQL procedure can be created to run under the owner's
authority by specifying SET OPTION USRPRF=*OWNER. This special register can also be
referenced as CURRENT_USER. It has a data type of VARCHAR(128).

� SYSTEM_USER is the user profile that initiates the connection to the server. It is not used
by RCAC, but is included here for completeness. Many jobs, including the QZDASOINIT
prestarted jobs, initially connect to the server with a default user profile and then change to
use some other user profile. SYSTEM_USER reports this value, typically QUSER for a
QZDASOINIT job. It has a data type of VARCHAR(128).

In addition to these four special registers, any of the DB2 special registers can be referenced
as part of the rule text.

Note: If a user does not have permission to access the row, the column mask logic is not
invoked.
18 Row and Column Access Control Support in IBM DB2 for i

Table 3-1 summarizes these special registers and their values.

Table 3-1 Special registers and their corresponding values

Figure 3-5 shows the difference in the special register values when an adopted authority is
used:

� A user connects to the server using the user profile ALICE.

� USER and CURRENT USER initially have the same value of ALICE.

� ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE
and was created to adopt JOE's authority when it is called.

� While the procedure is running, the special register USER still contains the value of ALICE
because it excludes any adopted authority. The special register CURRENT USER
contains the value of JOE because it includes any adopted authority.

� When proc1 ends, the session reverts to its original state with both USER and CURRENT
USER having the value of ALICE.

Figure 3-5 Special registers and adopted authority

3.2.2 Built-in global variables

Built-in global variables are provided with the database manager and are used in SQL
statements to retrieve scalar values that are associated with the variables.

IBM DB2 for i supports nine different built-in global variables that are read only and
maintained by the system. These global variables can be used to identify attributes of the
database connection and used as part of the RCAC logic.

Special register Corresponding value

USER or
SESSION_USER

The effective user of the thread excluding adopted authority.

CURRENT_USER The effective user of the thread including adopted authority. When no adopted
authority is present, this has the same value as USER.

SYSTEM_USER The authorization ID that initiated the connection.

Signed on as ALICESigned on as ALICE

USER = ALICE
CURRENT USER = ALICE

CALL proc1

P 1Proc1:
Owner = JOE
SET OPTION USRPRF=*OWNER

USER = ALICE
CURRENT USER = JOE

USER = ALICE
CURRENT USER = ALICE
Chapter 3. Row and Column Access Control 19

Table 3-2 lists the nine built-in global variables.

Table 3-2 Built-in global variables

3.3 VERIFY_GROUP_FOR_USER function

The VERIFY_GROUP_FOR_USER function was added in IBM i 7.2. Although it is primarily
intended for use with RCAC permissions and masks, it can be used in other SQL statements.
The first parameter must be one of these three special registers: SESSION_USER, USER, or
CURRENT_USER. The second and subsequent parameters are a list of user or group
profiles. Each of these values must be 1 - 10 characters in length. These values are not
validated for their existence, which means that you can specify the names of user profiles that
do not exist without receiving any kind of error.

If a special register value is in the list of user profiles or it is a member of a group profile
included in the list, the function returns a long integer value of 1. Otherwise, it returns a value
of 0. It never returns the null value.

Here is an example of using the VERIFY_GROUP_FOR_USER function:

1. There are user profiles for MGR, JANE, JUDY, and TONY.

2. The user profile JANE specifies a group profile of MGR.

3. If a user is connected to the server using user profile JANE, all of the following function
invocations return a value of 1:

VERIFY_GROUP_FOR_USER (CURRENT_USER, 'MGR')
VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JANE', 'MGR')
VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JANE', 'MGR', 'STEVE')

The following function invocation returns a value of 0:

VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JUDY', 'TONY')

Global variable Type Description

CLIENT_HOST VARCHAR(255) Host name of the current client as returned by the system

CLIENT_IPADDR VARCHAR(128) IP address of the current client as returned by the system

CLIENT_PORT INTEGER Port used by the current client to communicate with the server

PACKAGE_NAME VARCHAR(128) Name of the currently running package

PACKAGE_SCHEMA VARCHAR(128) Schema name of the currently running package

PACKAGE_VERSION VARCHAR(64) Version identifier of the currently running package

ROUTINE_SCHEMA VARCHAR(128) Schema name of the currently running routine

ROUTINE_SPECIFIC_NAME VARCHAR(128) Name of the currently running routine

ROUTINE_TYPE CHAR(1) Type of the currently running routine
20 Row and Column Access Control Support in IBM DB2 for i

3.4 Establishing and controlling accessibility by using the
RCAC rule text

When defining a row permission or column mask, the “magic” of establishing and controlling
accessibility comes from the rule text. The rule text represents the search criteria and logic
that is implemented by the database engine.

In the case of a row permission, the rule text is the “test” of whether the user can access the
row. If the test result is true, the row can be accessed. If the test result is false, the row
essentially does not exist for the user. From a set-at-a-time perspective, the permission
defines which rows can be part of the query result set, and which rows cannot.

In the case of a column mask, the rule text is both the test of whether the user can see the
actual column value, and it is the masking logic if the user cannot have access to actual
column value.

For a simple example of implementing row permissions and column masks, see 3.6, “Human
resources example” on page 22.

In general, almost any set-based, relational logic is valid. For the row permission, the search
condition follows the same rules that are used by the search condition in a WHERE clause.

For the column mask, the logic follows the same rules as the CASE expression. The result
data type, length, null attribute, and CCSID of the CASE expression must be compatible with
the data type of the column. If the column does not allow the null value, the result of the CASE
expression cannot be the NULL value. The application or interface making the data access
request is expecting that all of the column attributes and values are consistent with the
original definition, regardless of any masking.

For more information about what is permitted, see the “Database programming” topic of the
IBM i 7.2 Knowledge Center, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?lang
=en

One of the first tasks in either the row permission or the column mask logic is to determine
who the user is, and whether they have access to the data. Elegant methods to establish the
identity and attributes of the user can be employed by using the special registers, global
variables, and the VERIFY function. After the user's identity is established, it is a simple
matter of allowing or disallowing access by using true or false testing. The examples that are
included in this paper demonstrate some of the more common and obvious techniques.

More sophisticated methods can employ existential, day of year / time of day, and relational
comparisons with set operations. For example, you can use a date master or date dimension
table to determine whether the current date is a normal business day. If the current date is a
valid business day, then access is allowed. If the current date is not a business day (for
example a weekend day or holiday), access is denied. This test can be accomplished by
performing a lookup using a subquery, such as the one that is shown in Example 3-1.

Example 3-1 Subquery that is used as part of the rule

CURRENT_DATE IN (SELECT D.DATE_KEY
 FROM DATE_MASTER D
 WHERE D.BUSINESS_DAY = 'Y')
Chapter 3. Row and Column Access Control 21

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?lang=en

Given that joins and subqueries can be used to perform set-based operations against existing
data that is housed in other objects, almost any relational test can be constructed. If the data
in the objects is manipulated over time, the RCAC test logic (and user query results) can be
changed without modifying the actual row permission or column mask. This includes moving
a user from one group to another or changing a column value that is used to allow or disallow
access. For example, if Saturday is now a valid business day, only the BUSINESS_DAY value
in the DATE_MASTER must be updated, not the permission logic. This technique can
potentially avoid downtime because of the exclusive lock that is needed on the table when
adding or changing RCAC definitions.

3.5 SELECT, INSERT, and UPDATE behavior with RCAC

RCAC provides a database-centric approach to determining which rows can be accessed and
what column values can be seen by a specific user. Given that the control is handled by DB2
internally, every data manipulation statement is under the influence of RCAC, with no
exceptions. When accessing the table, the SELECT statements, searched UPDATE statements,
and searched DELETE statements implicitly and transparently contain the row permission and
the column mask rule text. This means that the data set can be logically restricted and
reduced on a user by user basis.

Furthermore, DB2 prevents an INSERT statement from inserting a row or an UPDATE statement
from modifying a row such that the current user cannot be permitted to access it. You cannot
create a situation in which the data you inserted or changed is no longer accessible to you.

For more information and considerations about data movement in an RCAC environment, see
Chapter 6, “Additional considerations” on page 85.

3.6 Human resources example

This section illustrates with a simple example the usage of RCAC on a typical Human
Resources application (schema). In this sample Human Resources schema, there is an
important table that is called EMPLOYEES that contains all the information that is related to
the employees of the company. Among the information that normally is stored in the
EMPLOYEES table, there is some sensitive information that must be hidden from certain
users:

� Tax_Id information
� YEAR of the birth date of the employee (hiding the age of the employee)

In this example, there are four different types of users:

� Employees
� Managers
� Human Resources Manager
� Consultant/IT Database Engineer (In this example, this person is an external consultant

that is not an employee of the company.)

The following sections describe step-by-step what is needed to be done to implement RCAC
in this environment.

Note: DB2 does not provide any indication back to the user that the data set requested
was restricted or reduced by RCAC. This is by design, as it helps minimize any changes to
the applications accessing the data.
22 Row and Column Access Control Support in IBM DB2 for i

3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants

The consultant must have authority to implement RCAC, so you must use one of the function
IDs that are provided in DB2 for i (see 2.1.5, “Security Administrator function:
QIBM_DB_SECADM” on page 9). Complete the following steps:

1. Run the Change Functional Usage (CHGFCNUSG) CL commands that are shown in
Example 3-2. These commands must be run by someone that has the *SECOFR
authority.

Example 3-2 Function ID required to implement RCAC

CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(HBEDOYA) USAGE(*ALLOWED)
CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(MCAIN) USAGE(*ALLOWED)

2. There is a way to discover which user profiles have authorization to implement RCAC. This
can be done by running the SQL statement that is shown in Example 3-3.

Example 3-3 Verifying what user profiles have authorization to implement RCAC

SELECT function_id,
 user_name,
 usage,
 user_type
FROM qsys2.function_usage
WHERE function_id =’QIBM_DB_SECADM’
ORDER BY user_name;

3. The result of the SQL statement is shown in Figure 3-6. In this example, either MCAIN or
HBEDOYA can implement RCAC in the Human Resources database.

Figure 3-6 Result of the function ID query

3.6.2 Creating group profiles for the users and their roles

Assuming that all the employees have a valid user profile, the next step is to create group
profiles to group the employees. Complete the following steps:

1. In this example, there are three group profiles:

– HR (Human Resource personnel)
– MGR (Managers)
– EMP (Employees)

These are created by creating user profiles with no password. Example 3-4 shows the
Create User Profile (CRTUSRPRF) CL commands that you use to create these group profiles.

Example 3-4 Creating group profiles

CRTUSRPRF USRPRF(EMP) PASSWORD() TEXT('Employees Group')
CRTUSRPRF USRPRF(MGR) PASSWORD() TEXT('Managers Group')
CRTUSRPRF USRPRF(HR) PASSWORD() TEXT('Human Resources Group')
Chapter 3. Row and Column Access Control 23

2. You now must assign users to a group profile. Employees go in to the EMP group profile,
Managers go into the MGR group profile, and Human Resource employees go into the HR
group profile. For simplicity, this example selects one employee (DSSMITH), one manager
(TQSPENSER), and one HR analyst (VGLUCCHESS).

3.6.3 Demonstrating data access without RCAC

Before implementing RCAC, run some simple SQL statements to demonstrate data access
without RCAC. Complete the following steps:

1. The first SQL statement, which is shown in Example 3-5, basically counts the total number
of rows in the EMPLOYEES table.

Example 3-5 Counting the number of employees

SELECT COUNT(*) as ROW_COUNT FROM HR_SCHEMA.EMPLOYEES;

The result of this query is shown in Figure 3-7, which is the total number of employees of
the company.

Figure 3-7 Number of employees

2. Run a second SQL statement (shown in Example 3-6) that lists the employees. If you have
read access to the table, you see all the rows no matter who you are.

Example 3-6 Displaying the information of the Employees

SELECT EMPLOYEE_ID,
 LAST_NAME,
 JOB_DESCRIPTION,
 DATE_OF_BIRTH,
 TAX_ID,
 USER_ID,
 MANAGER_OF_EMPLOYEE
 FROM HR_SCHEMA.EMPLOYEES

Note: Neither of the consultants (MCAIN and HBEDOYA) belong to any group profile.
24 Row and Column Access Control Support in IBM DB2 for i

The result of this query is shown in Figure 3-8.

Figure 3-8 List of employees without RCAC enabled

3.6.4 Defining and creating row permissions

Implement RCAC on the EMPLOYEES table by completing the following steps:

1. Start by defining a row permission. In this example, the rules to enforce include the
following ones:

– Human Resources employees can see all the rows.
– Managers can see only information for the employees that they manage.
– Employees can see only their own information.
– Consultants are not allowed to see any rows in the table.
Chapter 3. Row and Column Access Control 25

To implement this row permission, run the SQL statement that is shown in Example 3-7.

Example 3-7 Creating a permission for the EMPLOYEE table

CREATE PERMISSION HR_SCHEMA.PERMISSION1_ON_EMPLOYEES
ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES
FOR ROWS
WHERE (VERIFY_GROUP_FOR_USER (SESSION_USER , 'HR') = 1)
OR (VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') = 1
AND (EMPLOYEES . MANAGER_OF_EMPLOYEE = SESSION_USER
 OR EMPLOYEES . USER_ID = SESSION_USER))
OR (VERIFY_GROUP_FOR_USER (SESSION_USER , 'EMP') = 1
 AND EMPLOYEES . USER_ID = SESSION_USER)
ENFORCED FOR ALL ACCESS
ENABLE ;

2. Look at the definition of the table and see the permissions, as shown in Figure 3-9.
QIBM_DEFAULT_EMPLOYEE_HR_SCHEMA is the default permission, as described in
3.1.2, “Enabling and activating RCAC” on page 16.

Figure 3-9 Row permissions that are shown in System i Navigator

3.6.5 Defining and creating column masks

Define the different masks for the columns that are sensitive by completing the following
steps:

1. Start with the DAY_OF_BIRTH column. In this example, the rules to enforce include the
following ones:

– Human Resources can see the entire date of birth of the employees.

– Employees can see only their own date of birth.

– Managers can see the date of birth of their employees masked with YEAR being 9999.

To implement this column mask, run the SQL statement that is shown in Example 3-8.

Example 3-8 Creation of a mask on the DATE_OF_BIRTH column

CREATE MASK HR_SCHEMA.MASK_DATE_OF_BIRTH_ON_EMPLOYEES
ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES
FOR COLUMN DATE_OF_BIRTH
26 Row and Column Access Control Support in IBM DB2 for i

RETURN
CASE
 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'HR', 'EMP') = 1
 THEN EMPLOYEES . DATE_OF_BIRTH

 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') = 1
 AND SESSION_USER = EMPLOYEES . USER_ID
 THEN EMPLOYEES . DATE_OF_BIRTH

 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') = 1
 AND SESSION_USER <> EMPLOYEES . USER_ID
 THEN (9999 || '-' || MONTH (EMPLOYEES . DATE_OF_BIRTH) || '-' ||
 DAY (EMPLOYEES.DATE_OF_BIRTH))
 ELSE NULL
 END
 ENABLE ;

2. The other column to mask in this example is the TAX_ID information. In this example, the
rules to enforce include the following ones:

– Human Resources can see the unmasked TAX_ID of the employees.

– Employees can see only their own unmasked TAX_ID.

– Managers see a masked version of TAX_ID with the first five characters replaced with
the X character (for example, XXX-XX-1234).

– Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.

To implement this column mask, run the SQL statement that is shown in Example 3-9.

Example 3-9 Creating a mask on the TAX_ID column

CREATE MASK HR_SCHEMA.MASK_TAX_ID_ON_EMPLOYEES
ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES
FOR COLUMN TAX_ID
RETURN
CASE
 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'HR') = 1
 THEN EMPLOYEES . TAX_ID

 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') = 1
 AND SESSION_USER = EMPLOYEES . USER_ID
 THEN EMPLOYEES . TAX_ID

 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') = 1
 AND SESSION_USER <> EMPLOYEES . USER_ID
 THEN ('XXX-XX-' CONCAT QSYS2 . SUBSTR (EMPLOYEES . TAX_ID , 8 , 4))

 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'EMP') = 1
 THEN EMPLOYEES . TAX_ID

 ELSE 'XXX-XX-XXXX'
END
ENABLE ;
Chapter 3. Row and Column Access Control 27

3. Figure 3-10 shows the masks that are created in the HR_SCHEMA.

Figure 3-10 Column masks shown in System i Navigator

3.6.6 Activating RCAC

Now that you have created the row permission and the two column masks, RCAC must be
activated. The row permission and the two column masks are enabled (last clause in the
scripts), but now you must activate RCAC on the table. To do so, complete the following steps:

1. Run the SQL statements that are shown in Example 3-10.

Example 3-10 Activating RCAC on the EMPLOYEES table

/* Active Row Access Control (permissions) */
/* Active Column Access Control (masks) */
ALTER TABLE HR_SCHEMA.EMPLOYEES
ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL;

2. Look at the definition of the EMPLOYEE table, as shown in Figure 3-11. To do this, from
the main navigation pane of System i Navigator, click Schemas  HR_SCHEMA 
Tables, right-click the EMPLOYEES table, and click Definition.

Figure 3-11 Selecting the EMPLOYEES table from System i Navigator
28 Row and Column Access Control Support in IBM DB2 for i

3. The EMPLOYEES table definition is displayed, as shown in Figure 3-12. Note that the
Row access control and Column access control options are checked.

Figure 3-12 RCAC enabled on the EMPLOYEES table

3.6.7 Demonstrating data access with RCAC

You are now ready to start testing RCAC with the four different users. Complete the following
steps:

1. The first SQL statement that is shown in Example 3-11 illustrates the EMPLOYEE count.
You know that there are 42 rows from the query that was run before RCAC was put in
place (see 3.6.3, “Demonstrating data access without RCAC” on page 24).

Example 3-11 EMPLOYEES count

SELECT COUNT(*) as ROW_COUNT FROM HR_SCHEMA.EMPLOYEES;

2. The result of the query for a user that belongs to the HR group profile is shown in
Figure 3-13. This user can see all the 42 rows (employees).

Figure 3-13 Count of EMPLOYEES by HR

3. The result of the same query for a user who is logged on as TQSPENSER (Manager) is
shown in Figure 3-14. TQSPENSER has five employees in his department and he can
also see his own row, which is why the count is 6.

Figure 3-14 Count of EMPLOYEES by a manager
Chapter 3. Row and Column Access Control 29

4. The result of the same query that is run by an employee (DSSMITH) gives the result that is
shown in Figure 3-15. Each employee can see only his or her own data (row).

Figure 3-15 Count of EMPLOYEES by an employee

5. The result of the same query that is run by the Consultant/DBE gives the result that is
shown in Figure 3-16. The consultants/DBE can manage and implement RCAC, but they
do not see any rows at all.

Figure 3-16 Count of EMPLOYEES by a consultant

Does the result make sense? Yes, it does because RCAC is enabled.

6. Run queries against the EMPLOYEES table. The query that is used in this example runs
and tests with the four different user profiles and is the same query that was run in 3.6.3,
“Demonstrating data access without RCAC” on page 24. It is shown in Example 3-12.

Example 3-12 SELECT statement to test with the different users

SELECT EMPLOYEE_ID,
 LAST_NAME,
 JOB_DESCRIPTION,
 DATE_OF_BIRTH,
 TAX_ID,
 USER_ID,
 MANAGER_OF_EMPLOYEE
FROM HR_SCHEMA.EMPLOYEES
30 Row and Column Access Control Support in IBM DB2 for i

7. Figure 3-17 shows the results of the query for a Human Resources (VGLUCCHESS) user
profile. The user can see all the rows and all the columns.

Figure 3-17 SQL statement result by Human Resources user profile

8. Figure 3-18 shows the results of the same query for the Manager (TQSPENSER). Notice
the masking of the DATE_OF_BIRTH and TAX_ID columns.

Figure 3-18 SQL statement result by Manager profile

9. Figure 3-19 shows the results of the same query for an employee (DSSMITH). The
employee can only see only his own data with no masking at all.

Figure 3-19 SQL statement result by an employee profile
Chapter 3. Row and Column Access Control 31

10.Figure 3-20 shows the results of the same query for the Consultant/DBE, who is not one of
the company’s employees.

Figure 3-20 SQL statement result by Consultant/DBE profile

3.6.8 Demonstrating data access with a view and RCAC

This section covers data access with a view and RCAC. Complete the following steps:

1. The EMPLOYEES table has a column that is called On_Leave_Flag (Figure 3-21 on
page 33) indicating that the employee is on Leave of Absence. For this purpose, a view is
created that lists only the employees that are on leave.
32 Row and Column Access Control Support in IBM DB2 for i

Figure 3-21 Employees on leave

2. Example 3-13 shows the definition of the view.

Example 3-13 VIew of employees on leave

CREATE VIEW HR_SCHEMA.EMPLOYEES_ON_LEAVE (EMPLOYEE_ID,
 FIRST_NAME,
 MIDDLE_INITIAL,
 LAST_NAME,
 WORK_DEPARTMENT,
 PHONE_EXTENSION,
 JOB_DESCRIPTION,
 DATE_OF_BIRTH,
Chapter 3. Row and Column Access Control 33

 TAX_ID,
 USER_ID,
 MANAGER_OF_EMPLOYEE,
 ON_LEAVE_FLAG)
AS
SELECT EMPLOYEE_ID,
 FIRST_NAME ,
 MIDDLE_INITIAL,
 LAST_NAME ,
 WORK_DEPARTMENT,
 PHONE_EXTENSION,
 JOB_DESCRIPTION,
 DATE_OF_BIRTH,
 TAX_ID,
 USER_ID,
 MANAGER_OF_EMPLOYEE,
 ON_LEAVE_FLAG
FROM HR_SCHEMA.EMPLOYEES
WHERE ON_LEAVE_FLAG = 'Y';

3. Use the view to query the data and see who is on leave. The SQL statement that is used is
shown in Example 3-14:

Example 3-14 SQL statement for employees on leave

SELECT EMPLOYEE_ID,
 LAST_NAME,
 JOB_DESCRIPTION,
 DATE_OF_BIRTH,
 TAX_ID,
 USER_ID,
 MANAGER_OF_EMPLOYEE
FROM HR_SCHEMA.EMPLOYEES_ON_LEAVE;

4. Start with the Human Resources person (VGLUCCHESS) and see what is the result of the
previous query. He sees the two employees that are on leave and no masking is done over
the DATE_OF_BIRTH and TAX_ID columns. The results of the query are shown in
Figure 3-22.

Figure 3-22 Employees on leave - Human Resources user

5. Figure 3-23 shows what the Manager (TQSPENSER) gets when he runs the same query
over the view. He sees only the employees that are on leave that are managed by him. In
this example, it is one employee. The columns are masked, which confirms that RCAC is
applied to the view as well.

Figure 3-23 Employee on leave - Manager of Field Reps user
34 Row and Column Access Control Support in IBM DB2 for i

6. Figure 3-24 shows what the employee (DSSMITH) gets when he runs the same query
over the view. The employee gets an empty set or he gets only himself if he is on leave.

.

Figure 3-24 Employees on leave - employee user
Chapter 3. Row and Column Access Control 35

36 Row and Column Access Control Support in IBM DB2 for i

Chapter 4. Implementing Row and Column
Access Control: Banking
example

This chapter illustrates the Row and Column Access Control (RCAC) concepts using a
banking example. Appendix A, “Database definitions for the RCAC banking example” on
page 121 provides a script that you can use to create all the database definitions or DDLs to
re-create this RCAC example.

The following topics are covered in this chapter:

� Business requirements for the RCAC banking scenario
� Description of the users roles and responsibilities
� Implementation of RCAC

4

© Copyright IBM Corp. 2014. All rights reserved. 37

4.1 Business requirements for the RCAC banking scenario

As part of a new internet banking project, the Bank decides to raise the level of data access
control on the following three tables that are involved in the new customer-facing application:

� CUSTOMERS
� ACCOUNTS
� TRANSACTIONS

RCAC will be used to restrict access to the rows in these three tables by using permissions,
and to restrict column values by using masks. The default position is that no user can access
the rows in the tables. From there, specific bank employees are allowed access only to the
rows for their job responsibilities. In addition, columns containing personal or sensitive data
are masked appropriately. Bank customers are allowed access to only their rows and column
values.

In this example, it is assumed that the Bank employees have access to the tables when
working on the premises only. Employee access to data is provided by programs and tools
using standard DB2 interfaces, such as embedded SQL, ODBC, JDBC, and CLI. The
database connection authentication for these interfaces uses the employee's personal and
unique IBM i user profile. Operating in their professional role, employees do not have access
to bank data through the Internet.

Bank customers have access to their accounts and transactions by using a new web
application. Each customer has unique credentials for logging in to the application. The
authentication of the customer is handled by the web server. After the customer is
authenticated, the web server establishes a connection to DB2 for data access. This
connection uses a common IBM i user profile that is known as WEBUSER. This user profile is
secured and is used only by the web application. No Bank employee has access to the
WEBUSER profile, and no customer has an IBM i user profile.

The customer’s identity is passed to DB2 by using a global variable. The global variable is
secured and can be accessed only by the WEBUSER. The web application sets the
CUSTOMER_LOGIN_ID variable to the customer's login value. This value is compared to the
customer's login value that is found in the CUSTOMER_LOGIN_ID column of the
CUSTOMERS table.

Applications that do not use the web interface do not have to be changed because the global
variable is NULL by default.
38 Row and Column Access Control Support in IBM DB2 for i

A diagram of the internet banking architecture is shown in Figure 4-1:

� The row permission and column masks for the CUSTOMERS table are based on the
group of which the user profile is part. If the user is a customer, their specific login ID also
is tested.

� The row permission and column mask for the ACCOUNTS table are based on the
CUSTOMERS table permission rules. A subquery is used to connect the accounts (child)
with the customer (parent).

� The row permission for the TRANSACTIONS table is based on the ACCOUNTS table
permission rules and the CUSTOMERS table permission rules. A subquery is used to
connect the transactions (child) with the account (parent) and the account (child) with the
customer (parent).

Figure 4-1 Internet banking example

4.2 Description of the users roles and responsibilities

During the requirements gathering phase, the following groups of users are identified and
codified:

� SECURITY: Security officer and security administrators
� DBE: Database engineers
� ADMIN: Bank business administrators
� TELLER: Bank tellers
� CUSTOMER: Bank customers using the internet
� PUBLIC: Anyone not already in a group

Internet Banking Architecture

Web app sets global variable to user�s login ID value

Web
Server

DB2
Server

LOGIN_ID
Authentication

LOGIN_ID
Authentication

�WEBUSER�
DB Connection

�WEBUSER�
DB Connection

Customer

All online bankingOnly web server All online banking
customers run
database transactions
with WEBUSER profile

Only web server
understands true
identity of online
banking customer

CUSTOMER_LOGIN_ID variable used to validate RCAC
Chapter 4. Implementing Row and Column Access Control: Banking example 39

Based on their respective roles and responsibilities, the users (that is, a group) are controlled
by row permissions and column masks. The chart that is shown in Figure 4-2 shows the rules
for row and column access in this example.

Figure 4-2 Rules for row and column access

CUSTOMERS ACCOUNTS TRANSACTIONS
Row Column Row Column Row Columno

Permissions
Co u
Masking

o
Permissions

Co u
Masking

o
Permissions

Co u
Masking

SECURITY No Rows Yes No Rows Yes No Rows No

DBE All Rows Yes All Rows Yes All Rows No

ADMIN All Rows No All Rows No All Rows No

TELLER All Rows Yes All Rows No All Rows No

CUSTOMER Own
Rows No Own

Rows No Own
Rows No

No Rows Yes No Rows Yes No Rows NoPUBLIC
40 Row and Column Access Control Support in IBM DB2 for i

The chart that is shown in Figure 4-3 shows the column access that is allowed by group and
lists the column masks by table.

Figure 4-3 Column masks

For the demonstration and testing of RCAC in this example, the following users interact with
the database. Furthermore, the column masking rules are developed independently of the
row permissions. If a person does not have permission to access the row, the column mask
processing does not occur.

� Hernando Bedoya is a DB2 for i database engineer with the user profile of HBEDOYA. He
is part of the DBE group.

� Mike Cain is a DB2 for i database engineer with the user profile of MCAIN. He is part of
the DBE group.

� Veronica G. Lucchess is a bank account administrator with the user profile of
VGLUCCHESS. She is part of the ADMIN group.

� Tom Q. Spenser is a bank teller with the user profile of TQSPENSER. He is part of the
TELLER group.

� The IT security officer has the user profile of SECURITY. She is not part of any group.

� The online banking web application uses the user profile WEBUSER. This profile is part of
the CUSTOMER group. Any future customer-facing applications can also use this group if
needed.

� Adam O. Olsen is a bank customer with a web application login ID of KLD72CQR8JG.

CUSTOMERS
Row

Permissions
Column
Masking

ACCOUNTS
Column
Maskingg

SECURITY No Rows

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL
CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION ACCOUNT_NUMBER

g

DBE

CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

All Rows

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL
CUSTOMER_LOGIN_ID ACCOUNT NUMBERDBE

ADMIN

All Rows CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

ACCOUNT_NUMBER

All Rows None None

TELLER All Rows

CUSTOMER_EMAIL
CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER TAX ID

None

CUSTOMER
_ _

Own Rows None None

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL
CUSTOMER LOGIN IDNo Rows CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

ACCOUNT_NUMBERPUBLIC
Chapter 4. Implementing Row and Column Access Control: Banking example 41

4.3 Implementation of RCAC

Figure 4-4 shows the data model of the banking scenario that is used in this example.

Figure 4-4 Data model of the banking scenario

This section covers the following steps:

� Reviewing the tables that are used in this example
� Assigning function ID QIBM_DB_SECADM to the Database Engineers group
� Creating group profiles for the users and their roles
� Creating the CUSTOMER_LOGIN_ID global variable
� Defining and creating row permissions
� Defining and creating column masks
� Restricting the inserting and updating of masked data
� Activating row and column access control
� Reviewing row permissions
� Demonstrating data access with RCAC
� Query implementation with RCAC activated

4.3.1 Reviewing the tables that are used in this example

This section reviews the tables that are used in this example. As shown in Figure 4-5, there
are three main tables that are involved in the data model: CUSTOMERS, ACCOUNTS, and
TRANSACTIONS. There are 90 customers.

Figure 4-5 Tables that are used in the banking example

Note: Appendix A, “Database definitions for the RCAC banking example” on page 121
provides a script that you can use to create all the database definitions or DDLs to
re-create this RCAC example.
42 Row and Column Access Control Support in IBM DB2 for i

To review the attributes of each table that is used in this banking example, complete the
following steps:

1. Review the columns of each the tables through System i Navigator. Expand Database 
named Database  Schemas  BANK_SCHEMA  Tables.

2. Right-click the CUSTOMERS table and select Definition. Figure 4-6 shows the attributes
for the CUSTOMERS table. The Row access control and Column access control options
are not selected, which indicates that the table does not have RCAC implemented.

Figure 4-6 CUSTOMERS table attributes

3. Click the Columns tab to see the columns of the CUSTOMERS table, as shown in
Figure 4-7.

Figure 4-7 Column definitions of the CUSTOMERS table
Chapter 4. Implementing Row and Column Access Control: Banking example 43

4. Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the CUSTOMERS table, as shown in
Figure 4-8. There are no Foreign Key Constraints or Check Constraints on the
CUSTOMERS table.

Figure 4-8 Reviewing the constraints on the CUSTOMERS table

5. Review the definition of the ACCOUNTS table. The definition of the ACCOUNTS table is
shown in Figure 4-9. RCAC has not been defined for this table yet.

Figure 4-9 ACCOUNTS table attributes
44 Row and Column Access Control Support in IBM DB2 for i

6. Click the Columns tab to see the columns of the ACCOUNTS table, as shown in
Figure 4-10.

Figure 4-10 Column definitions of the ACCOUNTS table

7. Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the ACCOUNTS table, as shown in
Figure 4-11. There is one Foreign Key Constraint and no Check Constraints on the
ACCOUNTS table.

Figure 4-11 Reviewing the constraints on the ACCOUNTS table
Chapter 4. Implementing Row and Column Access Control: Banking example 45

8. Review the definition of the TRANSACTIONS table. The definition of the TRANSACTIONS
table is shown in Figure 4-12. RCAC is not defined for this table yet.

Figure 4-12 TRANSACTIONS table attributes

9. Click the Columns tab to see the columns of the TRANSACTIONS table, as shown in
Figure 4-13.

Figure 4-13 Column definitions of the TRANSACTIONS table

10.Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the TRANSACTIONS table, as shown in
Figure 4-14. There is one Foreign Key Constraint and one Check Constraint on the
TRANSACTIONS table.

Figure 4-14 Reviewing the constraints on the TRANSACTIONS table
46 Row and Column Access Control Support in IBM DB2 for i

Now that you have reviewed the database model for this example, the following sections
describe the steps that are required to implement RCAC in this banking scenario.

4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers
group

The first step is to assign the appropriate function usage ID to the Database Engineers
(DBEs) that will be implementing RCAC. For a description of function usage IDs, see 2.1,
“Roles” on page 8. In this example, the DBEs are users MCAIN and HBEDOYA.

Complete the following steps:

1. Right-click the database connection and select Application Administration, as shown in
Figure 4-15.

Figure 4-15 Application administration
Chapter 4. Implementing Row and Column Access Control: Banking example 47

2. The Application Administration window opens, as shown in Figure 4-16. Click IBM i 
Database and select the function usage ID of Database Security Administrator.

Figure 4-16 Application administration for IBM i

3. Click Customize for the function usage ID of Database Security Administrator, as shown
in Figure 4-17.

Figure 4-17 Customizing the Database Security Administrator function usage ID
48 Row and Column Access Control Support in IBM DB2 for i

4. The Customize Access window opens, as shown in Figure 4-18. Click the users that need
to implement RCAC. For this example, HBEDOYA and MCAIN are selected. Click Add and
then click OK.

Figure 4-18 Customize Access window

5. The Application Administrator window opens again. The function usage ID of Database
Security Administrator now has an X in the Customized Access column, as shown in
Figure 4-19.

.

Figure 4-19 Function usage ID Database Security Administrator customized
Chapter 4. Implementing Row and Column Access Control: Banking example 49

6. Run an SQL query that shows which user profiles are enabled to define RCAC. The SQL
query is shown in Figure 4-20.

Figure 4-20 Query to display user profiles with function usage ID for RCAC

4.3.3 Creating group profiles for the users and their roles

The next step is to create the different group profiles (ADMIN, CUSTOMER, TELLER, and
DBE) and assign the different user profiles to the different group profiles. For a description of
the different groups and users for this example, see 4.2, “Description of the users roles and
responsibilities” on page 39.

Complete the following steps:

1. On the main navigation pane of System i Navigator, right-click Groups and select New
Group, as shown in Figure 4-21.

Figure 4-21 Creating group profiles
50 Row and Column Access Control Support in IBM DB2 for i

2. The New Group window opens, as shown in Figure 4-22. For each new group, enter the
Group name (ADMIN, CUSTOMER, TELLER, and DBE) and add the user profiles that are
associated to this group by selecting the user profile and clicking Add.

Figure 4-22 shows adding user TQSPENCER to the TELLER group profile.

Figure 4-22 Creating group profiles and adding users

3. After you create all the group profiles, you should see them listed in System i Navigator
under Users and Groups  Groups, as shown in Figure 4-23.

Figure 4-23 Newly created group profiles
Chapter 4. Implementing Row and Column Access Control: Banking example 51

4.3.4 Creating the CUSTOMER_LOGIN_ID global variable

In this step, you create a global variable that is used to capture the Customer_Login_ID
information, which is required to validate the permissions. For more information about global
variables, see 3.2.2, “Built-in global variables” on page 19.

Complete the following steps:

1. From System i Navigator, under the schema Bank_Schema, right-click Global Variable
and select New  Global Variable, as shown in Figure 4-24.

Figure 4-24 Creating a global variable

2. The New Global Variable window opens, as shown in Figure 4-25. Enter the global
variable name of CUSTOMER_LOGIN_ID, select the data type of VARCHAR, and leave
the default value of NULL. This default value ensures that users that do not use the web
interface do not have permission to access the data. Click OK.

Figure 4-25 Creating a global variable called CUSTOMER_LOGIN_ID
52 Row and Column Access Control Support in IBM DB2 for i

3. Now that the global variable is created, assign permissions to the variable so that it can be
set by the program. Right-click the CUSTOMER_LOGIN_ID global variable and select
Permissions, as shown in Figure 4-26.

Figure 4-26 Setting permissions on the CUSTOMER_LOGIN_ID global variable

4. The Permissions window opens, as shown in Figure 4-27. Select Change authority for
Webuser so that the application can set this global variable.

Figure 4-27 Setting change permissions for Webuser on the CUSTOMER_LOGIN_ID global variable
Chapter 4. Implementing Row and Column Access Control: Banking example 53

4.3.5 Defining and creating row permissions

You now ready to define the row permissions of the tables. Complete the following steps:

1. From the navigation pane of System i Navigator, click Schemas  BANK_SCHEMA,
right-click Row Permissions, and select New  Row Permission, as shown in
Figure 4-28.

Figure 4-28 Selecting new row permissions
54 Row and Column Access Control Support in IBM DB2 for i

2. The New Row Permission window opens, as shown in Figure 4-29. Enter the information
regarding the row permissions on the CUSTOMERS table. This row permission defines
what is established in the following policy:

– User profiles that belong to DBE, ADMIN, and TELLER group profiles can see all the
rows.

– User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the
database by using the global variable CUSTOMER_LOGIN_ID. The permission rule
uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

– Any other user profile cannot see any rows at all.

Select the Enabled option. Click OK.

Figure 4-29 New row permissions on the CUSTOMERS table
Chapter 4. Implementing Row and Column Access Control: Banking example 55

3. Define the row permissions for the ACCOUNTS table. The New Row Permission window
opens, as shown in Figure 4-30. Enter the information regarding the row permissions on
the ACCOUNTS table. This row permission defines what is established in the following
policy:

– User profiles that belong to DBE, ADMIN and TELLER group profiles can see all the
rows.

– User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the
database by using the global variable CUSTOMER_LOGIN_ID. The permission rule
uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

– Any other user profile cannot see any rows at all.

Select the Enabled option. Click OK.

Figure 4-30 New row permissions on the ACCOUNTS table
56 Row and Column Access Control Support in IBM DB2 for i

4. Define the row permissions on the TRANSACTIONS table. The New Row Permission
window opens, as shown in Figure 4-31. Enter the information regarding the row
permissions on the TRANSACTIONS table. This row permission defines what is
established in the following policy:

– User profiles that belong to DBE, ADMIN, and TELLER group profiles can see all of the
rows.

– User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the
database by using the global variable CUSTOMER_LOGIN_ID. The permission rule
uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

– Any other user profile cannot see any rows at all.

Select the Enabled option. Click OK.

Figure 4-31 New row permissions on the TRANSACTIONS table

Note: You must join back to ACCOUNTS and then to CUSTOMERS by using a
subquery to check whether the global variable matches CUSTOMER_LOGIN_ID.
Also, if the row permission or column mask rule text references another table with
RCAC defined, the RCAC for the referenced table is ignored.
Chapter 4. Implementing Row and Column Access Control: Banking example 57

5. To verify that the row permissions are enabled, from System i Navigator, click Row
Permissions, as shown in Figure 4-32. The three row permissions are created and
enabled.

Figure 4-32 List of row permissions on BANK_SCHEMA

4.3.6 Defining and creating column masks

This section defines the masks on the columns. Complete the following steps:

1. From the main navigation pane of System i Navigator, click Schemas 
BANK_SCHEMA, right-click Column Masks, and select New  Column Mask, as
shown in Figure 4-33.

Figure 4-33 Creating a column mask
58 Row and Column Access Control Support in IBM DB2 for i

2. In the New Column Mask window, which is shown in Figure 4-34, enter the following
information:

– Select the CUSTOMERS table on which to create the column mask.
– Select the Column to mask; in this example, it is CUSTOMER_EMAIL.
– Define the masking logic depending on the rules that you want to enforce. In this

example, either the ADMIN or CUSTOMER group profiles can see the entire email
address; otherwise, it is masked to ****@****.

Select the Enabled option. Click OK.

Figure 4-34 Defining a column mask on the CUSTOMERS table

3. Repeat steps 1 on page 58 and 2 to create column masks for the following columns:

– MASK_DRIVERS_LICENSE_ON_CUSTOMERS
– MASK_LOGIN_ID_ON_CUSTOMERS
– MASK_SECURITY_QUESTION_ANSWER_ON_CUSTOMERS
– MASK_ACCOUNT_NUMBER_ON_ACCOUNTS
– MASK_SECURITY_QUESTION_ON_CUSTOMERS
– MASK_TAX_ID_ON_CUSTOMERS
Chapter 4. Implementing Row and Column Access Control: Banking example 59

4. To verify that the column masks are enabled, from System i Navigator, click Column
Masks, as shown in Figure 4-35. The seven column masks are created and enabled.

Figure 4-35 List of column masks on BANK_SCHEMA

4.3.7 Restricting the inserting and updating of masked data

This step defines the check constraints that support the column masks to make sure that on
INSERTS or UPDATES, data is not written with a masked value. For more information about
the propagation of masked data, see 6.8, “Avoiding propagation of masked data” on
page 108.

Complete the following steps:

1. Create a check constraint on the column CUSTOMER_EMAIL in the CUSTOMERS table.
From the navigation pane of System i Navigator, right-click the CUSTOMERS table and
select Definition, as shown Figure 4-36

Figure 4-36 Definition of the CUSTOMERS table

2. From the CUSTOMERS definition window, click the Check Constraints tab and click Add,
as shown in Figure 4-37.

Figure 4-37 Adding a check constraint
60 Row and Column Access Control Support in IBM DB2 for i

3. The New Check Constraint window opens, as shown in Figure 4-38. Complete the
following steps:

a. Select the CUSTOMER_EMAIL column.

b. Enter the check constraint condition. In this example, specify CUSTOMER_EMAIL to
be different from ****@****, which is the mask value.

c. Select the On update violation, preserve column value option and click OK.

Figure 4-38 Specifying a new check constraint on the CUSTOMERS table
Chapter 4. Implementing Row and Column Access Control: Banking example 61

4. Figure 4-39 shows that there is now a check constraint on the CUSTOMERS table that
prevents any masked data from being updated to the CUSTOMER_EMAIL column.

Figure 4-39 Check constraint on the CUSTOMERS table

5. Create all the other check constraints that are associated to each of the masks on the
CUSTOMERS table. After this is done, these constraints should look like the ones that are
shown in Figure 4-40.

Figure 4-40 List of check constraints on the CUSTOMERS table
62 Row and Column Access Control Support in IBM DB2 for i

4.3.8 Activating row and column access control

You are now ready to activate RCAC on all three tables in this example. Complete the
following steps:

1. Start by enabling RCAC on the CUSTOMERS table. From System i Navigator, right-click
the CUSTOMERS table and select Definition. As shown in Figure 4-41, make sure that
you select Row access control and Column access control. Click OK.

Figure 4-41 Enabling RCAC on the CUSTOMERS table

2. Enable RCAC on the ACCOUNTS table. Right-click the ACCOUNTS table and select
Definition. As shown Figure 4-42, make sure that you select Row access control and
Column access control. Click OK.

Figure 4-42 Enabling RCAC on ACCOUNTS
Chapter 4. Implementing Row and Column Access Control: Banking example 63

3. Enable RCAC on the TRANSACTIONS table. Right-click the TRANSACTIONS table and
select Definition. As shown in Figure 4-43, make sure that you select Row access
control. Click OK.

Figure 4-43 Enabling RCAC on TRANSACTIONS

4.3.9 Reviewing row permissions

This section displays all the row permissions after enabling RCAC. Complete the following
steps:

1. From System i Navigator, click Row Permissions, as shown in Figure 4-44. Three
additional Row Permissions are added (QIBM_DEFAULT*). There is one per each row
permission.

Figure 4-44 Row permissions after enabling RCAC
64 Row and Column Access Control Support in IBM DB2 for i

2. Look at one of the row permission definitions by right-clicking it and selecting Definition,
as shown in Figure 4-45.

Figure 4-45 Selecting row permission definition

3. A window opens, as shown in Figure 4-46. Take note of the nonsensical search condition
(0=1) of the QIBM_DEFAULT row permission. This permission is ORed with all of the
others and it ensures that if someone does not meet any of the criteria from the row
permission then this condition is tested, and because it is false the access is denied.

Figure 4-46 Search condition of the QIBM_DEFAULT row permission
Chapter 4. Implementing Row and Column Access Control: Banking example 65

4.3.10 Demonstrating data access with RCAC

You are now ready to test the RCAC definitions. Run the following SQL statements with each
type of user (DBE, SECURITY, TELLER, ADMIN, and WEBUSER):

� A SELECT statement that returns the SESSION_USER.

� A SELECT statement that counts the customers from the CUSTOMER table. There are 90
customers in the CUSTOMER table.

� A simple SELECT statement that returns the following output from the CUSTOMERS table
ordered by customer_name:

– customer_id
– customer_name
– customer_email
– customer_tax_id
– customer_drivers_license_number

Data access for a DBE user with RCAC
To test a DBE (MCAIN) user, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-47. In this example, MCAIN is the DBE user.

Figure 4-47 DBE session user

2. The number of rows that the DBE user MCAIN can see is shown in Figure 4-48.

Figure 4-48 Number of rows that DBE user can see in the CUSTOMERS table
66 Row and Column Access Control Support in IBM DB2 for i

3. The result of the third SQL statement is shown in Figure 4-49. Note the masked columns.
User MCAIN can see all the rows in the CUSTOMERS table, but there are some columns
where the result is masked.

Figure 4-49 SQL statement that is run by the DBE user with masked columns

Data access for SECURITY user with RCAC
To test a SECURITY user, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-50. In this example, SECURITY is the security officer.

Figure 4-50 SECURITY session user
Chapter 4. Implementing Row and Column Access Control: Banking example 67

2. The number of rows in the CUSTOMERS table that the security officer can see is shown in
Figure 4-51. The security officer cannot see any data at all.

Figure 4-51 Number of rows that the security officer can see in the CUSTOMERS table

3. The result of the third SQL statement is shown in Figure 4-52. Note the empty set that is
returned to the security officer.

Figure 4-52 SQL statement that is run by the SECURITY user - no results

Data access for TELLER user with RCAC
To test a Teller (TQSPENCER) user, complete the following steps:

1. Confirm that the TELLER user is the user of the session by running the first SQL
statement, as shown in Figure 4-53. In this example, TQSPENCER is a TELLER user.

Figure 4-53 TELLER session user
68 Row and Column Access Control Support in IBM DB2 for i

2. The number of rows in the CUSTOMERS table that the TELLER user can see is shown in
Figure 4-54. The TELLER user can see all the rows.

Figure 4-54 Number of rows that the TELLER user can see in the CUSTOMERS table

3. The result of the third SQL statement is shown in Figure 4-55. Note the masked columns.
The TELLER user, TQSPENSER, can see all the rows, but there are some columns where
the result is masked.

Figure 4-55 SQL statement that is run by the TELLER user with masked columns
Chapter 4. Implementing Row and Column Access Control: Banking example 69

Data access for ADMIN user with RCAC
To test an ADMIN (VGLUCCHESS) user, complete the following steps:

1. Confirm that the ADMIN user is the user of the session by running the first SQL statement,
as shown in Figure 4-56. In this example, VGLUCCHESS is an ADMIN user.

Figure 4-56 ADMIN session user

2. The number of rows that the ADMIN user can see is shown in Figure 4-57. The ADMIN
user can see all the rows.

Figure 4-57 Number of rows that the ADMIN can see in the CUSTOMERS table
70 Row and Column Access Control Support in IBM DB2 for i

3. The result of the third SQL statement is shown in Figure 4-58. There are no masked
columns.

Figure 4-58 SQL statement that is run by the ADMIN user - no masked columns

Data access for WEBUSER user with RCAC
To test a CUSTOMERS (WEBUSER) user that accesses the database by using the web
application, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-59. In this example, WEBUSER is a CUSTOMER user.

Figure 4-59 WEBUSER session user
Chapter 4. Implementing Row and Column Access Control: Banking example 71

2. A global variable (CUSTOMER_LOGIN_ID) is set by the web application and then is used
to check the row permissions. Figure 4-60 shows setting the global variable by using the
customer login ID.

Figure 4-60 Setting the global variable CUSTOMER_LOGIN_ID

3. Verify that the global variable was set with the correct value by clicking the Global
Variable tab, as shown in Figure 4-61.

Figure 4-61 Viewing the global variable value

4. The number of rows that the WEBUSER can see is shown in Figure 4-62. This user can
see only the one row that belongs to his web-based user ID.

Figure 4-62 Number of rows that the WEBUSER can see in the CUSTOMERS table
72 Row and Column Access Control Support in IBM DB2 for i

5. The result of the third SQL statement is shown in Figure 4-63. There are no masked
columns, and the user can see only one row, which is the user’s own row.

Figure 4-63 SQL statement that is run by WEBUSER - no masked columns

Other examples of data access with RCAC
To run an SQL statement that lists all the accounts and current balance by customer,
complete the following steps:

1. Run the SQL statement that is shown in Figure 4-64 using the WEBUSER user profile.
The SQL statement has no WHERE clause, but the WEBUSER can see only his
accounts.

Figure 4-64 List of accounts and current balance by customer using the WEBUSER user profile
Chapter 4. Implementing Row and Column Access Control: Banking example 73

2. Figure 4-65 shows running a more complex SQL statement that calculates transaction
total by account for year and quarter. Run this statement using the WEBUSER profile. The
SQL statement has no WHERE clause, but the WEBUSER user can see only his
transactions.

Figure 4-65 Calculate transaction total by account for year and quarter using the WEBUSER profile
74 Row and Column Access Control Support in IBM DB2 for i

3. Run the same SQL statement that lists the accounts and current balance by customer, but
use a TELLER user profile. The result of this SQL statement is shown in Figure 4-66. The
TELLER user can see all the rows in the CUSTOMERS table.

Figure 4-66 List of accounts and current balance by customer using a TELLER user profile

4.3.11 Query implementation with RCAC activated

This section looks at some other interesting information that is related to RCAC by comparing
the access plans of the same SQL statement without RCAC and with RCAC. This example
uses Visual Explain and runs an SQL statement that lists the accounts and current balance
by customer.
Chapter 4. Implementing Row and Column Access Control: Banking example 75

Complete the following steps:

1. Figure 4-67 shows the SQL statement in Visual Explain ran with no RCAC. The
implementation of the SQL statement is a two-way join, which is exactly what the SQL
statement is doing.

Figure 4-67 Visual Explain with no RCAC enabled
76 Row and Column Access Control Support in IBM DB2 for i

2. Figure 4-68 shows the Visual Explain of the same SQL statement, but with RCAC
enabled. It is clear that the implementation of the SQL statement is more complex
because the row permission rule becomes part of the WHERE clause.

Figure 4-68 Visual Explain with RCAC enabled

3. Compare the advised indexes that are provided by the Optimizer without RCAC and with
RCAC enabled. Figure 4-69 shows the index advice for the SQL statement without RCAC
enabled. The index being advised is for the ORDER BY clause.

Figure 4-69 Index advice with no RCAC
Chapter 4. Implementing Row and Column Access Control: Banking example 77

4. Now, look at the advised indexes with RCAC enabled. As shown in Figure 4-70, there is an
additional index being advised, which is basically for the row permission rule. For more
information, see 6.4.2, “Index advisor” on page 99.

Figure 4-70 Index advice with RCAC enabled
78 Row and Column Access Control Support in IBM DB2 for i

Chapter 5. RCAC and non-SQL interfaces

A benefit of Row and Column Access Control (RCAC) is that its security controls are enforced
across all the interfaces that access DB2 for i because the security rules are defined and
enforced at the database level. The examples that are shown in this paper focus on
SQL-based access, but row permissions and column masks also are enforced for non-SQL
interfaces, such as native record-level access in RPG and COBOL programs and CL
commands, such as Display Physical File Member (DSPPFM) and Copy File (CPYF).

This consistent enforcement across all interfaces is a good thing, but there are some nuances
and restrictions as a result of applying an SQL-based technology such as RCAC to non-SQL
interfaces. These considerations are described in this chapter.

The following topics are covered in this chapter in this chapter:

� Unsupported interfaces
� Native query result differences
� Accidental updates with masked values
� System CL commands considerations

5

© Copyright IBM Corp. 2014. All rights reserved. 79

5.1 Unsupported interfaces

It is not possible to create a row permission or column mask on a distributed table or a
program-described file.

After a row permission or column mask is added to a table, there are some data access
requests that no longer work. An attempt to open or query a table with activated RCAC
controls involving any of the following scenarios is rejected with the CPD43A4 error message:

� A logical file with multiple formats if the open attempt requests more than one format.
� A table or query that specifies an ICU 2.6.1 sort sequence.
� A table with read triggers.

This unsupported interface error occurs when a table with RCAC controls is accessed, not
when the RCAC control is created and activated.

For example, assume that there is a physical file, PF1, which is referenced by a single format
logical file (LFS) and a multi-format logical file (LFM). A row permission is successfully
created and activated for PF1. Any application that accesses PF1 directly or LFS continues to
work without any issues. However, any application that opens LFM with multiple formats
receives an error on the open attempt after the row permission is activated for PF1.

5.2 Native query result differences

The SQL Query Engine (SQE) is the only engine that is enhanced by IBM to enforce RCAC
controls on query requests. In order for native query requests to work with RCAC, these
native query requests are now processed by SQE instead of the Classic Query Engine
(CQE). Native query requests can consist of the following items:

� Query/400
� QQQQRY API
� Open Query File (OPNQRYF) command
� Run Query (RUNQRY) command
� Native open (RPG, COBOL, OPNDBF, and so on) of an SQL view

Legacy queries that have been running without any issues for many years and over many
IBM i releases are now processed by a different query engine. As a result, the runtime
behavior and results that are returned can be different for native query requests with RCAC
enabled. The OPNQRYF command and Query/400 run with SQE by default.

The following list documents some of the query output differences that can occur when native
query requests are processed by CQE:

� Different ordering in the result set
� Different values for null columns or columns with errors
� Suppression of some mapping error messages
� Loss of RRN positioning capabilities
� Duplicate key processing behavior differences
� Missing key feedback

Important: This potential runtime error places a heavy emphasis on a comprehensive
testing plan to ensure that all programs are tested. If testing uncovers an unsupported
interface, then you must investigate whether the application can be rewritten to use a data
access interface that is supported by RCAC.
80 Row and Column Access Control Support in IBM DB2 for i

For a list of the differences and additional details, see the IBM i Memo to Users Version 7.2,
found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm

In addition, the performance of a native query with SQE can be different. It is possible that a
new index or keyed logical file might need to be created to improve the performance.

5.3 Accidental updates with masked values

The masked values that are returned by a column mask can potentially cause the original
data value to be accidentally overwritten, especially with applications using native record-level
access.

For example, consider a table containing three columns of first name, last name, and tax ID
that is read by an RPG program. The user running the program is not authorized to see the
tax ID value, so a masked value (*****3333) is written into the program's record buffer, as
shown Figure 5-1.

In this example, the application reads the data for an update to correct the misspelling of the
last name. The last name value is changed to Smith in the buffer. Now, a WRITE request is
issued by the program, which uses the contents of the record buffer to update the row in the
underlying DB2 table. Unfortunately, the record buffer still contains a masked value for the tax
ID, so the tax ID value in the table is accidentally set to the masked value.

Figure 5-1 Accidental update with masked values scenario

Important: Based on the potential impacts of query result set and performance
differences, you should perform extensive functional testing and performance
benchmarking of applications and reports that use native query interfaces.

…

HLL Program using Native Record-Level Access

READ
Record Buffer-> Joe Smyth *****3333

…
/* Application logic corrects last name to Smith */

WRITE
d ff i h *****

TaxID value changed

Record Buffer-> Joe Smith *****3333

Joe Smyth 111223333

TaxID value changed
from 11122333 to *****3333
Chapter 5. RCAC and non-SQL interfaces 81

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm

Obviously, careful planning and testing should be exercised to avoid accidental updates with
masked values.

DB2 for i also enhanced its check constraint support in the IBM i 7.2 release with a new ON
UPDATE clause that allows the existing value to be preserved when a masked value is detected
by a check constraint. Details about how to employ this new check constraint support can be
found in 6.8.1, “Check constraint solution” on page 108.

5.4 System CL commands considerations

As stated earlier, RCAC controls are enforced on all data access interfaces. This enforcement
is not limited to programmatic interfaces; it also includes system CL commands that read and
insert data, such as the Create Duplicate Object (CRTDUPOBJ) and Start DFU (STRDFU) CL
commands. This section documents the behavior of the Create Duplicate Object (CRTDUPOBJ),
Copy File (CPYF), and Copy Library (CPYLIB) CL commands with RCAC.

5.4.1 Create Duplicate Object (CRTDUPOBJ) command

The CRTDUPOBJ command is enhanced with a new Access Control (ACCCTL) parameter in the
IBM i 7.2 release to copy RCAC controls to the new object being created. Row permissions
and column masks are copied to the new object by default because the default value for the
ACCCTL parameter is *ALL.

If the invoker of the CRTDUPOBJ command asks for data to be copied with a value of *YES for
the DATA parameter, the value of the ACCCTL parameter must be *ALL. If not, the command
invocation receives an error.

When data is copied to the duplicated object with the DATA parameter, all rows and unmasked
column values are copied into the new object, even if the command invoker is not authorized
to view all rows or certain column values. This behavior occurs because the RCAC controls
also are copied to the new object. The copied RCAC controls enforce that only authorized
users are allowed to view row and column values in the newly duplicated object.

5.4.2 Copy File (CPYF) command

The CPYF command copies only data, so there is no new parameter to copy RCAC controls to
the target table. Therefore, if CPYF is used to create a target table, there are no RCAC controls
placed on the target table.

When RCAC controls are in place on the source table, the CPYF command is limited to reading
rows and column values that are based on the invoker of the CPYF command. If a user is
authorized to see all rows and column values, then all rows and unmasked column values are
copied to the target table (assuming no RCAC controls are on the target table). If a user
without full access runs the CPYF command, the CPYF command can copy only a subset of the
rows into the target table. In addition, if that user can view only masked column values, then
masked values are copied into the target table. This also applies to the Copy to Import File
(CPYTOIMPF) command.

If the target table has RCAC controls defined and activated, then the CPYF command is
allowed only to add or replace rows in the target table based on the RCAC controls. If CPYF
tries to add a row to the target table that the command invoker is not allowed to view
according to the target RCAC controls, then an error is received.
82 Row and Column Access Control Support in IBM DB2 for i

5.4.3 Copy Library (CPYLIB) command

The CPYLIB command is enhanced with the same Access Control (ACCCTL) parameter as the
CRTDUPOBJ command in the IBM i 7.2 release (see 5.4.1, “Create Duplicate Object
(CRTDUPOBJ) command” on page 82). Row permissions and column masks are copied to
the new object in the new library by default because the default value for the ACCCTL
parameter is *ALL.
Chapter 5. RCAC and non-SQL interfaces 83

84 Row and Column Access Control Support in IBM DB2 for i

Chapter 6. Additional considerations

This chapter covers additional considerations that must be taken into account when
implementing Row and Column Access Control (RCAC), including the following functions:

� Timing of column masking
� Data movement
� Joins
� Views
� Materialized query tables
� Index advisor
� Monitoring, analysis, and debugging
� Performance and scalability

The following topics are covered in this chapter:

� Timing of column masking
� RCAC effects on data movement
� RCAC effects on joins
� Monitoring, analyzing, and debugging with RCAC
� Views, materialized query tables, and query rewrite with RCAC
� RCAC effects on performance and scalability
� Exclusive lock to implement RCAC (availability issues)
� Avoiding propagation of masked data
� Triggers and functions (SECURED)
� RCAC is only one part of the solution

6

© Copyright IBM Corp. 2014. All rights reserved. 85

6.1 Timing of column masking

An important design and implementation consideration is the fact that RCAC column masking
occurs after all of the query processing is complete, which means that the query results are
not at all based on the masked values. Any local selection, joining, grouping, or ordering
operations are based on the unmasked column values. Only the final result set is the target of
the masking.

An example of this situation is shown in Figure 6-1. However, note that aggregate functions (a
form of grouping) are based on masked values.

Figure 6-1 Timing of column masking

SELECT CREDIT_CARD_NUMBER,
SUM(AMOUNT) AS TOTAL

FROM TRANSACTIONSFROM TRANSACTIONS
GROUP BY CREDIT_CARD_NUMBER
ORDER BY CREDIT_CARD_NUMBER;

CREDIT CARD NUMBER TOTAL CREDIT CARD NUMBER TOTAL

Without RCAC Masking With RCAC Masking
_ _

3785 0000 0000 1234 233.50

3785 1111 1111 1234 105.10

3785 2222 2222 1234 300 00

_ _

**** **** **** 1234 233.50

**** **** **** 1234 105.10

**** **** **** 1234 300 003785 2222 2222 1234 300.00

3785 3333 3333 1234 1,775.00

5466 4444 4444 1234 601.70

**** **** **** 1234 300.00

**** **** **** 1234 1,775.00

**** **** **** 1234 601.70

5466 5555 5555 1234 37.80

5466 6666 6666 1234 490.45

6011 7777 7777 1234 1005.00

**** **** **** 1234 37.80

**** **** **** 1234 490.45

**** **** **** 1234 1005.006011 7777 7777 1234 1005.00

6011 8888 8888 1234 750.33

6011 9999 9999 0001 10.00

 1234 1005.00

**** **** **** 1234 750.33

**** **** **** 0001 10.00
86 Row and Column Access Control Support in IBM DB2 for i

Conversely, field procedure masking causes the column values to be changed (that is,
masked) and stored in the row. When the table is queried and the masked columns are
referenced, the masked data is used for any local selection, joining, grouping, or ordering
operations. This situation can have a profound effect on the query's final result set and not
just on the column values that are returned. Field procedure masking occurs when the
column values are read from disk before any query processing. RCAC masking occurs when
the column values are returned to the application after query processing. This difference in
behavior is shown in Figure 6-2.

Figure 6-2 Masking differences between Fieldproc and RCAC

Note: Column masks can influence an SQL INSERT or UPDATE. For example, you cannot
insert or update a table with column access control activated with masked data generated
from an expression within the same statement that is based on a column with a column
mask.

RCAC

SQE S l ti P i

Column mask
processing

SQE Selection Processing

r3vS#45zt!J9*m$p6

FieldProc
Decode and mask
processing
Chapter 6. Additional considerations 87

6.2 RCAC effects on data movement

As described earlier and shown in Figure 6-3, RCAC is applied pervasively regardless of the
data access programming interface, SQL statement, or IBM i command. The effects of RCAC
on data movement scenarios can be profound and possibly problematic. It is important to
understand these effects and make the appropriate adjustments to avoid incorrect results or
data loss.

Figure 6-3 RCAC and data movement

The “user” that is running the data movement application or process, whether it be a high
availability (HA) scenario, an extract, transform, load (ETL) scenario, or just copying data from
one file or table to another one, must have permission to all the source rows without masking,
and not be restricted from putting rows into the target. Allowing the data movement
application or process to bypass the RCAC rules must be based on a clear and concise
understanding of the organization's object security and data access policy. Proper design,
implementation, and testing are critical success factors when applying RCAC.

This section covers in detail the following three examples:

� Effects when RCAC is defined on the source table
� Effects when RCAC is defined on the target table
� Effects when RCAC is defined on both source and target tables

6.2.1 Effects when RCAC is defined on the source table

Example 6-1 shows a simple example that illustrates the effect of RCAC as defined on the
source table.

Example 6-1 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

Important: RCAC is applied to the table or physical file access. It is not applied to the
journal receiver access. Any and all database transactions are represented in the journal
regardless of RCAC row permissions and column masks. This makes it essential that
IBM i security is used to ensure that only authorized personnel have access to the
journaled data.

Source
Table

Target
Table

RCAC
Permissions

k

SELECT INSERT
Table TableMasks
88 Row and Column Access Control Support in IBM DB2 for i

For example, given a “source” table with a row permission defined as NAME <> 'CAIN' and a
column mask that is defined to project the value 999.99 for AMOUNT, the SELECT statement
produces a result set that has the RCAC rules applied. This reduced and modified result set is
inserted into the “target” table even though the query is defined as returning all rows and all
columns. Instead of seven rows that are selected from the source, only three rows are
returned and placed into the target, as shown in Figure 6-4.

Figure 6-4 RCAC effects on data movement from SOURCE

6.2.2 Effects when RCAC is defined on the target table

Example 6-2 shows a simple example that illustrates the effect of RCAC as defined on the
target table.

Example 6-2 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

RCAC Effects on Data Movement

RCAC Rule Text

Source
Table

Target
Table

Permission: WHERE NAME <> �CAIN�

Mask: AMOUNT � 999 99Mask: AMOUNT � 999.99

PKey Name Amount

0001 CAIN 10.00

0002 BEDOYA 25.50
PKey Name Amount

0002 BEDOYA 999 99
0003 CAIN 333.00

0004 BEDOYA 75.25

0005 CAIN 987.65

0006 BEDOYA 123.45

0002 BEDOYA 999.99

0004 BEDOYA 999.99

0006 BEDOYA 999.99

INSERTRCACSELECT

0007 CAIN 1.00 INSERT INTO TARGET (SELECT * FROM SOURCE);
Chapter 6. Additional considerations 89

Given a “target” table with a row permission defined as NAME <> 'CAIN' and a column mask
that is defined to project the value 999.99 for AMOUNT, the SELECT statement produces a
result set that represents all the rows and columns. The seven row result set is inserted into
the “target”, and the RCAC row permission causes an error to be returned, as shown in
Figure 6-5. The source rows where NAME = 'CAIN' do not satisfy the target table's permission,
and therefore cannot be inserted. In other words, you are inserting data that you cannot read.

Figure 6-5 RCAC effects on data movement on TARGET

6.2.3 Effects when RCAC is defined on both source and target tables

Example 6-3 shows a simple example that illustrates the effect of RCAC as defined on both
the source and the target tables.

Example 6-3 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

Given a “source” table and a “target” table with a row permission defined as NAME <> 'CAIN'
and a column mask that is defined to project the value 999.99 for AMOUNT, the SELECT
statement produces a result set that has the RCAC rules applied. This reduced and modified
result set is inserted into the “target” table even though the query is defined as returning all
rows and all columns. Instead of seven rows that are selected from the source, only three
rows are returned.

RCAC Effects on Data Movement

RCAC Rule Text

Source
Table

Target
Table

Permission: WHERE NAME <> �CAIN�

Mask: AMOUNT � 999 99Mask: AMOUNT � 999.99

PKey Name Amount

0001 CAIN 10.00

0002 BEDOYA 25.50
PKey Name Amount

ERROR:
0003 CAIN 333.00

0004 BEDOYA 75.25

0005 CAIN 987.65

0006 BEDOYA 123.45

INSERTRCACSELECT INSERT or UPDATE
does not satisfy

row permissions.

0007 CAIN 1.00 INSERT INTO TARGET (SELECT * FROM SOURCE);
90 Row and Column Access Control Support in IBM DB2 for i

Although the source rows where NAME <> 'CAIN' do satisfy the target table's permission, the
AMOUNT column value of 999.99 represents masked data and therefore cannot be inserted.
An error is returned indicating the failure, as shown in Figure 6-6. In this scenario, DB2 is
protecting against an overt attempt to insert masked data.

Figure 6-6 RCAC effects on data movement on SOURCE and TARGET

6.3 RCAC effects on joins

As mentioned previously, a fundamental concept of row permission is that it defines a logical
subset of rows that a user or group of users is permitted to access and use. This subset
becomes the new basis of any query against the table that has RCAC enabled.

RCAC Effects on Data Movement

RCAC Rule Text

Source
Table

Target
Table

Permission: WHERE NAME <> �CAIN�

Mask: AMOUNT � 999 99Mask: AMOUNT � 999.99

PKey Name Amount

0001 CAIN 10.00

0002 BEDOYA 25.50
PKey Name Amount

ERROR:
0003 CAIN 333.00

0004 BEDOYA 75.25

0005 CAIN 987.65

0006 BEDOYA 123.45

INSERTRCACSELECT Row or column
access control is not

valid.

0007 CAIN 1.00 INSERT INTO TARGET (SELECT * FROM SOURCE);

Note: Thinking of the row permission as defining a virtual set of rows that can be operated
on is the secret to understanding the effect of RCAC on any join operation.
Chapter 6. Additional considerations 91

As shown in Figure 6-7, there are two different sets, set A and set B. However, set B has a
row permission that subsets the rows that a user can see.

Figure 6-7 Set A and set B with row permissions

6.3.1 Inner joins

Inner join defines the intersection of two data sets. For a row to be returned from the inner join
query, it must appear in both sets, as shown in Figure 6-8.

Figure 6-8 Inner join without RCAC permission

PermittedPermitted
by

RCACRCAC

Set A Set BSet A Set B

Result of Intersection

Set A Set B
92 Row and Column Access Control Support in IBM DB2 for i

Given that row permission serves to eliminate logically rows from one or more sets, the result
set from an inner join (and a subquery) can be different when RCAC is applied. RCAC can
reduce the number of rows that are permitted to be accessed by the join, as shown in
Figure 6-9.

Figure 6-9 Inner join with RCAC permission

Effect of column masks on inner joins: Because column masks are applied after the
query final results are determined, the masked value has no effect on the join processing
and corresponding query result set.

Inner Join with RCAC Permission

Permitted
Result of Intersection

Permitted

Set A Set B
Chapter 6. Additional considerations 93

6.3.2 Outer joins

Outer joins preserve one or both sides of two data sets. A row can be returned from the outer
join query if it appears in the primary set (LEFT, RIGHT, or both in the case of FULL), as
shown in Figure 6-10. Column values from the secondary set are returned if the row has a
match in the primary set. Otherwise, NULL is returned for the column value by default.

Figure 6-10 Outer join without RCAC permission

Set A Set B
94 Row and Column Access Control Support in IBM DB2 for i

Given that row permission serves to eliminate logically rows from one or more sets, more
column values that are returned from the secondary table in outer join can be NULL when
RCAC is applied, as shown in Figure 6-11.

Figure 6-11 Outer join with RCAC permission

Effect of column masks on inner joins: Because column masks are applied after the
query final results are determined, the masked value has no effect on the join processing
and corresponding query result set.

Outer Join with RCAC Permission

PermittedPermitted

Set A Set B
Chapter 6. Additional considerations 95

6.3.3 Exception joins

Exception joins preserve one side of two data sets. A row can be returned from the exception
join query if it appears in the primary set (LEFT or RIGHT) and the row does not appear in the
secondary set, as shown in Figure 6-12. Column values from the secondary set are returned
as NULL by default.

Figure 6-12 Exception join without RCAC permission

Given that row permission serves to eliminate logically rows from one or more sets, more
rows can appear to be exceptions when RCAC is applied, as shown in Figure 6-13. Also,
because column masks are applied after the query final results are determined, the masked
value has no effect on the join processing and corresponding query result set.

Figure 6-13 Exception join with RCAC permission

Exception Join without RCAC Permission

Set A Set B

Exception Join with RCAC Permission

PermittedPermitted

Set A Set B
96 Row and Column Access Control Support in IBM DB2 for i

6.4 Monitoring, analyzing, and debugging with RCAC

It is assumed (and it is a critical success factor) that the database engineer or application
developer has a thorough understanding of the DB2 for i Query Optimizer, Database Engine,
and all the associated tools and techniques.

The monitoring, analyzing, and debugging process basically stays the same when RCAC row
permissions or column masks are in place, with a few important differences:

� The underlying data access plan can be different and more complex based on the rule
text.

� The database results can be reduced or modified based on the rule text and user profile.

� The run time of the request can be affected either positively or negatively based on the
rule text.

� For high-level language record level access, query plans must be considered, and not just
program code.

During analyzing and debugging, it is important to account for all of the RCAC definitions for
each table or file to understand the logic and corresponding work that is associated with
processing the row permissions and column masks. It is also important to realize that,
depending on the user profile in effect at run time, the database actions and query results can
be different.

RCAC is designed and implemented to be transparent to the user. It is possible for user
“Mike” and user “Hernando” to run the exact same query, against the exact same data on the
exact same system, and get different result sets. There is no error, no warning, and no
indication that RCAC reduced or modified the respective answers that are returned.
Furthermore, it is also likely that user “Mike” and user “Hernando” have different query run
times even though it appears that everything is the same for both users. The actual query
plan contains the RCAC logic, and this additional code path can alter the amount of work that
is needed to produce results, based on the user running the query.

When monitoring, analyzing, and debugging a database process when RCAC is enabled, it is
critical to keep as many of the “variables” the same as possible. Use a good scientific
process. For example, when re-creating a problem situation running under the same user
profile with the same data and under the same conditions, it is almost mandatory. Otherwise,
the database behavior and query results can be different.

To successfully perform monitoring, analyzing, and debugging when RCAC is enabled likely
involves changes in the security and data access policies of the organization, and require new
responsibilities, authority, and oversight within the data-centric application development
community. As such, establishing and staffing the position of “database engineer” becomes
even more important.

6.4.1 Query monitoring and analysis tools

When monitoring and collecting metrics on database requests, DB2 for i provides additional
information that indicates row permissions or column masks are being applied. This
information is integrated and part of the standard tools, such as Visual Explain, SQL Plan
Cache Snapshot, and SQL Performance Monitor.
Chapter 6. Additional considerations 97

Figure 6-14 shows how Visual Explain externalizes RCAC.

Figure 6-14 Visual Explain indicating that RCAC is applied

Figure 6-15 shows the main dashboard of an SQL Performance Monitor. Click Summary.

Figure 6-15 SQL Performance Monitor

Figure 6-16 shows the summary of an SQL Performance Monitor with an indication that
RCAC is applied.

Figure 6-16 SQL Performance Monitor indicating that RCAC is applied
98 Row and Column Access Control Support in IBM DB2 for i

Figure 6-17 shows the statements of an SQL Performance Monitor and how RCAC is
externalized.

Figure 6-17 SQL Performance Monitor showing statements and RCAC

When implementing RCAC as part of a comprehensive and pervasive data access control
initiative, consider that the database monitoring and analysis tools can collect literal values
that are passed as part of SQL statements. These literal values can be viewed as part of the
information collected. If any of the literals are based on or are used with masked columns, it is
important to review the database engineer's policy for viewing these data elements. For
example, supposed that column CUSTOMER_TAX_ID is deemed masked for the database
engineer and the CUSTOMER_TAX_ID column is used in a predicate as follows:

WHERE CUSTOMER_TAX_ID = '123-45-7890'

The literal value of '123-45-7890' is visible to the analyst, effectively exposing sensitive
information. If this is not acceptable, you must implement the
SYSPROC.SET_COLUMN_ATTRIBUTE procedure.

The SET_COLUMN_ATTRIBUTE procedure sets the SECURE attribute for a column so that
variable values that are used for the column cannot be seen in the SQL Performance Monitor,
SQL Plan Cache Snapshot, or Visual Explain.

6.4.2 Index advisor

Because the RCAC rule text can be almost any valid SQL logic, including local selection
predicates, join conditions, and subqueries, the standard query tuning techniques still apply.
Without a doubt, a proper and adequate indexing strategy is a good starting point.

The index advisor is not specifically enhanced for RCAC, but because the rule text is a fully
integrated part of the query plan, any opportunities for indexing is advised based on the
current Query Optimizer functionality. If an index is advised because of the RCAC rule text
logic, there is no RCAC reason code provided. Analyzing the query plan and the RCAC rule
text provides the understanding as to why the index is being advised.
Chapter 6. Additional considerations 99

For example, the query that is shown in Figure 6-18 produces index advice for the user's
predicate and the RCAC predicate.

Figure 6-18 Index advice and RCAC

In Figure 6-19, index advisor is showing an index for the ACCOUNTS and CUSTOMERS
tables based on the RCAC rule text.

Figure 6-19 Index advisor based on the RCAC rule

For more information about creating and using indexes, see IBM DB2 for i indexing methods
and strategies, found at:

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_in
dexing_methods_strategies

6.4.3 Metadata using catalogs

To make the discovery and identification of RCAC row permissions and column masks
programmatically, query the QSYS2.SYSCONTROLS catalog view or the
QSYS2.SYSCONTROLSDEP catalog view directly. Otherwise, the System i Navigator
Database graphical interface can be used interactively.

SELECT *

FROM ACCOUNTS A

WHERE A.ACCOUNT_NUMBER = ?

AND A.CUSTOMER ID IN (_ (

SELECT C.CUSTOMER_ID

FROM CUSTOMERS CFROM CUSTOMERS C

WHERE C.CUSTOMER_LOGIN_ID = CUSTOMER_LOGIN_ID);

A.CUSTOMER_ID has an index (via the foreign key constraint)

A ACCOUNT NUMBER d t h i dA.ACCOUNT_NUMBER does not have an index
C.CUSTOMER_LOGIN_ID, C.CCUSTOMER_ID does not have an index
100 Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_indexing_methods_strategies

Figure 6-20 shows the QSYS2.SYSCONTROLS catalog view.

Figure 6-20 RCAC and catalogs

The SYSCONTROLS catalog view contains the following columns:

� COLUMN_NAME
� CONTROL_TYPE
� CREATE_TIME
� ENABLE
� ENFORCED
� ASP_NUMBER
� IMPLICIT
� LABEL
� LAST_ALTERED
� LONG_COMMENT
� RCAC_NAME
� RCAC_OWNER
� RCAC_SCHEMA
� RULETEXT
� SYSTEM_COLUMN_NAME
� SYSTEM_TABLE_NAME
� SYSTEM_TABLE_SCHEMA
� TABLE_NAME
� TABLE_SCHEMA
� TBCORRELATION

The SYSCONTROLSDEP catalog view contains the following columns:

� COLUMN_NAME
� CONTROL_TYPE
� IASP_NUMBER
� OBJECT_NAME
� OBJECT_SCHEMA
� OBJECT_TYPE
� PARM_SIGNATURE
� RCAC_NAME
� RCAC_SCHEMA
� SYSTEM_TABLE_NAME
� SYSTEM_TABLE_SCHEMA

For more information, see the IBM i 7.2 DB2 for i SQL Reference Guide, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang
=en
Chapter 6. Additional considerations 101

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en

6.5 Views, materialized query tables, and query rewrite with
RCAC

This section covers the implications to views, materialized query tables (MQTs), and query
rewrite when RCAC is activated on a table.

6.5.1 Views

Any access to an SQL view that is over one or more tables that have RCAC also have those
row permissions and column masking rules applied. If an SQL view has predicates, those are
logically ANDed with any search condition that is specified in the permissions that are defined
on the underlying tables. The view does not have to project the columns that are referenced
by the permissions. Figure 6-21 shows an example of a view definition and user query.

Figure 6-21 View definition and user query

SELECT *

FROM OPEN_ACCOUNTS_VIEW A

WHERE A.ACCOUNT_NUMBER = ?

CREATE VIEW OPEN_ACCOUNTS_VIEW AS (

SELECT ACCOUNT_NUMBER,

ACCOUNT_CURRENT_BALANCE

FROM ACCOUNTS A

WHERE A. ACCOUNT_DATE_CLOSED IS NULL)

Note: PERMISSION1_ON_ACCOUNTS allows access to the row
based the user’s group and CUSTOMER_ID value
102 Row and Column Access Control Support in IBM DB2 for i

What the query optimizer plans for and what the database engine runs is shown in the
Figure 6-22.

Figure 6-22 Query rewrite with RCAC

6.5.2 Materialized query tables

When the query to populate a materialized query table (MQT) is run by the system on either
the create table or a refresh table, and one or more source tables have RCAC defined, the
row permissions and column masks are ignored. This means that the MQT has all of the data.

Because the MQT is a copy of the base table data, when a permission is created on the base
table, all the related MQTs are altered to have a default row permission. This default
permission prevents any of the rows from being directly queried.

When a query implicitly uses an MQT, the underlying row permissions and column masks are
built into the query that uses the MQT. In order for the MQT to be used for optimization, the
MQT must include any columns that are used by the row permissions and column masks.

The following example illustrates this scenario:

1. Create schema and tables:

CREATE SCHEMA Schema1;
CREATE TABLE Schema1.employee(userID varchar(128), LocationID integer, Regionid
integer);
CREATE TABLE Schema1.Sales (INVOICE INTEGER NOT NULL, SALEAMT DECIMAL(5,2),
TAXAMT DECIMAL(5,2), LOCATIONID INTEGER, REGIONID INTEGER);

CREATE VIEW OPEN_ACCOUNTS_VIEW AS (

SELECT ACCOUNT_NUMBER,

ACCOUNT_CURRENT_BALANCE

FROM ACCOUNTS A

WHERE A. ACCOUNT_DATE_CLOSED IS NULL)

SELECT *

FROM OPEN_ACCOUNTS_VIEW A

WHERE A.ACCOUNT_NUMBER = ?

Note: PERMISSION1_ON_ACCOUNTS allows access to the row
based the user�s group and CUSTOMER_ID value
Chapter 6. Additional considerations 103

2. Create a row permission that allows the employees to see only rows from the region they
work in:

/* Create permission that only allows the employees to see rows from the region
they work in */
CREATE PERMISSION Schema1.Sales_PERM1
ON schema1.sales FOR ROWS
WHERE CURRENT_USER in (SELECT userId FROM schema1.employee E
WHERE e.regionid = regionid)
ENFORCED FOR ALL
ACCESS ENABLE;

3. Create an MQT to summarize sales by location:

-- Create MQT to summarize sales by location
-- This has all of the data. The schema1.sales_perm1 predicate was not applied
CREATE TABLE Schema1.Location_Sales_MQT as
AS (SELECT LocationID, SUM(Saleamt) as Total_Location_Sales
FROM SCHEMA1.SALES
GROUP BY LOCATIONID)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

4. Populate the MQT (permission is not applied):

/* Populate the MQT - Permission not applied here */
REFRESH TABLE Schema1.Location_Sales_MQT

The following query matches Location_Sales_MQT, but it cannot be used because it does
not have column regionid, which is needed by the schema1.sales_PERM1 permission:

SELECT Locationid, sum(SALEAMT) FROM schema1.sales
GROUP BY locationid;

5. Create an MQT to summarize by region and location:

-- MQT to summarize by region and location
Create table schema1.Region_Location_Sales_MQT as
AS (SELECT REGIONID, LocationID, SUM(Saleamt) as Total_Location_Sales
FROM SCHEMA1.SALES
GROUP BY REGIONID, LOCATIONID)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

6. Populate the Region_location_Sales_MQT (permission not applied):

/* Populate the Region_location_Sales_MQT - Permission not applied here */
Refresh table schema1.Region_Location_Sales_MQT

The following query can use the Region_location_SALES_MQT because it has
REGIONID, which is required for the schema1.sales_PERM1 permission:

SELECT Locationid, sum(SALEAMT) FROM schema1.sales
GROUP BY locationid;
104 Row and Column Access Control Support in IBM DB2 for i

This example has the following additional implications:

� Users must be prevented from explicitly querying the MQT or a view that is created over it.
Those two cases bypass the row permission and column mask rules from the underlying
tables.

� If the user writes code to update incrementally an MQT, that code must be run from a user
that has permission to view all of the rows and all columns in their unmasked state.
Otherwise, the MQT contents are not complete and queries that implicitly use the MQT
might get wrong results.

� To prevent this, a check constraint can be created to cause an error if masked data was
inserted into the MQT.

6.5.3 Query rewrite

Query rewrite is a technique that the optimizer can use to change the original request to
improve performance.

For example, a query that references Table1 might be rewritten to access an MQT over
Table1, or it might also be optimized to access only the fields in an index that is defined over
Table1 and avoid touching Table1. With RCAC, defining these rewrites can still occur, but the
MQT or index also must include all columns that are needed by the row permissions or
column masks that are defined on Table1.

As part of adding RCAC, the impact to these potentially significant performance optimizations
must be considered. Usage of MQTs or index-only access might be reduced or eliminated by
enabling RCAC.

6.6 RCAC effects on performance and scalability

As with any discussion that is related to performance and scalability, nothing is certain or
guaranteed. There are always many variables that are involved. First, a good foundation of
knowledge and skill is required to appreciate fully what is occurring when a database request
is handled within an RCAC enabled environment. Implementing the row permission or column
masks involves the query optimizer and database engine. The process that identifies the rows
that you have permission to access is considered a “query”, and as such a query plan must
be formulated. In the case of SQL requests, the RCAC portion of the query is combined with
the user's query, much like a query referencing a view.

For native record level access, this RCAC “query” is also built and used to test the permission.
When a file is opened, the RCAC rule text logic is included, optimized, and run as part of the
native read, write, update, or delete operation. The amount of work (and time) required to
identify the record based on the user's permission is directly related to the complexity and
depth of the logic that is needed to identify the records that can be returned.

A simple example to illustrate this concept is a random read using a keyed logical file (that is,
an index). In its purest form, a random read uses two data access methods: index probe (find
the key and RRN) and table probe (find the record using RRN). If the RCAC rule text specifies
five nested subqueries to determine whether the user has access to the record, this logic
must be added to the path. The subquery processing now becomes part of the original
“random read” request. Instead of two simple I/Os to retrieve the record, there can be a
minimum of 12 I/Os to retrieve the same record. These I/Os can be done with a result of “not
found” if the user is not entitled to any of the records.
Chapter 6. Additional considerations 105

For programs that access records sequentially, in or out of key order, the added RCAC logic
can have a profound effect on the performance and scalability. Reading the “next record” in
order is no longer a simple matter of positioning to the next available key, as shown in
Figure 6-23.

Figure 6-23 Native record access with no RCAC

Native RLA Request
RRN Record Data

1 123CAIN aaaa456�
2 123CAIN bbbb456

3 123CAIN cccc456

4 123CAIN dddd456

�

N RCAC 4 123CAIN dddd456

5 123CAIN eeee456

� �

No RCAC

� �

� �

� �

� �

� �

1000001 123CAIN vvvv4561000001 123CAIN vvvv456

1000002 123CAIN wwww456

1000003 123CAIN xxxx456

1000004 123BEDOYAyyyy456

1000005 123BEDOYAzzzz456
106 Row and Column Access Control Support in IBM DB2 for i

Before the record, as identified by the key, is considered available, the RCAC logic must be
run. If the record is rejected by RCAC, the next record in sequence that is permissible must be
identified. This spinning through the records can take a long time and uses many resources,
as shown in Figure 6-24.

Figure 6-24 Native record level access with RCAC

After the row permissions and column masks are designed and implemented, adequate
performance and scalability testing are recommended.

6.7 Exclusive lock to implement RCAC (availability issues)

When defining permissions or enabling RCAC, an exclusive lock on the base table is
obtained. The impact to other applications depends on the order of create permission and the
alter table to activate RCAC.

Consider the following scenarios:

� Scenario 1: Adding permissions and RCAC is not enabled on the table:

– Job 1 reading data from the table (open for input) holds a *SHRRD on the member and
a *SHRRD on the data.

– Job 2 adding, updating, or deleting rows from table (open for output) holds a *SHRRD
on the member and a *SHRUPD on the data.

– Job 4 allocates the object and gets a *SHRRD on the file and a *EXCLRD on the data.

– Job 3 attempts to add a permission to the table. Permission is added and the
pseudo-closed cursors for Job1 and Job 2 are closed. Job 4 still holds the *SHRRD on
the file and *EXCLRD on the data.

The net result from Scenario 1 is that you can add permissions without having to end the
applications that are reading the base table.

Native RLA Request
RRN Record Data

1 123CAINaaaaaa456

RCAC
×

2 123CAINbbbbbb456

3 123CAINcccccc456

4 123CAINdddddd456

×
×
× 4 123CAINdddddd456

5 123CAINeeeeee456

� �

×
×

� �

� �

� �

Row Permission:

WHERE NAME <> �CAIN�

spin
thru

records
� �

� �

1000001 123CAINvvvvvv456

WHERE NAME <> �CAIN� records

× 1000001 123CAINvvvvvv456

1000002 123CAINwwwwww456
1000003 123CAINxxxxxx456

�

×
×
×

1000004 123BEDOYAyyyy456

1000005 123BEDOYAzzzz456
�

Chapter 6. Additional considerations 107

� Scenario 2: Altering a table to activate RCAC requires that all applications using the table
be ended. The alter table requires exclusive use of the table.

� Scenario 3: Altering the table to activate RCAC before the permissions are added. The
alter table requires exclusive use of the table, as in scenario 2. All applications must be
ended to perform this alter. After the alter is complete, any applications trying to read data
do not get any results, and attempts to insert new rows returns the following message:

SQ20471] INSERT or UPDATE does not satisfy row permissions.

To create a permission in this case requires that you end all the applications, unlike
scenario 1 where permissions can be added while the applications were active. In this
case, the applications must be ended to run the create permission.

6.8 Avoiding propagation of masked data

Operations such as insert or update into a table with active column access control can fail if
the input data is masked data. This can happen when data to be inserted or updated contains
the masked value as a result of a SELECT from a table with active column access control.

For example, assume TABLE1 and TABLE2 have active column access control and for insert,
selecting data from TABLE2 returns the masked data. The following INSERT returns an error:

INSERT INTO TABLE1 SELECT * FROM TABLE2

The masked data that is returned from the SELECT * FROM TABLE2 might not be valid input
data for TABLE1 because of data type or column check constraint.

There are two ways to prevent this situation from happening: Define a check constraint or
create a before trigger.

6.8.1 Check constraint solution

One way to prevent this problem is to define a check constraint.

As part of RCAC, new SQL syntax is provided to allow an action to be performed when a
violation of the check constraints check condition occurs instead of giving that error. However,
if the check condition is still not met after the action, a hard error is returned. A check
constraint with the new on-violation-clause is allowed on both the CREATE TABLE and ALTER
TABLE statements.

In the Example 6-4, the mask is defined to return a value of 'XXX-XX-nnnn' for any query that
is not done by a user profile in the DBMGR group. The constraint checks that the column SSN
does not have the masked value.

Example 6-4 Check constraint to avoid masked data

CREATE SCHEMA MY_LIB
SET SCHEMA MY_LIB
CREATE TABLE MY_LIB.EMP_INFO
 (COL1_name CHAR(10) WITH DEFAULT 'DEFAULT',
 COL2_ssn CHAR(11) WITH DEFAULT 'DEFAULT')
CREATE MASK MASK_ssn ON MY_LIB.EMP_INFO
FOR COLUMN COL2_ssn RETURN
CASE
 WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBMGR') = 1
 THEN COL2_ssn
108 Row and Column Access Control Support in IBM DB2 for i

 ELSE 'XXX-XX-'||SUBSTR(COL2_ssn,8,4)
END
ENABLE
|
/* Check constraint for the update and insert.*/
ALTER TABLE MY_LIB.EMP_INFO
 ADD CONSTRAINT MASK_ssn_preserve
 CHECK(SUBSTR(COL2_ssn,1,7)<>'XXX-XX-') -- Allow any value other than the mask
 ON UPDATE VIOLATION PRESERVE COL2_ssn -- Don't update the mask portion of the existing value
 ON INSERT VIOLATION SET COL2_ssn = DEFAULT -- for insert set this to the default value.

6.8.2 Before trigger solution

The actions that are described in Example 6-4 on page 108 for ON UPDATE VIOLATION and ON
INSERT VIOLATION also can be handled by a before trigger, as shown in Example 6-5.

Example 6-5 Before trigger to avoid masked data

CREATE TRIGGER PREVENT_MASK_SSN BEFORE INSERT OR UPDATE ON MY_LIB.EMP_INFO
REFERENCING NEW ROW AS N OLD ROW AS O
FOR EACH ROW MODE DB2ROW
SECURED
WHEN(SUBSTR(N.COL2_ssn,1,7) = 'XXX-XX-')
BEGIN
IF INSERTING THEN SET N.COL2_ssn = DEFAULT;
ELSEIF UPDATING THEN SET N.COL2_ssn = O.COL2_ssn;
END IF;
END

6.9 Triggers and functions (SECURED)

There are some considerations that must be considered when there are triggers and
functions on tables that have RCAC enabled. The purpose of SECURE for triggers and
functions is so that a user who is allowed to create a trigger or function is not necessarily able
to make it SECURE themselves. This prevents the trigger/function developer from adding
code that skims off data that they are not allowed to see.

6.9.1 Triggers

Triggers have access to the data in rows outside of the row permission or column masking.
An after trigger has access to the new row image after the permission has allowed the update
or insert to occur. Therefore, the triggers can potentially change the insert or update image
value so that it violates the permission.
Chapter 6. Additional considerations 109

Any triggers that are defined on a table must be created with an attribute that designates that
it is SECURED when RCAC definitions are created or altered for that table, as shown in
Example 6-6. The same applies to a view that has an instead of trigger. That trigger must be
secure at the point RCAC is enabled for any of the underlying tables the view is over.

Example 6-6 Trigger SECURED

/* Trigger created with the SECURED attribute */
CREATE TRIGGER PREVENT_MASK_SSN BEFORE INSERT OR UPDATE ON MY_LIB.EMP_INFO
REFERENCING NEW ROW AS N OLD ROW AS O
FOR EACH ROW MODE DB2ROW
SECURED
WHEN(SUBSTR(N.COL2_ssn,1,7) = 'XXX-XX-')
 BEGIN
 IF INSERTING THEN SET N.COL2_ssn = DEFAULT;
 ELSEIF UPDATING THEN SET N.COL2_ssn = O.COL2_ssn;
 END IF;
END

6.9.2 Functions

Within a CREATE PERMISSION or CREATE MASK, a function can be called. Because that UDF has
access to the data before the RCAC rules are applied, the SECURE attribute is required on
that function, as shown in Example 6-7.

Example 6-7 Specifying SECURED on a function

CREATE PERMISSION SCHEMA.PERM1 ON SCHEMA.TABLE1 FOR ROWS WHERE
MY_UDF(CURRENT_USER,COLUMN1) = 1
ENFORCED FOR ALL ACCESS ENABLE;

CREATE FUNCTION MY_UDF
(INP1 CHAR(32),
INP2 INTEGER)

Returns INTEGER
LANGUAGE SQL
CONTAINS SQL
SECURED

The SECURED attribute of MY_UDF signifies that the function is considered secure for
RCAC. If a function is called from an SQL statement, and references a column in a table that
has RCAC, it must be declared as secure. In that case, if the secure function calls other
functions, they are not validated to confirm whether they are secure.

Consider the following examples:

� Table1 has RCAC defined and enabled. SELECT MY_UDF2(Column2) from schema.table1.

MY_UDF2 must be created with the SECURED attribute. If MY_UDF2 invokes MY_UDF3,
there is no checking to ensure that it is also created with SECURED.

NOT SECURED is the default on the create function unless SECURED is explicitly
selected.

This same rule applies for any function that might be invoked with a masked column
specified as an argument.
110 Row and Column Access Control Support in IBM DB2 for i

� Table2 column SSN has a column mask that is defined on it.

SELECT MY_UDF4(SSN) from table2. Because SSN has a column mask that is defined,
MY_UDF4 must be created with the SECURED attribute.

6.10 RCAC is only one part of the solution

When designing and implementing RCAC row permissions, special attention should be given
to the effectiveness and limitations of controlling data access. Data can be housed in objects
other than tables or physical files. The role and responsibility of the database user, for
example, the database engineer, must be reconciled with their respective authority and
access privileges.

Figure 6-25 illustrates that object level security is the first check and that RCAC permissions
provide control only on tables and physical files.

Figure 6-25 Object-level security and RCAC permissions

To get access to the table and the rows, the user must pass the object level authority test and
the RCAC permission test.

The IBM i journal captures the transactional data and places an image of the row in the
journal receiver. If the user has access to the journal receiver, the row image can be viewed if
the user has authority to the journal receiver.

Although the SQL Plan Cache data, the SQL Plan Cache Snapshot data, and the SQL
Performance Monitor data do not reveal the results of queries, they can show the literal values
that are passed along with the SQL statements.

Object
Level

Authority

Functional
ID

Allowance

RCAC
Permission

Table

Authority Allowance

� �

Journal Receiver�

SQL Plan Cache� � SQL Plan Cache� �

SQL Plan Cache Snapshot� �

SQL Performance Monitor� �
Chapter 6. Additional considerations 111

The ability to monitor, analyze, debug, and tune data-centric applications effectively and
efficiently requires some understanding of the underlying data, or at least the attributes of the
data. The organization must be willing to reconcile the conflicting requirements of “restricting
access to data”, and “needing access to data”.
112 Row and Column Access Control Support in IBM DB2 for i

Chapter 7. Row and Column Access Control
management

After Row and Column Access Control (RCAC) definitions are defined and activated in a
database, your management processes must be adjusted to accommodate these new
security controls. This chapter highlights some of the changes that should be considered.

The following topics are covered in this chapter:

� Managing row permissions and column masks
� Managing tables with row permissions and column masks
� Monitoring and auditing function usage

7

© Copyright IBM Corp. 2014. All rights reserved. 113

7.1 Managing row permissions and column masks

This section focuses on the management of the RCAC row permissions and column masks.

7.1.1 Source management

The SQL statements that are used to define row permissions and column masks should be
managed with a change management process. Ideally, you already are using a change
management process for your database definitions, and that same process can be extended
to cover your RCAC definitions.

If you are using SQL DDL to define your DB2 tables, then you have the option of adding the
RCAC definitions to the same source file as the table definition. The benefit of this approach
is that it keeps all DDL that is related to a table in a single source file. The downside is that if
you must re-create only the RCAC definitions and leave the table unchanged, then you must
identify and extract only the RCAC definitions from the source file. There are situations where
the row permissions and column masks must be changed or re-created without changing the
definition of the associated table.

7.1.2 Modifying definitions

After RCAC is activated for a table, the row permission and column mask definitions can be
re-created to change the data access behavior for that table. Usage of the OR REPLACE clause
on the CREATE MASK and CREATE PERMISSION SQL statements simplifies the re-creation
process by folding in the deletion of the existing RCAC definition.

This capability makes it easy to change your RCAC definitions as you test the controls with
your applications and identify tweaks that must be made to your RCAC implementation.
However, re-creation of RCAC definitions does require an exclusive lock to be acquired on the
table during the process.

7.1.3 Turning on and off

As described in 3.1.2, “Enabling and activating RCAC” on page 16, the SQL ALTER statement
can turn on and off row permissions and column masks. The ALTER MASK and ALTER
PERMISSION statements allow an individual row permission or column mask to be turned off
with the DISABLE option and back on with the ENABLE option. The ALTER TABLE statement can
deactivate enforcement of all the row permissions and column masks for a single table.

7.1.4 Regenerating

DB2 also can regenerate an existing row permission or column mask. This regenerate option
can be useful with more complex RCAC definitions that reference other DB2 objects.

Important: Although these capabilities make it easy to temporarily turn off RCAC security
so that you can make environment or application changes, these processes require an
exclusive lock to be obtained on a table. Therefore, this activity must be planned carefully
to avoid disruptions and outages.
114 Row and Column Access Control Support in IBM DB2 for i

For example, consider a row permission on an ACCOUNTS table
(PERMISSION1_ON_ACCOUNTS). The ACCOUNTS table row permission references and
compares columns in the CUSTOMERS table. When the definition of the CUSTOMERS table
changes, DB2 does not check to determine whether the change to the CUSTOMERS table
breaks the ACCOUNTS table row permission. If this table definition change does break the
row permission, an error does not surface until an application tries to read rows from the
ACCOUNTS table.

Instead of waiting for an application to detect this error, the REGENERATE option can be used on
the ACCOUNTS row permission. The REGENERATE option returns an error if the change in the
CUSTOMERS table definition causes the row permission to be invalid. In this way, the row
permission can be proactively corrected before an application discovers the error.

7.2 Managing tables with row permissions and column masks

This section examines the object management considerations after RCAC is added to a DB2
table.

7.2.1 Save and restore

Row permissions and column masks are stored in the DB2 table object itself, so they are
automatically saved and restored when the DB2 table object is saved and restored.
Therefore, no adjustments must be made to your database backup process to accommodate
RCAC.

Save and restore processing works fine with RCAC if the RCAC definition does not reference
other DB2 objects other than the table over which they are defined. When the RCAC definition
has dependencies on other DB2 objects, the restore process is much more challenging.
Chapter 7. Row and Column Access Control management 115

For example, assume that the BANKSCHEMA library (which is the system name or short
name for the schema long name of BANK_SCHEMA) is saved and restored into a library
named BANK_TEST. Recall from the example in 7.1.4, “Regenerating” on page 114 that the
row permission on the ACCOUNTS table references the CUSTOMERS table (…SELECT
C.CUSTOMER_ID FROM CUSTOMERS C…). After the restore operation, the ACCOUNTS row
permission still references the CUSTOMERS table in BANK_SCHEMA because DB2
explicitly qualifies all object references when the row permission or column mask is created.
The restore processing does not change the explicit qualification from BANK_SCHEMA to
BANK_TEST. As a result, the restored ACCOUNTS row permission now depends on DB2
objects residing in a different schema, even though it was not created that way originally. For
more details, see Figure 7-1.

Figure 7-1 Restoring tables to different schemas

The only way to fix this issue is to re-create the row permission or column mask after the
restore operation. Re-creation of the row permission or column mask is required only for
definitions that reference other DB2 objects, but it is simpler to re-create all of the RCAC
definitions instead of a subset. For example, generate the SQL using System i Navigator,
clear the “Schema qualify names for objects” and select the “OR REPLACE clause”, and then
run the generated script.

7.2.2 Table migration

There are several IBM i CL commands, such as Move Object (MOVOBJ), Create Duplicate
Object (CRTDUPOBJ), and Copy Library (CPYLIB), which are used to migrate a table from one
library to another one. Often, this migration is done to create different versions of the table
that can be used for development or testing purposes.

The migration of a table with RCAC has the same challenges as restore processing. If the
RCAC definition references other DB2 objects, then IBM i CL commands do not change the
schema names that are explicitly qualified by the DB2 internal RCAC processing.

Again, re-creating the row permission or column mask is the only way to fix the issue of
references to DB2 objects in other schemas.

Move
Copy

BANK SCHEMA BANK TEST

Duplicate
Restore

BANK_SCHEMA BANK_TEST

ACCOUNTS ACCOUNTS

CUSTOMERS

Permission

CUSTOMERS

Permission

References BANK_SCHEMA.CUSTOMERS References BANK_SCHEMA.CUSTOMERS
116 Row and Column Access Control Support in IBM DB2 for i

7.3 Monitoring and auditing function usage

While establishing proper roles for users, separating duties using function usage IDs, and
defining RCAC policies allows you to implement an effective and pervasive data access
control scheme. How do you monitor and audit everyone who is involved in the
implementation of that scheme? The answer is to use IBM i journaling. A special journal that
is called QAUDJRN, also known as the audit journal, can provide a record and audit trail of
many security relevant events that occur on the system, including RCAC-related events.

The tasks and operations of security administrators and database engineers who are
collaborating can (and should) be effectively monitored and audited to ensure that the
organization's data access control and governance policies are in place and enabled. For
example, the Database Engineers can be involved in designing and developing functions and
triggers that must be secured using the SECURE attribute. Otherwise, without properly
securing functions and triggers, the RCAC controls can be bypassed.

A new journal entry type of “AX” for journal entry code “T” (audit trail) is now used for RCAC.
More information about the journaling of RCAC operations can be found in the following
documents:

� IBM i Version 7.2 Journal Management Guide, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis
.htm?lang=en

� IBM i Version 7.2 Security Reference Guide, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.h
tm?lang=en
Chapter 7. Row and Column Access Control management 117

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.htm?lang=en

118 Row and Column Access Control Support in IBM DB2 for i

Chapter 8. Designing and planning for
success

Although successfully implementing Row and Column Access Control (RCAC) is based on
knowledge and skills, designing and planning are fundamental aspects. This chapter
describes the need for a deep understanding of the technology, and good design, proper
planning, and adequate testing.

The following topics are covered in this chapter:

� Implementing RCAC with good design and proper planning
� DB2 for i Center of Excellence

8

© Copyright IBM Corp. 2014. All rights reserved. 119

8.1 Implementing RCAC with good design and proper planning

By using RCAC, the row and column data that is returned to the requester can be controlled
and governed by a set of data-centric policies that are defined with SQL and implemented
within DB2 for i.

RCAC provides fine-grained access control and is complementary to IBM i object-level
security. With the new RCAC feature of DB2 for i, the database engineer, in partnership with
the data owner and security officer, can ensure that users have access to the data based on
their level of authorization and responsibility.

This situation also can include separation of duties, such as allowing the application
developers to design and implement the solutions, but restricting them from accessing the
production data based on policy. Just because someone writes and owns the program, it does
not mean that they have access to all the sensitive data that their program can potentially
read.

This paper has described the following pervasive power and advantages of RCAC:

� Access can be controlled through simple or sophisticated logic.
� Virtually no application changes are required.
� The implementation of the access policy is part of the DB2 data access layer.
� Table data is protected regardless of the interface that is used.
� No user is inherently exempted from the access control policies.
� Groups of users can share policies and permissions.

A deep understanding of the technology, and proper planning, good design, adequate testing,
and monitored deployment are critical for success. This includes the usage of quality
assurance testing, and realistic performance and scalability exercises that serve to
demonstrate that all of your requirements are being met. As part of the verification process,
the usage of in-depth proofs of concepts and proofs of technology are recommended, if not
essential. When RCAC is activated, the results of queries can change. Anticipating this
change and realizing the effects of RCAC before going live are of the utmost importance.

With the ever-growing value of data, and the vast and varied database technology that is
available today, it is crucial to have a person or persons on staff who specialize in data-centric
design, development, and deployment. This role and responsibility falls on the database
engineer. With the availability of DB2 RCAC, the importance of full-time database engineering
has grown.

8.2 DB2 for i Center of Excellence

To further assist you with understanding and implementing RCAC, the DB2 for i Center of
Excellence team offers an RCAC education and consulting workshop. In addition to
knowledge transfer, a working session allows for a review of your data access control
requirements, review of the current environment, solution ideation, and high-level solution
design.

If you are interested in engaging with the DB2 for i Center of Excellence, contact Mike Cain at
mcain@us.ibm.com.
120 Row and Column Access Control Support in IBM DB2 for i

mailto:mcain@us.ibm.com

Appendix A. Database definitions for the
RCAC banking example

This appendix provides the database definitions or DDLs to re-create the Row and Column
Access Control (RCAC) scenario that is described in Chapter 4, “Implementing Row and
Column Access Control: Banking example” on page 37. The script that is shown in
Example A-1 is the DDL script that is used to implement this example.

Example A-1 DDL script to implement the RCAC banking example

/* Database Definitions for RCAC Bank Scenario */
/* Schema */
CREATE SCHEMA BANK_SCHEMA FOR SCHEMA BANKSCHEMA ;

/* Global Variable */
CREATE VARIABLE BANK_SCHEMA.CUSTOMER_LOGIN_ID

VARCHAR(30) ;

LABEL ON VARIABLE BANK_SCHEMA.CUSTOMER_LOGIN_ID IS 'Customer''s log in value passed by web application' ;

/* Tables */

CREATE TABLE BANK_SCHEMA.CUSTOMERS (
CUSTOMER_ID FOR COLUMN CUSTO00001 INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
CUSTOMER_NAME FOR COLUMN CUSTO00002 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_ADDRESS FOR COLUMN CUSTO00003 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_CITY FOR COLUMN CUSTO00004 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_STATE FOR COLUMN CUSTO00005 CHAR(2) CCSID 37 NOT NULL ,
CUSTOMER_PHONE FOR COLUMN CUSTO00006 CHAR(10) CCSID 37 NOT NULL ,
CUSTOMER_EMAIL FOR COLUMN CUSTO00007 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_TAX_ID FOR COLUMN CUSTO00008 CHAR(11) CCSID 37 NOT NULL ,
CUSTOMER_DRIVERS_LICENSE_NUMBER FOR COLUMN CUSTO00012 CHAR(13) CCSID 37 DEFAULT NULL ,
CUSTOMER_LOGIN_ID FOR COLUMN CUSTO00009 VARCHAR(30) CCSID 37 DEFAULT NULL ,
CUSTOMER_SECURITY_QUESTION FOR COLUMN CUSTO00010 VARCHAR(100) CCSID 37 DEFAULT NULL ,

A

© Copyright IBM Corp. 2014. All rights reserved. 121

CUSTOMER_SECURITY_QUESTION_ANSWER FOR COLUMN CUSTO00011 VARCHAR(100) CCSID 37 DEFAULT NULL ,
INSERT_TIMESTAMP FOR COLUMN INSER00001 TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDAT00001 TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK_SCHEMA.CUSTOMER_ID_PK PRIMARY KEY(CUSTOMER_ID)) ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_LOGIN_ID_UK
UNIQUE(CUSTOMER_LOGIN_ID) ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_DRIVERS_LICENSE_CHECK
CHECK(CUSTOMER_DRIVERS_LICENSE_NUMBER <> '*************')
ON UPDATE VIOLATION PRESERVE CUSTOMER_DRIVERS_LICENSE_NUMBER ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_EMAIL_CHECK
CHECK(CUSTOMER_EMAIL <> '****@****')
ON UPDATE VIOLATION PRESERVE CUSTOMER_EMAIL ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_LOGIN_ID_CHECK
CHECK(CUSTOMER_LOGIN_ID <> '*****')
ON INSERT VIOLATION SET CUSTOMER_LOGIN_ID = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_LOGIN_ID ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_SECURITY_QUESTION_CHECK
CHECK(CUSTOMER_SECURITY_QUESTION_ANSWER <> '*****')
ON INSERT VIOLATION SET CUSTOMER_SECURITY_QUESTION_ANSWER = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_SECURITY_QUESTION_ANSWER ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_SECURITY_QUESTION_ANSWER
CHECK(CUSTOMER_SECURITY_QUESTION <> '*****')
ON INSERT VIOLATION SET CUSTOMER_SECURITY_QUESTION = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_SECURITY_QUESTION ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_TAX_ID_CHECK
CHECK(CUSTOMER_TAX_ID <> 'XXX-XX-XXXX' AND SUBSTR (CUSTOMER_TAX_ID , 1 , 7) <> 'XXX-XX-')
ON UPDATE VIOLATION PRESERVE CUSTOMER_TAX_ID ;

CREATE TABLE BANK_SCHEMA.ACCOUNTS (
ACCOUNT_ID INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
CUSTOMER_ID FOR COLUMN CUSTID INTEGER NOT NULL ,
ACCOUNT_NUMBER FOR COLUMN ACCOUNTNO VARCHAR(50) CCSID 37 NOT NULL ,
ACCOUNT_NAME FOR COLUMN ACCOUNTNAM CHAR(12) CCSID 37 NOT NULL ,
ACCOUNT_DATE_OPENED FOR COLUMN OPENDATE DATE DEFAULT CURRENT_DATE ,
ACCOUNT_DATE_CLOSED FOR COLUMN CLOSEDATE DATE DEFAULT NULL ,
ACCOUNT_CURRENT_BALANCE FOR COLUMN ACCTBAL DECIMAL(11, 2) NOT NULL DEFAULT 0 ,
INSERT_TIMESTAMP FOR COLUMN INSDATE TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDDATE TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK_SCHEMA.ACCOUNT_ID_PK PRIMARY KEY(ACCOUNT_ID));
122 Row and Column Access Control Support in IBM DB2 for i

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ADD CONSTRAINT BANK_SCHEMA.ACCOUNT_CUSTOMER_ID_FK
FOREIGN KEY(CUSTOMER_ID)
REFERENCES BANK_SCHEMA.CUSTOMERS (CUSTO00001)
ON DELETE RESTRICT
ON UPDATE RESTRICT ;

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ADD CONSTRAINT BANK_SCHEMA.ACCOUNT_NUMBER_CHECK
CHECK(ACCOUNT_NUMBER <> '*****')
ON UPDATE VIOLATION PRESERVE ACCOUNT_NUMBER ;

CREATE TABLE BANK_SCHEMA.TRANSACTIONS FOR SYSTEM NAME TRANS (
TRANSACTION_ID FOR COLUMN TRANS00001 INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
ACCOUNT_ID INTEGER NOT NULL ,
TRANSACTION_TYPE FOR COLUMN TRANS00002 CHAR(1) CCSID 37 NOT NULL ,
TRANSACTION_DATE FOR COLUMN TRANS00003 DATE NOT NULL DEFAULT CURRENT_DATE ,
TRANSACTION_TIME FOR COLUMN TRANS00004 TIME NOT NULL DEFAULT CURRENT_TIME ,
TRANSACTION_AMOUNT FOR COLUMN TRANS00005 DECIMAL(11, 2) NOT NULL ,
INSERT_TIMESTAMP FOR COLUMN INSER00001 TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDAT00001 TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK_SCHEMA.TRANSACTION_ID_PK PRIMARY KEY(TRANSACTION_ID)) ;

ALTER TABLE BANK_SCHEMA.TRANSACTIONS
ADD CONSTRAINT BANK_SCHEMA.TRANSACTIONS_ACCOUNT_ID_FK
FOREIGN KEY(ACCOUNT_ID)
REFERENCES BANK_SCHEMA.ACCOUNTS (ACCOUNT_ID)
ON DELETE RESTRICT
ON UPDATE RESTRICT ;

/* Permissions and Masks */

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER') = 1)

OR
(QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
AND (C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER_LOGIN_ID))

ENFORCED FOR ALL ACCESS
ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_EMAIL_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C

FOR COLUMN CUSTOMER_EMAIL
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN C . CUSTOMER_EMAIL
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_EMAIL
ELSE '****@****'
END

ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_TAX_ID_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_TAX_ID
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
Appendix A. Database definitions for the RCAC banking example 123

THEN C . CUSTOMER_TAX_ID
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'TELLER') = 1
THEN ('XXX-XX-' CONCAT QSYS2 . SUBSTR (C . CUSTOMER_TAX_ID , 8 , 4))
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_TAX_ID
ELSE 'XXX-XX-XXXX'
END

ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_DRIVERS_LICENSE_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_DRIVERS_LICENSE_NUMBER
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'TELLER') = 1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
ELSE '*************'
END

ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_LOGIN_ID_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_LOGIN_ID
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN C . CUSTOMER_LOGIN_ID
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_LOGIN_ID
ELSE '*****'
END

ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_SECURITY_QUESTION_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_SECURITY_QUESTION
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN C . CUSTOMER_SECURITY_QUESTION
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_SECURITY_QUESTION
ELSE '*****'
END

ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_SECURITY_QUESTION_ANSWER_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_SECURITY_QUESTION_ANSWER
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN C . CUSTOMER_SECURITY_QUESTION_ANSWER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN C . CUSTOMER_SECURITY_QUESTION_ANSWER
ELSE '*****'
END

ENABLE ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL ;
124 Row and Column Access Control Support in IBM DB2 for i

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_ACCOUNTS ON BANK_SCHEMA.ACCOUNTS AS A
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER') = 1)

OR
(QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
AND (A . CUSTOMER_ID IN (
SELECT C . CUSTOMER_ID
FROM BANK_SCHEMA . CUSTOMERS C
WHERE C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER_LOGIN_ID

ENFORCED FOR ALL ACCESS
ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_ACCOUNT_NUMBER_ON_ACCOUNTS ON BANK_SCHEMA.ACCOUNTS AS A
FOR COLUMN ACCOUNT_NUMBER
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1
THEN A . ACCOUNT_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'TELLER') = 1
THEN A . ACCOUNT_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
THEN A . ACCOUNT_NUMBER
ELSE '*****'
END

ENABLE ;

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL ;

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_TRANSACTIONS ON BANK_SCHEMA.TRANSACTIONS AS T
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER') = 1)

OR
(QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1
AND (T . ACCOUNT_ID IN (
SELECT A . ACCOUNT_ID
FROM BANK_SCHEMA . ACCOUNTS A
WHERE A . CUSTOMER_ID IN (
SELECT C . CUSTOMER_ID
FROM BANK_SCHEMA . CUSTOMERS C
WHERE C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER_LOGIN_ID

ENFORCED FOR ALL ACCESS
ENABLE ;

ALTER TABLE BANK_SCHEMA.TRANSACTIONS
ACTIVATE ROW ACCESS CONTROL ;

/* END */
Appendix A. Database definitions for the RCAC banking example 125

126 Row and Column Access Control Support in IBM DB2 for i

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this paper.

Other publications

These publications are relevant as further information sources:

� IBM DB2 for i indexing methods and strategies white paper:

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i
_indexing_methods_strategies

� IBM i Memo to Users Version 7.2:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm

� IBM i Version 7.2 DB2 for i SQL Reference Guide:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?l
ang=en

� IBM i Version 7.2 Journal Management Guide:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis
.htm?lang=en

� IBM i Version 7.2 Security Reference Guide:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.h
tm?lang=en

Online resources

These websites are relevant as further information sources:

� Database programming topic of the IBM i 7.2 IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?l
ang=en

� Identity Theft Resource Center

http://www.idtheftcenter.org

� Ponemon Institute

http://www.ponemon.org/
© Copyright IBM Corp. 2014. All rights reserved. 127

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis.htm?lang=en
http://www.idtheftcenter.org
http://www.ponemon.org/
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_indexing_methods_strategies

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
128 Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

REDP-5110-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

Row and Column Access Control
Support in IBM DB2 for i

Implement roles and
separation of duties

Leverage row
permissions on the
database

Protect columns by
defining column
masks

This IBM Redpaper publication provides information about the IBM i 7.2
feature of IBM DB2 for i Row and Column Access Control (RCAC). It
offers a broad description of the function and advantages of controlling
access to data in a comprehensive and transparent way. This
publication helps you understand the capabilities of RCAC and provides
examples of defining, creating, and implementing the row permissions
and column masks in a relational database environment.

This paper is intended for database engineers, data-centric application
developers, and security officers who want to design and implement
RCAC as a part of their data control and governance policy. A solid
background in IBM i object level security, DB2 for i relational database
concepts, and SQL is assumed.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	DB2 for i Center of Excellence
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Securing and protecting IBM DB2 data
	1.1 Security fundamentals
	1.2 Current state of IBM i security
	1.3 DB2 for i security controls
	1.3.1 Existing row and column control
	1.3.2 New controls: Row and Column Access Control

	Chapter 2. Roles and separation of duties
	2.1 Roles
	2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA
	2.1.2 Toolbox application server access: QIBM_DB_ZDA
	2.1.3 Database Administrator function: QIBM_DB_SQLADM
	2.1.4 Database Information function: QIBM_DB_SYSMON
	2.1.5 Security Administrator function: QIBM_DB_SECADM
	2.1.6 Change Function Usage CL command
	2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view

	2.2 Separation of duties

	Chapter 3. Row and Column Access Control
	3.1 Explanation of RCAC and the concept of access control
	3.1.1 Row permission and column mask definitions
	3.1.2 Enabling and activating RCAC

	3.2 Special registers and built-in global variables
	3.2.1 Special registers
	3.2.2 Built-in global variables

	3.3 VERIFY_GROUP_FOR_USER function
	3.4 Establishing and controlling accessibility by using the RCAC rule text
	3.5 SELECT, INSERT, and UPDATE behavior with RCAC
	3.6 Human resources example
	3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants
	3.6.2 Creating group profiles for the users and their roles
	3.6.3 Demonstrating data access without RCAC
	3.6.4 Defining and creating row permissions
	3.6.5 Defining and creating column masks
	3.6.6 Activating RCAC
	3.6.7 Demonstrating data access with RCAC
	3.6.8 Demonstrating data access with a view and RCAC

	Chapter 4. Implementing Row and Column Access Control: Banking example
	4.1 Business requirements for the RCAC banking scenario
	4.2 Description of the users roles and responsibilities
	4.3 Implementation of RCAC
	4.3.1 Reviewing the tables that are used in this example
	4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers group
	4.3.3 Creating group profiles for the users and their roles
	4.3.4 Creating the CUSTOMER_LOGIN_ID global variable
	4.3.5 Defining and creating row permissions
	4.3.6 Defining and creating column masks
	4.3.7 Restricting the inserting and updating of masked data
	4.3.8 Activating row and column access control
	4.3.9 Reviewing row permissions
	4.3.10 Demonstrating data access with RCAC
	4.3.11 Query implementation with RCAC activated

	Chapter 5. RCAC and non-SQL interfaces
	5.1 Unsupported interfaces
	5.2 Native query result differences
	5.3 Accidental updates with masked values
	5.4 System CL commands considerations
	5.4.1 Create Duplicate Object (CRTDUPOBJ) command
	5.4.2 Copy File (CPYF) command
	5.4.3 Copy Library (CPYLIB) command

	Chapter 6. Additional considerations
	6.1 Timing of column masking
	6.2 RCAC effects on data movement
	6.2.1 Effects when RCAC is defined on the source table
	6.2.2 Effects when RCAC is defined on the target table
	6.2.3 Effects when RCAC is defined on both source and target tables

	6.3 RCAC effects on joins
	6.3.1 Inner joins
	6.3.2 Outer joins
	6.3.3 Exception joins

	6.4 Monitoring, analyzing, and debugging with RCAC
	6.4.1 Query monitoring and analysis tools
	6.4.2 Index advisor
	6.4.3 Metadata using catalogs

	6.5 Views, materialized query tables, and query rewrite with RCAC
	6.5.1 Views
	6.5.2 Materialized query tables
	6.5.3 Query rewrite

	6.6 RCAC effects on performance and scalability
	6.7 Exclusive lock to implement RCAC (availability issues)
	6.8 Avoiding propagation of masked data
	6.8.1 Check constraint solution
	6.8.2 Before trigger solution

	6.9 Triggers and functions (SECURED)
	6.9.1 Triggers
	6.9.2 Functions

	6.10 RCAC is only one part of the solution

	Chapter 7. Row and Column Access Control management
	7.1 Managing row permissions and column masks
	7.1.1 Source management
	7.1.2 Modifying definitions
	7.1.3 Turning on and off
	7.1.4 Regenerating

	7.2 Managing tables with row permissions and column masks
	7.2.1 Save and restore
	7.2.2 Table migration

	7.3 Monitoring and auditing function usage

	Chapter 8. Designing and planning for success
	8.1 Implementing RCAC with good design and proper planning
	8.2 DB2 for i Center of Excellence

	Appendix A. Database definitions for the RCAC banking example
	Related publications
	Other publications
	Online resources
	Help from IBM

	Back cover

