Row and Column Access Gontrol
Support in IBM DB2 for i

Implement roles and separation
of duties

Leverage row permissions on
the database

Protect columns by defining
column masks

Jim Bainbridge
Hernando Bedoya
Rob Bestgen
Mike Cain

Dan Cruikshank
Jim Denton
Doug Mack
Tom McKinley
Kent Milligan

Redpaper

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Row and Column Access Control Support in IBM DB2
fori

November 2014

REDP-5110-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page Vvii.

First Edition (November 2014)

This edition applies to Version 7, Release 2 of IBM i (product number 5770-SS1).
© Copyright International Business Machines Corporation 2014. All rights reserved.

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES vii
Trademarkso e viii
DB2 fori Center of Excellence i iX
Preface Xi
AUTNOIS . L e Xi
Now you can become a published author, too! xiii
CommeENts WEICOME. e Xiii
Stay connected t0 IBM RedbOOKS Xiv
Chapter 1. Securing and protectingIBM DB2data 1
1.1 Security fundamentals. 2
1.2 Current state of IBMisecurity. 2
1.3 DB2 forisecurity controls e 3
1.3.1 Existingrow and columncontrol. 4
1.3.2 New controls: Row and Column Access Control. 5
Chapter 2. Roles and separationofduties.................................... 7
2.1 ROIES. . . e e 8
2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA 8
2.1.2 Toolbox application server access: QIBM_DB_ZDA. 8
2.1.3 Database Administrator function: QIBM_DB_SQLADM 9
2.1.4 Database Information function: QIBM_DB_SYSMON 9
2.1.5 Security Administrator function: QIBM_DB_SECADM 9
2.1.6 Change Function Usage CLcommand. 10
2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view. 10
2.2 Separation of duties i e 10
Chapter 3. Row and Column AccessControl................................. 13
3.1 Explanation of RCAC and the concept of accesscontrol 14
3.1.1 Row permission and column mask definitions 14
3.1.2 Enabling and activating RCAC e 16
3.2 Special registers and built-in global variables. 18
3.2.1 Special registerso 18
3.2.2 Built-in global variables. 19
3.3 VERIFY_GROUP_FOR_USER function. 20
3.4 Establishing and controlling accessibility by using the RCAC rule text. 21
3.5 SELECT, INSERT, and UPDATE behaviorwith RCAC 22
3.6 Humanresources example 22
3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants. 23
3.6.2 Creating group profiles for the users and theirroles. 23
3.6.3 Demonstrating data access without RCAC. 24
3.6.4 Defining and creating row permissions. i 25
3.6.5 Defining and creatingcolumnmasks i 26
3.6.6 Activating RCAC 28
3.6.7 Demonstrating data access with RCAC 29
3.6.8 Demonstrating data access withaviewand RCAC 32

© Copyright IBM Corp. 2014. All rights reserved. iii

iv

Chapter 4. Implementing Row and Column Access Control: Banking example. 37

4.1 Business requirements for the RCAC bankingscenario........................ 38
4.2 Description of the users roles and responsibilities 39
4.3 Implementation of RCAC i e 42
4.3.1 Reviewing the tables that are used inthisexample 42
4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers group .. 47
4.3.3 Creating group profiles for the users and theirroles. 50
4.3.4 Creating the CUSTOMER_LOGIN_ID global variable 52
4.3.5 Defining and creating row permissions.t 54
4.3.6 Defining and creatingcolumnmasks i 58
4.3.7 Restricting the inserting and updating of maskeddata..................... 60
4.3.8 Activating row and column accesscontrol 63
4.3.9 Reviewing row permissions.ttt e 64
4.3.10 Demonstrating data access with RCAC 66
4.3.11 Query implementation with RCAC activated. 75
Chapter 5. RCACand non-SQL interfaces 79
5.1 Unsupported interfaces. e 80
5.2 Native query resultdifferences 80
5.3 Accidental updates withmasked values 81
5.4 System CL commands considerations i 82
5.4.1 Create Duplicate Object (CRTDUPOBJ)command 82
5.4.2 Copy File (CPYF)command.t eae 82
5.4.3 Copy Library (CPYLIB) command.t 83
Chapter 6. Additional considerations 85
6.1 Timing of column maskingttt 86
6.2 RCAC effectsondatamovement i 88
6.2.1 Effects when RCAC is defined on the sourcetable 88
6.2.2 Effects when RCAC is defined on the targettable 89
6.2.3 Effects when RCAC is defined on both source and targettables............. 90
6.3 RCAC effects On JoiNS oo e e 91
B.3.1 INNEI JOINSo e 92
B.3.2 OUIEr JOINS. . . .ot e e 94
6.3.3 Exceplion JoiNs e 96
6.4 Monitoring, analyzing, and debuggingwith RCAC 97
6.4.1 Query monitoring and analysistools. i 97
6.4.2 INdeX adViSOr.ot 99
6.4.3 Metadata usingcatalogs. i 100
6.5 Views, materialized query tables, and query rewrite with RCAC 102
B.5.1 VIBWS . 102
6.5.2 Materialized querytables 103
B.5.3 QUEry reWrite e 105
6.6 RCAC effects on performance and scalability. 105
6.7 Exclusive lock to implement RCAC (availability issues) 107
6.8 Avoiding propagationof maskeddata. i, 108
6.8.1 Check constraintsolution 108
6.8.2 Before triggersolution. e 109
6.9 Triggers and functions (SECURED) i 109
B.9.1 TrigOerS. . o it e 109
6.9.2 FUNCHONS e 110
6.10 RCAC isonlyone partofthesolution.......... 111
Chapter 7. Row and Column Access Control management 113

Row and Column Access Control Support in IBM DB2 for i

7.1 Managing row permissions and column masks. 114

7.1.1 Source management. 114
7.1.2 Modifying definitions 114
7.1.3 Tumingonand off. 114
7.1.4 Regenerating 114
7.2 Managing tables with row permissions and columnmasks. 115
7.2.1 Save and restore. 115
7.2.2 Tablemigration 116
7.3 Monitoring and auditing functionusage i . 117
Chapter 8. Designing and planning forsuccess 119
8.1 Implementing RCAC with good design and proper planning 120
8.2 DB2foriCenterof Excellence i 120
Appendix A. Database definitions for the RCAC banking example 121
Related publications 127
Other publications e e 127
ONliNE rESOUICESt it ittt e e e 127
Help from IBM ... e 128

Contents v

Vi Row and Column Access Control Support in IBM DB2 for i

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2014. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/Tegal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400® IBM® Redpaper™
DB2® Power Systems™ Redbooks (logo) (@ ®
DRDA® Redbooks® System i®

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/legal/copytrade.shtml

IBM Systems Lab Services and Training Power Services
Solution Brief

DB2 for i
Center of Excellence

Expert belp to achieve your business requirements

We build confident, satisfied clients
Highlights No one else has the vast consulting experiences, skills sharing and

renown service offerings to do what we can do for you.
« Enhance the performance of your

database operations .
Because no one else is IBM.

Earn greater return on IT projects
through modernization of database and

ign | With combined experiences and direct access to development groups,
applications

we’re the experts in IBM DB2® for i. The DB2 for i Center of

Rely on IBM expert consulting, skills Excellence (CoE) can help you achieve—perhaps reexamine and
sharing and renown services

exceed—your business requirements and gain more confidence and

Take advantage of access to a satisfaction in IBM product data management products and solutions.
worldwide source of expertise

Who we are, some of what we do

Global CoE engagements cover topics including:

Database performance and scalability

Advanced SQL knowledge and skills transfer

Business intelligence and analytics

DB2 Web Query

Query/400 modernization for better reporting and analysis capabilities
Database modernization and re-engineering

Data-centric architecture and design

Extremely large database and overcoming limits to growth
ISV education and enablement

What you can expect
Depending on the engagement, our team of consultants offer:

Briefings, consulting and guidance on demand

Illumination of the DB2 for i capabilities and leadership to
exploit them

Analysis and remediation of performance and scalability
issues caused by inefficient database design and
implementation

Configuration of systems, operating system and products to
fully leverage database capabilities

Key client benefits

Gain greater database and application performance within
your current environment. Achieve greater productivity in
the development and maintenance of database and
applications using modern techniques. Architect and design
data structures to accommodate and benefit from business
analytics (BA) tools and processes.

For more information

Pricing depends on the scope of work. Learn more about
the DB2 for i Center of Excellence and other related
products and services. Contact stgls@us.ibm.com or visit:

ibm.com/systems/services/labservices

© Copyright IBM Corporation 2013

IBM Corporation
Route 100
Somers, NY 10589

Produced in the United States of America
March 2013

IBM, the IBM logo, ibm.com, DB2 and Power Systems are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is available on the
web at “Copyright and trademark information” at www.ibm.com/legal/
copytrade.shtml.

This document is current as of the initial date of publication and may be
changed by IBM at any time.

Not all offerings are available in every country in which IBM operates.

@ Please Recycle

QLS12392-USEN-00

mailto:stgls@us.ibm.com
http://www.ibm.com/systems/services/labservices
http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redpaper™ publication provides information about the IBM i 7.2 feature of IBM
DB2® for i Row and Column Access Control (RCAC). It offers a broad description of the
function and advantages of controlling access to data in a comprehensive and transparent
way. This publication helps you understand the capabilities of RCAC and provides examples
of defining, creating, and implementing the row permissions and column masks in a relational
database environment.

This paper is intended for database engineers, data-centric application developers, and
security officers who want to design and implement RCAC as a part of their data control and
governance policy. A solid background in IBM i object level security, DB2 for i relational
database concepts, and SQL is assumed.

Authors

This paper was produced by the IBM DB2 for i Center of Excellence team in partnership with
the International Technical Support Organization (ITSO), Rochester, Minnesota US.

Jim Bainbridge is a senior DB2 consultant on the DB2 for i
Center of Excellence team in the IBM Lab Services and
Training organization. His primary role is training and
implementation services for IBM DB2 Web Query for i and
business analytics. Jim began his career with IBM 30 years ago
in the IBM Rochester Development Lab, where he developed
cooperative processing products that paired IBM PCs with IBM
S/36 and AS/.400 systems. In the years since, Jim has held
numerous technical roles, including independent software
vendors technical support on a broad range of IBM
technologies and products, and supporting customers in the
IBM Executive Briefing Center and IBM Project Office.

Hernando Bedoya is a Senior IT Specialist at STG Lab
Services and Training in Rochester, Minnesota. He writes
extensively and teaches IBM classes worldwide in all areas of
DB2 for i. Before joining STG Lab Services, he worked in the
ITSO for nine years writing multiple IBM Redbooks®
publications. He also worked for IBM Colombia as an IBM
AS/400® IT Specialist doing presales support for the Andean
countries. He has 28 years of experience in the computing field
and has taught database classes in Colombian universities. He
holds a Master’s degree in Computer Science from EAFIT,
Colombia. His areas of expertise are database technology,
performance, and data warehousing. Hernando can be
contacted at hbedoyaG@us. ibm.com.

© Copyright IBM Corp. 2014. All rights reserved. Xi

mailto:hbedoya@us.ibm.com

Xii

Rob Bestgen is a member of the DB2 for i Center of
Excellence team helping customers use the capabilities of DB2
for i. In addition, Rob is the chief architect of the DB2 SQL
Query Engine (SQE) for DB2 for i and is the product
development manager for DB2 Web Query for i.

Mike Cain is a Senior Technical Staff Member within the IBM
Systems and Technology Group. He is also the founder and
team leader of the DB2 for i Center of Excellence in Rochester,
Minnesota US. Before his current position, he worked as an
IBM AS/400 Systems Engineer and technical consultant.
Before joining IBM in 1988, Mike worked as a System/38
programmer and data processing manager for a property and
casualty insurance company. Mike has 26 years of experience
with IBM, engaging clients and Business Partners around the
world. In addition to assisting clients, he uses his knowledge
and experience to influence the IBM solution, development,
and support processes.

Dan Cruikshank has been an IT Professional since 1972. He
has consulted on a number of different project areas since
joining IBM Rochester in 1988. Since 1993, Dan was focused
primarily on resolving IBM System i® application and database
performance issues at several IBM customer accounts. Since
1998, Dan has been one of the primary instructors for the
Database Optimization Workshop. Most recently, Dan is a
member of the DB2 for i Center of Excellence team with IBM
Rochester Lab Services.

Jim Denton is a senior consultant at the IBM DB2 for i Center
of Excellence, where his responsibilities include both teaching
courses and hands on consulting. Jim specializes in SQL
performance, data-centric programming, and database
modernization. Jim started his IBM career in 1981 as an S/38
operating system programmer. Before joining the consulting
team, his key assignments included 10 years as a systems
performance specialist, five years as the lead “JDE on i”
analyst, three years as a consultant at the IBM Benchmark and
Briefing Center in Montpellier France, and a total of 11 years as
an operating system developer, including five years designing
and implementing enhancements to DB2 for i.

Doug Mack is a DB2 for i and Business Intelligence Consultant
in the IBM Power Systems™ Lab Services organization.
Doug's 30+ year career with IBM spans many roles, including
product development, technical sales support, Business
Intelligence Sales Specialist, and DB2 for i Product Marketing
Manager. Doug is a featured speaker at User Group
conferences and meetings, IBM Technical Conferences, and
Executive Briefings.

Row and Column Access Control Support in IBM DB2 for i

Tom McKinley is an IBM Lab Services Consultant working on
DB2 for IBM i in Rochester MN. His main focus is complex
query performance that is associated with Business
Intelligence running on Very Large Databases. He worked as a
developer or performance analyst in the DB area from 1986
until 2006. Some of his major pieces of work include the
Symmetric Multiple processing capabilities of DB2 for IBM i
and Large Object Data types. In addition, he was on the
original team that designed and built the SQL Query Engine.
Before his database work, he worked on Licensed Internal
Code for System 34 and System 36.

Kent Milligan is a senior DB2 consultant on the DB2 for i
Center of Excellence team within the IBM Lab Services and
Training organization. His primary responsibility is helping
software developers use the latest DB2 technologies and port
applications from other databases to DB2 for i. After graduating
from the University of lowa, Kent spent the first eight years of
his IBM career as a member of the DB2 development team in
Rochester.

\
|

WitV

Thanks to the following people for their contributions to this project:

Debra Landon
International Technical Support Organization, Rochester Center

Craig Aldrich, Mark Anderson, Theresa Euler, Scott Forstie, Chad Olstad
IBM Rochester Development

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

» Send your comments in an email to:

redbooks@us.ibm.com
Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

Xiv

Find us on Facebook:
http://www.facebook.com/IBMRedbooks

Follow us on Twitter:
http://twitter.com/ibmredbooks

Look for us on LinkedIn:
http://www.linkedin.com/groups?home=&gid=2130806

Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks

weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm

Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Row and Column Access Control Support in IBM DB2 for i

http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Securing and protecting IBM DB2
data

Recent news headlines are filled with reports of data breaches and cyber-attacks impacting
global businesses of all sizes. The Identity Theft Resource Center! reports that almost 5000
data breaches have occurred since 2005, exposing over 600 million records of data. The
financial cost of these data breaches is skyrocketing. Studies from the Ponemon Institute?
revealed that the average cost of a data breach increased in 2013 by 15% globally and
resulted in a brand equity loss of $9.4 million per attack. The average cost that is incurred for
each lost record containing sensitive information increased more than 9% to $145 per record.

Businesses must make a serious effort to secure their data and recognize that securing
information assets is a cost of doing business. In many parts of the world and in many
industries, securing the data is required by law and subject to audits. Data security is no
longer an option; it is a requirement.

This chapter describes how you can secure and protect data in DB2 for i. The following topics
are covered in this chapter:

» Security fundamentals
» Current state of IBM i security
» DB2 for i security controls

1 http://www.idtheftcenter.org
2 http://www.ponemon.org/

© Copyright IBM Corp. 2014. All rights reserved. 1

http://www.idtheftcenter.org
http://www.ponemon.org

1.1 Security fundamentals

Before reviewing database security techniques, there are two fundamental steps in securing
information assets that must be described:

» First, and most important, is the definition of a company's security policy. Without a
security policy, there is no definition of what are acceptable practices for using, accessing,
and storing information by who, what, when, where, and how. A security policy should
minimally address three things: confidentiality, integrity, and availability.

The monitoring and assessment of adherence to the security policy determines whether
your security strategy is working. Often, IBM security consultants are asked to perform
security assessments for companies without regard to the security policy. Although these
assessments can be useful for observing how the system is defined and how data is being
accessed, they cannot determine the level of security without a security policy. Without a
security policy, it really is not an assessment as much as it is a baseline for monitoring the
changes in the security settings that are captured.

A security policy is what defines whether the system and its settings are secure (or not).

» The second fundamental in securing data assets is the use of resource security. If
implemented properly, resource security prevents data breaches from both internal and
external intrusions. Resource security controls are closely tied to the part of the security
policy that defines who should have access to what information resources. A hacker might
be good enough to get through your company firewalls and sift his way through to your
system, but if they do not have explicit access to your database, the hacker cannot
compromise your information assets.

With your eyes now open to the importance of securing information assets, the rest of this
chapter reviews the methods that are available for securing database resources on IBM i.

1.2 Current state of IBM i security

2

Because of the inherently secure nature of IBM i, many clients rely on the default system
settings to protect their business data that is stored in DB2 for i. In most cases, this means no
data protection because the default setting for the Create default public authority (QCRTAUT)
system value is *CHANGE.

Even more disturbing is that many IBM i clients remain in this state, despite the news
headlines and the significant costs that are involved with databases being compromised. This
default security configuration makes it quite challenging to implement basic security policies.
A tighter implementation is required if you really want to protect one of your company’s most
valuable assets, which is the data.

Traditionally, IBM i applications have employed menu-based security to counteract this default
configuration that gives all users access to the data. The theory is that data is protected by
the menu options controlling what database operations that the user can perform. This
approach is ineffective, even if the user profile is restricted from running interactive
commands. The reason is that in today's connected world there are a multitude of interfaces
into the system, from web browsers to PC clients, that bypass application menus. If there are
no object-level controls, users of these newer interfaces have an open door to your data.

Row and Column Access Control Support in IBM DB2 for i

Some clients using this default configuration have toughened their database security with
exit-point solutions from third-party vendors. IBM i exit points allow a user-written program to
be called every time that a particular interface (for example, FTP) is used or an event occurs
(for example, a profile is created). Security tools that are based on these exit points increase
the level of security on a system by locking down interfaces that are not under the control of
menu-based or application authority. In addition, exit-point solutions allow clients to
implement more granular security controls, such as allowing users access only to the
database during certain hours of the day.

Although exit-point solutions can provide great benefits, they are not an alternative to
object-level control of your databases. Exit-point solutions help secure interfaces, but they do
not completely protect the data that is stored in your DB2 objects. Exit points do not exist for
every data access interface on the system. Therefore, if an application starts using an
unprotected interface, the only thing protecting your data is object-level access control. When
your security implementation totally relies on exit points, then it is also important to track any
new data interfaces that appear as IBM delivers new releases and products to ensure that
your exit-point solution provides coverage for those new interfaces.

An exit-point solution is a good option for databases with security holes that are caused by a
reliance on the default security setup or menu-based control. However, your security work
should not stop there. Instead, you must continue to work on a complete database security
solution by controlling data access at the object level.

1.3 DB2 for i security controls

As described in 1.2, “Current state of IBM i security” on page 2, object-level controls on your
DB2 objects are a critical success factor in securing your business data. Although database
object-level security is a strong security feature, some clients have found that object-level
security does not have the granularity that is required to adhere to regulatory or compliance
policies. A user that is granted object-level access to a DB2 table has the authority to view all
of the rows and values in that table.

As shown in Figure 1-1, it is an all-or-nothing access to the rows of a table.

The Business Problem...

Database

Access: ALL or NOTHING Table

User

No easy way to restrict access to a specific set of rows

Figure 1-1 All-or-nothing access to the rows of a table

Chapter 1. Securing and protecting IBM DB2 data 3

Many businesses are trying to limit data access to a need-to-know basis. This security goal
means that users should be given access only to the minimum set of data that is required to
perform their job. Often, users with object-level access are given access to row and column
values that are beyond what their business task requires because that object-level security
provides an all-or-nothing solution. For example, object-level controls allow a manager to
access data about all employees. Most security policies limit a manager to accessing data
only for the employees that they manage.

1.3.1 Existing row and column control

4

Some IBM i clients have tried augmenting the all-or-nothing object-level security with SQL
views (or logical files) and application logic, as shown in Figure 1-2. However,
application-based logic is easy to bypass with all of the different data access interfaces that
are provided by the IBM i operating system, such as Open Database Connectivity (ODBC)
and System i Navigator.

Using SQL views to limit access to a subset of the data in a table also has its own set of
challenges. First, there is the complexity of managing all of the SQL view objects that are
used for securing data access. Second, scaling a view-based security solution can be difficult
as the amount of data grows and the number of users increases.

Even if you are willing to live with these performance and management issues, a user with
*ALLOBJ access still can directly access all of the data in the underlying DB2 table and easily
bypass the security controls that are built into an SQL view.

User with
*ALLOBJ access

Regular User Application Logic

——

Data is accessible even
when it is not required
to perform job tasks

Figure 1-2 Existing row and column controls

Row and Column Access Control Support in IBM DB2 for i

1.3.2 New controls: Row and Column Access Control

Based on the challenges that are associated with the existing technology available for
controlling row and column access at a more granular level, IBM delivered new security
support in the IBM i 7.2 release; this support is known as Row and Column Access Control
(RCAC).

The new DB2 RCAC support provides a method for controlling data access across all
interfaces and all types of users with a data-centric solution. Moving security processing to
the database layer makes it easier to build controls that meet your compliance policies. The
RCAC support provides an additional layer of security that complements object-level
authorizations to limit data access to a need-to-know basis. Therefore, it is critical that you
first have a sound object-level security implementation in place.

Chapter 1. Securing and protecting IBM DB2 data 5

6 Row and Column Access Control Support in IBM DB2 for i

Roles and separation of duties

One of the primary objectives of row and column access control (RCAC) is to create data
security policies that control and govern user access to data and limit the data access of DB2
designers and administrators to only the minimum that is required to do their jobs.

To accomplish these tasks, RCAC engineers devised a set of functional roles that, as a group,
implement effectively data access requirements and also limit the span of control of each role
so that each role is given only the authorities that are needed to perform its specific set of
tasks.

This chapter describes the concepts of roles and separation of duties on DB2 for i and covers
the following topics:

» Roles
» Separation of duties

© Copyright IBM Corp. 2014. All rights reserved. 7

2.1 Roles

Traditionally, data access roles are defined in a binary way, where access to the data is either
not permitted or access to the data is permitted. A full access capability can also be
instantiated by the *ALLOBJ special authority, either explicitly or implicitly, for the security
officer. If you hold the role of security officer, or have all “ALLOBJ special authority, you have
access to all the data, with no exceptions. Unfortunately, this might not meet the
organization’s requirements for limiting access to data or separation of duties.

To assist with defining roles and the separation of duties with appropriate authority, IBM i
provides function usage IDs. A function usage ID implements granular security controls rather
than granting users powerful special authorities, such as all object, job control, or service.

Roles are divided among the following DB2 functions and their corresponding function usage
IDs:

» DDM and IBM DRDA® application server access: QIBM_DB_DDMDRDA
Toolbox application server access: QIBM_DB_ZDA

Database Administrator function: QIBM_DB_SQLADM

Database Information function: QIBM_DB_SYSMON

S
S
S
» Security Administrator function: QIBM_DB_SECADM

2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA

The QIBM_DB_DDMDRDA function usage ID restricts access to the DDM and DRDA
application server (QRWTSRVR). This function usage ID provides an easy alternative (rather
than writing an exit program) to control access to DDM and DRDA from the server side. The
function usage IDs ship with the default authority of YALLOWED. The security officer can
easily deny access to specific users or groups.

This is an alternative to a User Exit Program approach. No coding is required, it is easy to
change, and it is auditable.

2.1.2 Toolbox application server access: QIBM_DB_ZDA

8

The QIBM_DB_ZDA function usage ID restricts access to the optimized server that handles
DB2 requests from clients (QZDASOINIT and QZDASSINIT). Server access is used by the
ODBC, OLE DB, and .NET providers that ship with IBM i Access for Windows and JDBC
Toolbox, Run SQL scripts, and other parts of System i Navigator and Navigator for i Web
console.

This function usage ID provides an easy alternative (rather than writing an exit program) to
control access to these functions from the server side. The function usage IDs ship with the
default authority of *ALLOWED. The security officer can easily deny access to specific users
or groups.

This is an alternative to a User Exit Program approach. No coding is required, it is easy to
change, and it is auditable.

Row and Column Access Control Support in IBM DB2 for i

2.1.3 Database Administrator function: QIBM_DB_SQLADM

The Database Administrator function (QIBM_DB_SQLADM) is needed whenever a user is
analyzing and viewing SQL performance data. Some of the more common database
administrator functions include displaying statements from the SQL Plan Cache, analyzing
SQL Performance Monitors and SQL Plan Cache Snapshots, and displaying the SQL details
of a job other than your own.

The Database Administrator function provides an alternative to granting *JOBCTL, but simply
having the Database Administrator authorization does not carry with it all the needed object
authorities for every administration task. The default behavior is to deny authorization.

To perform database administrator tasks that are not related to performance analysis, you
must refer to the details of the task to determine its specific authorization requirements. For
example, to allow a database administrator to reorganize a table, the DBA must have
additional object authorities to the table that are not covered by QIBM_DB_SQLADM.

Granting QIBM_DB_SQLADM function usage

Only the security administrator (*SECADM) is allowed to change the list of users that can
perform Database Administration functions.

2.1.4 Database Information function: QIBM_DB_SYSMON

The Database Information function (QIBM_DB_SYSMON) provides much less authority than
Database Administrator function. Its primary use allows a user to examine high-level
database properties.

For example, a user that does not have *JOBCTL or QIBM_DB_SQLADM can still view the
SQL Plan Cache properties if granted authority to QIBM_DB_SYSMON. Without granting this
authority, the default behavior is to deny authorization.

Granting QIBM_DB_SYSMON function usage

Only the security administrator (*SECADM) is allowed to change the list of users that can
perform Database Information functions.

2.1.5 Security Administrator function: QIBM_DB_SECADM

The Security Administrator function (QIBM_DB_SECADM) grants authorities, revokes
authorities, changes ownership, or changes the primary group without giving access to the
object or, in the case of a database table, to the data that is in the table or allowing other
operations on the table.

Only those users with the QIBM_DB_SECADM function can administer and manage RCAC
rules. RCAC can be used to prevent even users with *ALLOBJ authority from freely accessing
all the data in a protected database. These users are excluded from data access unless they
are specifically authorized by RCAC. Without granting this authority, the default behavior is to
deny authorization.

Granting QIBM_DB_SECADM function usage

Only QSECOFR or a user with *SECADM special authority can grant the
QIBM_DB_SECADM function usage to a user or group.

Chapter 2. Roles and separation of duties 9

2.1.6 Change Function Usage CL command

The following CL commands can be used to work with, display, or change function usage IDs:

» Work Function Usage (WRKFCNUSG)
» Change Function Usage (CHGFCNUSG)
» Display Function Usage (DSPFCNUSG)

For example, the following CHGFCNUSG command shows granting authorization to user
HBEDOYA to administer and manage RCAC rules:

CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(HBEDOYA) USAGE(*ALLOWED)

2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view

The FUNCTION_USAGE view contains function usage configuration details. Table 2-1
describes the columns in the FUNCTION_USAGE view.

Table 2-1 FUNCTION_USAGE view

Column name | Data type Description

FUNCTION_ID | VARCHAR(30) | ID of the function.

USER_NAME VARCHAR(10) | Name of the user profile that has a usage setting for this
function.

USAGE VARCHAR(7) Usage setting:
» ALLOWED: The user profile is allowed to use the function.
» DENIED: The user profile is not allowed to use the function.

USER_TYPE VARCHAR(5) Type of user profile:
» USER: The user profile is a user.
» GROUP: The user profile is a group.

To discover who has authorization to define and manage RCAC, you can use the query that is
shown in Example 2-1.

Example 2-1 Query to determine who has authority to define and manage RCAC

SELECT function_id,

user_name,
usage,
user_type

FROM function_usage

WHERE function_id="QIBM_DB_SECADM’

ORDER BY user_name;

2.2 Separation of duties

10

Separation of duties helps businesses comply with industry regulations or organizational
requirements and simplifies the management of authorities. Separation of duties is commonly
used to prevent fraudulent activities or errors by a single person. It provides the ability for
administrative functions to be divided across individuals without overlapping responsibilities,
so that one user does not possess unlimited authority, such as with the *ALLOBJ authority.

Row and Column Access Control Support in IBM DB2 for i

For example, assume that a business has assigned the duty to manage security on IBM i to
Theresa. Before release IBM i 7.2, to grant privileges, Theresa had to have the same
privileges Theresa was granting to others. Therefore, to grant *USE privileges to the
PAYROLL table, Theresa had to have *OBJMGT and *USE authority (or a higher level of
authority, such as *ALLOBJ). This requirement allowed Theresa to access the data in the
PAYROLL table even though Theresa's job description was only to manage its security.

In IBM i 7.2, the QIBM_DB_SECADM function usage grants authorities, revokes authorities,
changes ownership, or changes the primary group without giving access to the object or, in
the case of a database table, to the data that is in the table or allowing other operations on the
table.

QIBM_DB_SECADM function usage can be granted only by a user with *“SECADM special
authority and can be given to a user or a group.

QIBM_DB_SECADM also is responsible for administering RCAC, which restricts which rows
a user is allowed to access in a table and whether a user is allowed to see information in
certain columns of a table.

A preferred practice is that the RCAC administrator has the QIBM_DB_SECADM function
usage ID, but absolutely no other data privileges. The result is that the RCAC administrator
can deploy and maintain the RCAC constructs, but cannot grant themselves unauthorized
access to data itself.

Table 2-2 shows a comparison of the different function usage IDs and *JOBCTL authority to
the different CL commands and DB2 for i tools.

Table 2-2 Compatrison of the different function usage IDs and *JOBCTL authority

User action s s =z
(] (=] (]
< < =
2 |3 |2
o | |o 2
4 |o |o [m |8
5 19 |8 |9 |£
@ (= |= |= |2
© (@ |@ (@ |4
¥ o o o 2
SET CURRENT DEGREE (SQL statement) X X
CHGQRYA command targeting a different user's job X X
STRDBMON or ENDDBMON commands targeting a different user's job X X
STRDBMON or ENDDBMON commands targeting a job that matches the current user X X X X
QUSRJOBI() API format 900 or System i Navigator's SQL Details for Job X X X
Visual Explain within Run SQL scripts X X X X
Visual Explain outside of Run SQL scripts X X
ANALYZE PLAN CACHE procedure X X
DUMP PLAN CACHE procedure X X
MODIFY PLAN CACHE procedure X X
MODIFY PLAN CACHE PROPERTIES procedure (currently does not check authority) X X
CHANGE PLAN CACHE SIZE procedure (currently does not check authority) X X

Chapter 2. Roles and separation of duties 11

User action

*JOBCTL

QIBM_DB_SECADM

DB_SQLADM

QIBM_DB_SYSMON

No Authority

START PLAN CACHE EVENT MONITOR procedure

END PLAN CACHE EVENT MONITOR procedure

END ALL PLAN CACHE EVENT MONITORS procedure

X | X | X

x| x| | aBm

Work with RCAC row permissions (Create, modify, or delete)

Work with RCAC column masks (Create, modify, or delete)

Change Object Owner (CHGOBJOWN) CL command

Change Object Primary Group (CHGOBJPGP) CL command

Grant Object Authority (GRTOBJAUT) CL command

Revoke Object Authority (RVKOBJAUT) CL command

Edit Object Authority (EDTOBJAUT) CL command

Display Object Authority (DSPOBJAUT) CL command

Work with Objects (WRKOBJ) CL command

Work with Libraries (WRKLIB) CL command

Add Authorization List Entry (ADDAUTLE) CL command

Change Authorization List Entry (CHGAUTLE) CL command

Remove Authorization List Entry (RMVAUTLE) CL command

Retrieve Authorization List Entry (RTVAUTLE) CL command

Display Authorization List (DSPAUTL) CL command

Display Authorization List Objects (DSPAUTLOBJ) CL command

Edit Authorization List (EDTAUTL) CL command

Work with Authorization Lists (WRKAUTL) CL command

XXX XXX XX XXX XXX X X]| X]| X

12 Row and Column Access Control Support in IBM DB2 for i

Row and Column Access Control

This chapter describes what Row and Column Access Control (RCAC) is, its components,
and then illustrates RCAC with a simple example.

The following topics are covered in this chapter:

Explanation of RCAC and the concept of access control

Special registers and built-in global variables
VERIFY_GROUP_FOR_USER function

Establishing and controlling accessibility by using the RCAC rule text
SELECT, INSERT, and UPDATE behavior with RCAC

Human resources example

vyVvVyVvYyVvYyYyvyy

© Copyright IBM Corp. 2014. All rights reserved. 13

3.1 Explanation of RCAC and the concept of access control

RCAC limits data access to those users who have a business “need to know”. RCAC makes it
easy to set up a rich and robust security policy that is based on roles and responsibilities.
RCAC functionality is made available through the optional, no charge feature called “IBM
Advanced Data Security for i”, also known as option 47 of IBM i 7.2.

In DB2 for i, RCAC is implemented using two different approaches that address the
shortcomings of traditional control methods and mechanisms:

» Row permissions
» Column masks

Another benefit of RCAC is that no database user is automatically exempt from the control.
Users with *ALLOBJ authority can no longer freely access all of the data in the database
unless they have the appropriate permission to do so. The ability to manage row permissions
and column masks rests with the database security administrator. The RCAC definitions,
enablement, and activation are controlled by SQL statements.

Row permissions and column masks require virtually no application changes. RCAC is based
on specific rules that are transparent to existing applications and SQL interfaces.
Enforcement of your security policy does not depend on how applications or tools access the
data.

RCAC also facilitates multi-tenancy, which means that several independent customers or
business units can share a single database table without being aware of one another. The
RCAC row permission ensures each user sees only the rows they are entitled to view
because the enforcement is handled by DB2 and not the application logic.

Label-based access control (LBAC): RCAC and LBAC are not the same thing. LBAC is a
security model that is primarily intended for government applications. LBAC requires that
data and users be classified with a fixed set of rules that are implemented. RCAC is a
general-purpose security model that is primarily intended for commercial customers. You
can use RCAC to create your own security rules, which in turn allows for more flexibility.

3.1.1 Row permission and column mask definitions

14

The following sections define row permission and column masks.

Row permission

A row permission is a database object that manifests a row access control rule for a specific
table. It is essentially a search condition that describes which rows you can access. For
example, a manager can see only the rows that represent his or her employees.

Row and Column Access Control Support in IBM DB2 for i

The SQL CREATE PERMISSION statement that is shown in Figure 3-1 is used to define and
initially enable or disable the row access rules.

L Names the row permission for row access control
CREATE PERMISSION <permission name>

PR Identifies the table on which the row permission is created

ON <table name>

/ Specifies an optional correlation name that can be used within search-condition

AS <correlation name>

/ Indicates that a row permission is created
/ Specifies a condition that can be true, false, or unknown

WHERE </ogic to test: user and/or group and/or column value>

FOR ROWS

Specifies that the row permission applies to all references of the table

ENFORCED FOR ALL ACCESS

/ Specifies that the row permission is to be initially enabled
ENABLE / Specifies that the row permission is to be initially disabled
DISABLE;

Figure 3-1 CREATE PERMISSION SQL statement

Column mask

A column mask is a database object that manifests a column value access control rule for a
specific column in a specific table. It uses a CASE expression that describes what you see
when you access the column. For example, a teller can see only the last four digits of a tax
identification number.

Chapter 3. Row and Column Access Control 15

Column masks replace the need to create and use views to implement access control. The
SQL CREATE MASK statement that is shown in Figure 3-2 is used to define and initially enable
or disable the column value access rules.

Names the column mask for column access control

CREATE MASK <mask name>

Identifies the table on which the column mask is created

ON <table name>

Specifies an optional correlation name that can be used within case-expression

AS <correlation name>

Identifies the column to which the mask applies

FOR COLUMN <column name>

/ Specifies a CASE expression to be evaluated

RETURN <Jogic to test: user and/or group and/or column values>
<logic to mask or return column value>

/ Specifies that the column mask is to be initially enabled
ENABLE '

- Specifies that the column mask is to be initially disabled
DISABLE; |

Figure 3-2 CREATE MASK SQL statement

3.1.2 Enabling and activating RCAC

16

You can enable, disable, or regenerate row permissions and column masks by using the SQL
ALTER PERMISSION statement and the SQL ALTER MASK statement, as shown in Figure 3-3 on
page 17.

Enabling and disabling effectively turns on or off the logic that is contained in the row
permission or column mask. Regenerating causes the row permission or column mask to be
regenerated. The row permission definition in the catalog is used and existing dependencies
and authorizations, if any, are retained. The row permission definition is reevaluated as
though the row permission were being created. Any user-defined functions (UDFs) that are
referenced in the row permission must be resolved to the same secure UDFs as were
resolved during the original row permission or column mask creation. The regenerate option
can be used to ensure that the RCAC logic is intact and still valid before any user attempts to
access the table.

Note: An exclusive lock is required on the table object to perform the alter operation. All
open cursors must be closed.

Row and Column Access Control Support in IBM DB2 for i

/| Names the row permission for row access control |

ALTER PERMISSIO(N <permission name>

é/////| Specifies that the row permission is to be enabled |
ENABLE pE— Cies hat ission s to be disabled |
DISABLE pecifies that the row permission is to be disable

REGENERATE; <\| Specifies that the row permission is to be regenerated |

//I Names the column mask for column access control |

ALTER MASK <mask name>

é//AI Specifies that the column mask is to be enabled |

ENABLE /I Specifies that the column mask is to be disabled |

DISABLE <«— |

REGENERATE; I Specifies that the column mask is to be regenerated |

Figure 3-3 ALTER PERMISSION and ALTER MASK SQL statements

You can activate and deactivate RCAC for new or existing tables by using the SQL ALTER

TABLE statement (Figure 3-4). The ACTIVATE or DEACTIVATE clause must be the option that is
specified in the statement. No other alterations are permitted at the same time. The activating

and deactivating effectively turns on or off all RCAC processing for the table. Only enabled

row permissions and column masks take effect when activating RCAC.

Note: An exclusive lock is required on the table object to perform the alter operation. All

open cursors must be closed.

Identifies the table to be altered

ALTER TABLE <table name>

Specifies to activate row access control for the table

ACTIVATE ROW ACCESS CONTROL
DEACTIVATE ROW ACCESS CONTROL

Specifies to deactivate row access control for the table

/| Specifies to activate column access control for the table

ACTIVATE COLUMN ACCESS CONTROL
DEACTIVATE COLUMN ACCESS CONTROL;

\ Specifies to deactivate column access control for the table

Figure 3-4 ALTER TABLE SQL statement

Chapter 3. Row and Column Access Control

17

When row access control is activated on a table, a default permission is established for that
table. The name of this permission is QIBM_DEFAULT_ <table-name>_<schema-name>.
This default permission contains a simple piece of logic (0=1) which is never true. The default
permission effectively denies access to every user unless there is a permission defined that
allows access explicitly. If row access control is activated on a table, and there is no
permission that is defined, no one has permission to any rows. All queries against the table
produce an empty set.

It is possible to define, create, and enable multiple permissions on a table. Logically, all of the
permissions are ORed together to form a comprehensive test of the user's ability to access
the data. A column can have only one mask that is defined over it. From an implementation
standpoint, it does not matter if you create the column masks first or the row permissions first.

Note: If a user does not have permission to access the row, the column mask logic is not
invoked.

3.2 Special registers and built-in global variables

This section describes how you can use special registers and built-in global variables to
implement RCAC.

3.2.1 Special registers

18

A special register is a storage area that is defined for an application process by DB2 and is
used to store information that can be referenced in SQL statements. A reference to a special
register is a reference to a value that is provided by the current server.

IBM DB2 for i supports four different special registers that can be used to identify what user
profiles are relevant to determining object authorities in the current connection to the server.
SQL uses the term runtime authorization ID, which corresponds to a user profile on

DB2 for i. Here are the four special registers:

» USER is the runtime user profile that determines the object authorities for the current
connection to the server. It has a data type of VARCHAR(18). This value can be changed
by the SQL statement SET SESSION AUTHORIZATION.

» SESSION_USER is the same as the USER register, except that it has a data type of
VARCHAR(128).

» CURRENT USER was added in IBM i 7.2 and is similar to the USER register, but it has
one important difference in that it also reports adopted authority. High-level language
programs and SQL routines such as functions, procedures, and triggers can optionally be
created to run using either the caller's or the owner's user profile to determine data
authorities. For example, an SQL procedure can be created to run under the owner's
authority by specifying SET OPTION USRPRF=*QOWNER. This special register can also be
referenced as CURRENT_USER. It has a data type of VARCHAR(128).

» SYSTEM_USER is the user profile that initiates the connection to the server. It is not used
by RCAC, but is included here for completeness. Many jobs, including the QZDASOINIT
prestarted jobs, initially connect to the server with a default user profile and then change to
use some other user profile. SYSTEM_USER reports this value, typically QUSER for a
QZDASOINIT job. It has a data type of VARCHAR(128).

In addition to these four special registers, any of the DB2 special registers can be referenced
as part of the rule text.

Row and Column Access Control Support in IBM DB2 for i

Table 3-1 summarizes these special registers and their values.

Table 3-1 Special registers and their corresponding values

Special register

Corresponding value

USER or
SESSION_USER

The effective user of the thread excluding adopted authority.

CURRENT_USER

The effective user of the thread including adopted authority. When no adopted
authority is present, this has the same value as USER.

SYSTEM_USER

The authorization ID that initiated the connection.

Figure 3-5 shows the difference in the special register values when an adopted authority is

used:

» A user connects to the server using the user profile ALICE.
» USER and CURRENT USER initially have the same value of ALICE.

» ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE
and was created to adopt JOE's authority when it is called.

» While the procedure is running, the special register USER still contains the value of ALICE
because it excludes any adopted authority. The special register CURRENT USER
contains the value of JOE because it includes any adopted authority.

» When proc1 ends, the session reverts to its original state with both USER and CURRENT
USER having the value of ALICE.

Signed on as ALICE

USER = ALICE

CALL procl

Procl:
Owner = JOE

USER = ALICE

USER = ALICE

CURRENT USER = ALICE

SET OPTION USRPRF=*OWNER

CURRENT USER = JOE

CURRENT USER = ALICE

Figure 3-5 Special registers and adopted authority

3.2.2 Built-in global variables

Built-in global variables are provided with the database manager and are used in SQL
statements to retrieve scalar values that are associated with the variables.

IBM DB2 for i supports nine different built-in global variables that are read only and
maintained by the system. These global variables can be used to identify attributes of the
database connection and used as part of the RCAC logic.

Chapter 3. Row and Column Access Control

19

Table 3-2 lists the nine built-in global variables.

Table 3-2 Built-in global variables

Global variable Type Description

CLIENT_HOST VARCHAR(255) | Host name of the current client as returned by the system
CLIENT_IPADDR VARCHAR(128) | IP address of the current client as returned by the system
CLIENT_PORT INTEGER Port used by the current client to communicate with the server
PACKAGE_NAME VARCHAR(128) | Name of the currently running package

PACKAGE_SCHEMA VARCHAR(128) | Schema name of the currently running package
PACKAGE_VERSION VARCHAR(64) Version identifier of the currently running package
ROUTINE_SCHEMA VARCHAR(128) | Schema name of the currently running routine
ROUTINE_SPECIFIC_NAME | VARCHAR(128) | Name of the currently running routine

ROUTINE_TYPE CHAR(1) Type of the currently running routine

3.3 VERIFY_GROUP_FOR_USER function

20

The VERIFY_GROUP_FOR_USER function was added in IBM i 7.2. Although it is primarily
intended for use with RCAC permissions and masks, it can be used in other SQL statements.
The first parameter must be one of these three special registers: SESSION_USER, USER, or
CURRENT_USER. The second and subsequent parameters are a list of user or group
profiles. Each of these values must be 1 - 10 characters in length. These values are not
validated for their existence, which means that you can specify the names of user profiles that
do not exist without receiving any kind of error.

If a special register value is in the list of user profiles or it is a member of a group profile
included in the list, the function returns a long integer value of 1. Otherwise, it returns a value
of 0. It never returns the null value.

Here is an example of using the VERIFY_GROUP_FOR_USER function:

1. There are user profiles for MGR, JANE, JUDY, and TONY.

2. The user profile JANE specifies a group profile of MGR.

3. If a user is connected to the server using user profile JANE, all of the following function
invocations return a value of 1:

VERIFY_GROUP_FOR_USER (CURRENT USER, 'MGR')
VERIFY_GROUP_FOR_USER (CURRENT USER, 'JANE', 'MGR')
VERIFY_GROUP_FOR_USER (CURRENT USER, 'JANE', 'MGR', 'STEVE')

The following function invocation returns a value of 0:
VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JUDY', 'TONY')

Row and Column Access Control Support in IBM DB2 for i

3.4 Establishing and controlling accessibility by using the
RCAC rule text

When defining a row permission or column mask, the “magic” of establishing and controlling
accessibility comes from the rule text. The rule text represents the search criteria and logic
that is implemented by the database engine.

In the case of a row permission, the rule text is the “test” of whether the user can access the
row. If the test result is true, the row can be accessed. If the test result is false, the row
essentially does not exist for the user. From a set-at-a-time perspective, the permission
defines which rows can be part of the query result set, and which rows cannot.

In the case of a column mask, the rule text is both the test of whether the user can see the
actual column value, and it is the masking logic if the user cannot have access to actual
column value.

For a simple example of implementing row permissions and column masks, see 3.6, “Human
resources example” on page 22.

In general, almost any set-based, relational logic is valid. For the row permission, the search
condition follows the same rules that are used by the search condition in a WHERE clause.

For the column mask, the logic follows the same rules as the CASE expression. The result
data type, length, null attribute, and CCSID of the CASE expression must be compatible with
the data type of the column. If the column does not allow the null value, the result of the CASE
expression cannot be the NULL value. The application or interface making the data access
request is expecting that all of the column attributes and values are consistent with the
original definition, regardless of any masking.

For more information about what is permitted, see the “Database programming” topic of the
IBM i 7.2 Knowledge Center, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/rzahg/rzahgdbp.htm?1ang
=en

One of the first tasks in either the row permission or the column mask logic is to determine
who the user is, and whether they have access to the data. Elegant methods to establish the
identity and attributes of the user can be employed by using the special registers, global
variables, and the VERIFY function. After the user's identity is established, it is a simple
matter of allowing or disallowing access by using true or false testing. The examples that are
included in this paper demonstrate some of the more common and obvious techniques.

More sophisticated methods can employ existential, day of year / time of day, and relational
comparisons with set operations. For example, you can use a date master or date dimension
table to determine whether the current date is a normal business day. If the current date is a
valid business day, then access is allowed. If the current date is not a business day (for
example a weekend day or holiday), access is denied. This test can be accomplished by
performing a lookup using a subquery, such as the one that is shown in Example 3-1.

Example 3-1 Subquery that is used as part of the rule

CURRENT DATE IN (SELECT D.DATE_KEY
FROM DATE_MASTER D
WHERE D.BUSINESS DAY = 'Y')

Chapter 3. Row and Column Access Control 21

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?lang=en

Given that joins and subqueries can be used to perform set-based operations against existing
data that is housed in other objects, almost any relational test can be constructed. If the data
in the objects is manipulated over time, the RCAC test logic (and user query results) can be
changed without modifying the actual row permission or column mask. This includes moving
a user from one group to another or changing a column value that is used to allow or disallow
access. For example, if Saturday is now a valid business day, only the BUSINESS_DAY value
in the DATE_MASTER must be updated, not the permission logic. This technique can
potentially avoid downtime because of the exclusive lock that is needed on the table when
adding or changing RCAC definitions.

3.5 SELECT, INSERT, and UPDATE behavior with RCAC

RCAC provides a database-centric approach to determining which rows can be accessed and
what column values can be seen by a specific user. Given that the control is handled by DB2
internally, every data manipulation statement is under the influence of RCAC, with no
exceptions. When accessing the table, the SELECT statements, searched UPDATE statements,
and searched DELETE statements implicitly and transparently contain the row permission and
the column mask rule text. This means that the data set can be logically restricted and
reduced on a user by user basis.

Furthermore, DB2 prevents an INSERT statement from inserting a row or an UPDATE statement
from modifying a row such that the current user cannot be permitted to access it. You cannot
create a situation in which the data you inserted or changed is no longer accessible to you.

For more information and considerations about data movement in an RCAC environment, see
Chapter 6, “Additional considerations” on page 85.

Note: DB2 does not provide any indication back to the user that the data set requested
was restricted or reduced by RCAC. This is by design, as it helps minimize any changes to
the applications accessing the data.

3.6 Human resources example

22

This section illustrates with a simple example the usage of RCAC on a typical Human
Resources application (schema). In this sample Human Resources schema, there is an
important table that is called EMPLOYEES that contains all the information that is related to
the employees of the company. Among the information that normally is stored in the
EMPLOYEES table, there is some sensitive information that must be hidden from certain
users:

» Tax_Id information
» YEAR of the birth date of the employee (hiding the age of the employee)

In this example, there are four different types of users:

» Employees

» Managers

» Human Resources Manager

» Consultant/IT Database Engineer (In this example, this person is an external consultant
that is not an employee of the company.)

The following sections describe step-by-step what is needed to be done to implement RCAC
in this environment.

Row and Column Access Control Support in IBM DB2 for i

3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants

The consultant must have authority to implement RCAC, so you must use one of the function
IDs that are provided in DB2 for i (see 2.1.5, “Security Administrator function:
QIBM_DB_SECADM” on page 9). Complete the following steps:

1. Run the Change Functional Usage (CHGFCNUSG) CL commands that are shown in
Example 3-2. These commands must be run by someone that has the *SECOFR
authority.

Example 3-2 Function ID required to implement RCAC

CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(HBEDOYA) USAGE(*ALLOWED)
CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(MCAIN) USAGE(*ALLOWED)

2. There is a way to discover which user profiles have authorization to implement RCAC. This
can be done by running the SQL statement that is shown in Example 3-3.

Example 3-3 Verifying what user profiles have authorization to implement RCAC

SELECT function_id,
user_name,
usage,
user_type
FROM gsys2.function_usage
WHERE function_id ="QIBM_DB_SECADM’

ORDER BY user_name;

3. The result of the SQL statement is shown in Figure 3-6. In this example, either MCAIN or
HBEDOYA can implement RCAC in the Human Resources database.

FUNCTION_ID USER_NAME USAGE USER_TYPE
QIBM_DB_SECADM |HBEDOYA ALLOWED |USER
QIBM_DB_SECADM MCAIN ALLOWED |USER

Figure 3-6 Result of the function ID query

3.6.2 Creating group profiles for the users and their roles

Assuming that all the employees have a valid user profile, the next step is to create group
profiles to group the employees. Complete the following steps:

1. In this example, there are three group profiles:

— HR (Human Resource personnel)
— MGR (Managers)
— EMP (Employees)

These are created by creating user profiles with no password. Example 3-4 shows the
Create User Profile (CRTUSRPRF) CL commands that you use to create these group profiles.
Example 3-4 Creating group profiles

CRTUSRPRF USRPRF(EMP) PASSWORD() TEXT('Employees Group')
CRTUSRPRF USRPRF(MGR) PASSWORD() TEXT('Managers Group')
CRTUSRPRF USRPRF(HR) PASSWORD() TEXT('Human Resources Group')

Chapter 3. Row and Column Access Control 23

2. You now must assign users to a group profile. Employees go in to the EMP group profile,
Managers go into the MGR group profile, and Human Resource employees go into the HR
group profile. For simplicity, this example selects one employee (DSSMITH), one manager
(TQSPENSER), and one HR analyst (VGLUCCHESS).

Note: Neither of the consultants (MCAIN and HBEDQOYA) belong to any group profile.

3.6.3 Demonstrating data access without RCAC

Before implementing RCAC, run some simple SQL statements to demonstrate data access
without RCAC. Complete the following steps:

1. The first SQL statement, which is shown in Example 3-5, basically counts the total number
of rows in the EMPLOYEES table.

Example 3-5 Counting the number of employees

SELECT COUNT(*) as ROW_COUNT FROM HR_SCHEMA.EMPLOYEES;

The result of this query is shown in Figure 3-7, which is the total number of employees of
the company.

ROW_COUNT
42

Figure 3-7 Number of employees

2. Run a second SQL statement (shown in Example 3-6) that lists the employees. If you have
read access to the table, you see all the rows no matter who you are.

Example 3-6 Displaying the information of the Employees

SELECT EMPLOYEE_ID,
LAST_NAME,
JOB_DESCRIPTION,
DATE_OF BIRTH,
TAX_ID,

USER_ID,
MANAGER_OF EMPLOYEE
FROM HR_SCHEMA. EMPLOYEES

24 Row and Column Access Control Support in IBM DB2 for i

The result of this query is shown in Figure 3-8.

EMPLOYEE_ID | LAST_NAME JOB_DESCRIFTION | DATE_OF_BIRTH | TAX_ID USER_ID MANAGER_OF EMPLOYEE
0ooo10 HAAS MANAGER 1935-08-24 123-45-3978 CIHAAS MLTHOMPSOM
200011 HEMMINGER HEREP 1933-08-14 123-45-3979 DJHEMMINGE CIHAAS
200121 ORLANDO HEREP 1942-10-18 123-45-2168 GORLANDO CIHAAS
00120 O'CONMELL HEREP 1942-10-18 123-45-2167 SOCONMELL CIHAAS
00110 LUCCHESSI HREREP 1925-11-02 123-45-3490 WGELUCCHESS |CIHAAS
000020 THOMPSON BIGBOSS 18458-02-02 123-45-3476 MLTHOMPSON — [MLTHOMPSON
00130 QUINTAMNA AMALYST 1925-09-15 123-45-4578 DMQUINTANA, SAKWWAN
000140 MICHOLLS AMALYST 1946-01-19 123-45-1793 HANICHOLLS SAKWWAN
200141 MATE ANALYST 1946-01-19 123-45-1794 KNNATZ SAKWWAN
000030 HAVAN MANAGER 1841-05-11 123-45-4738 SARMAN MLTHOMPSON
00150 ADAMSON DESIGNER 1947-05-17 123-45-4510 BADAMSON IFSTERN
000200 BROWN DESIGNER 1941-05-29 123-45-4501 DEROWWN IFSTERN
000160 PLANEA, DESIGNER 19595-04-12 123-45-3782 ERPIANKA, IFSTERN
000060 STERN MANAGER 1945-07-07 123-45-6423 IFSTERN MLTHOMPSOMN
0oo180 WALKER DESIGNER 1952-06-25 123-45-2986 JHWALKER IFSTERN
000220 LUTZ DESIGNER 1948-03-19 123-45-0672 JKLUTZ IFSTERN
200171 AMAMOTO DESIGNER 1951-01-09 123-45-2891 Y AMAMOTO IFSTERN
00170 YOSHIMURA DESIGNER 1951-01-02 123-45-2830 MIYOSHIMUR IFSTERN
0oo1&0 SCOUTTEN DESIGNER 1948-02-1 123-45-1682 MSSCOUTTEN IFSTERM
200221 JOHM DESIGNER 1948-03-19 123-45-6730 REJOHN IFSTERN
000210 JONES DESIGNER 1993-02-23 123-45-0942 WTJONES IFSTERN
000250 ShITH CLERK 1935-11-12 123-45-0961 DEEMITH EDPULASKI
000070 PULASK] MANAGER 1953-05-26 123-45-7831 EDPULASKI MLTHOMPSON
000230 JEFFERSON CLERK 1935-05-30 123-45-2094 JJJEFFERSO EDPULASKI
000270 PEREZ CLERK 1993-05-26 123-45-5001 MLPEREZ EDPULASKI
200241 MONTEVERDE CLERK 1954-03-31 123-45-3781 RMMONTEYER |EDPULASK]
000240 MARIND CLERK 1854-03-31 123-45-3780 SMMARING EDPULASK]
000260 JOHNSON CLERK 1936-10-05 123-45-8953 SPJOHNSOMN EDPULASKI
000050 GEYER MANAGER 1925-09-18 123-45-6789 JEGEYER MLTHOMPSOMN
000250 SCHMEIDER OPERATOR 1936-03-28 123-45-8997 ERSCHNEIDE EWHENDERSO
200281 SCHWARTZ OPERATOR 1936-03-28 123-45-8998 ERSCHWARTZ |EWHEMDERSO
0ooosa HENDERSOM MANAGER 1941-05-15 123-45-5498 EWHENDERSO |MLTHOMPSON
000230 PARKER OPERATOR 1846-07-09 123-45-4502 JEPARKER EWHENDERSO
000310 SETRIGHT OPERATOR 1931-04-21 123-45-3332 MFSETRIGHT EWHENDERSO
200311 SPRINGER OPERATOR 1931-04-21 123-45-3333 MFSPRINGER EWHENDERSO
000300 SMITH OPERATOR 1936-10-27 123-45-2095 PHSMITH EWHENDERSO
200331 WONG FIELDREP 1941-07-18 123-45-2104 HWONG TQSPENSER
000340 GOUNOT FIELDRER 1926-05-17 123-45-5698 JRGOUNDT TQSPENSER
200341 ALONZO FIELDREP 1926-05-17 123-45-5699 REALONZO TQSPEMSER
000320 MEHTA FIELDREP 1932-08-11 123-45-5950 RYWMEHTA TQSPENSER
0oo1o0 SPENSER MMANAGER 1956-12-18 123-45-0972 TQSPENSER MLTHOMPSOMN
0003350 LEE FIELDREP 1941-07-18 123-45-2103 WLEE TQSPENSER

Figure 3-8 List of employees without RCAC enabled

3.6.4 Defining and creating row permissions

Implement RCAC on the EMPLOYEES table by completing the following steps:

1. Start by defining a row permission. In this example, the rules to enforce include the
following ones:

Chapter 3. Row and Column Access Control

Human Resources employees can see all the rows.
Managers can see only information for the employees that they manage.
Employees can see only their own information.

Consultants are not allowed to see any rows in the table.

25

To implement this row permission, run the SQL statement that is shown in Example 3-7.

Example 3-7 Creating a permission for the EMPLOYEE table

CREATE PERMISSION HR_SCHEMA.PERMISSION1_ ON_EMPLOYEES

ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES
FOR ROWS
WHERE (VERIFY_GROUP_FOR_USER (SESSION USER , 'HR'') =1)
OR (VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') =1
AND (EMPLOYEES . MANAGER _OF EMPLOYEE = SESSION_USER

OR EMPLOYEES . USER ID = SESSION USER))
OR (VERIFY_GROUP_FOR_USER (SESSION_USER , 'EMP') =1

AND EMPLOYEES . USER_ID = SESSION_USER)

ENFORCED FOR ALL ACCESS
ENABLE

2.

Look at the definition of the table and see the permissions, as shown in Figure 3-9.
QIBM_DEFAULT_EMPLOYEE_HR_SCHEMA is the default permission, as described in
3.1.2, “Enabling and activating RCAC” on page 16.

=-055) Schemas -
|_——_| HR SCHEMA Mame Table Mame
All Objects PERMISSIONI_ON_EMPLOYEES HR_SCHEMA EMPLOYEES
2 Aliases (B3 QIBM_DEFAULT EMPLOVYEES_HR_SCHEMA HR_SCHEMA EMPLOYEES

Column Masks
----- Constraints

----- E Functions

----- - Global Variables

-l Journal Receivers

ﬁ Journals

----- % Procedures
q Permissions
-[B¥ Sequences [
----- i SOL Packages
- Tables

----- Triggers

Figure 3-9 Row permissions that are shown in System i Navigator

3.6.5 Defining and creating column masks

26

Define the different masks for the columns that are sensitive by completing the following
steps:

1.

Start with the DAY_OF_BIRTH column. In this example, the rules to enforce include the
following ones:

— Human Resources can see the entire date of birth of the employees.

— Employees can see only their own date of birth.

— Managers can see the date of birth of their employees masked with YEAR being 9999.
To implement this column mask, run the SQL statement that is shown in Example 3-8.

Example 3-8 Creation of a mask on the DATE_OF_BIRTH column

CREATE MASK HR_SCHEMA.MASK_DATE_OF BIRTH_ON_EMPLOYEES

ON

HR_SCHEMA.EMPLOYEES AS EMPLOYEES

FOR COLUMN DATE_OF_BIRTH

Row and Column Access Control Support in IBM DB2 for i

RETURN

CASE
WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'HR', 'EMP') =1
THEN EMPLOYEES . DATE_OF_BIRTH

WHEN VERIFY_GROUP_FOR USER (SESSION USER , 'MGR') =
AND SESSION_USER = EMPLOYEES . USER_ID
THEN EMPLOYEES . DATE_OF BIRTH

I
—_

WHEN VERIFY_GROUP_FOR USER (SESSION_USER , 'MGR') = 1

AND SESSION_USER <> EMPLOYEES . USER_ID

THEN (9999 || '-' || MONTH (EMPLOYEES . DATE_OF BIRTH) || '-' [
DAY (EMPLOYEES.DATE_OF BIRTH))
ELSE NULL
END
ENABLE ;

2. The other column to mask in this example is the TAX_ID information. In this example, the
rules to enforce include the following ones:

— Human Resources can see the unmasked TAX_ID of the employees.
— Employees can see only their own unmasked TAX_ID.

— Managers see a masked version of TAX_ID with the first five characters replaced with
the X character (for example, XXX-XX-1234).

— Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.
To implement this column mask, run the SQL statement that is shown in Example 3-9.

Example 3-9 Creating a mask on the TAX_ID column
CREATE MASK HR_SCHEMA.MASK TAX_ ID_ON_EMPLOYEES

ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES
FOR COLUMN TAX_ID

RETURN

CASE

WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'HR') =1
THEN EMPLOYEES . TAX_ID

WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') =
AND SESSION_USER = EMPLOYEES . USER_ID
THEN EMPLOYEES . TAX_ID

I
—_

I
—_

WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'MGR') =
AND SESSION_USER <> EMPLOYEES . USER_ID
THEN ('XXX-XX-' CONCAT QSYS2 . SUBSTR (EMPLOYEES . TAX_ID , 8 , 4))

WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'EMP') =
THEN EMPLOYEES . TAX_ID

I
—_

ELSE 'XXX-XX-XXXX'
END
ENABLE

Chapter 3. Row and Column Access Control 27

3. Figure 3-10 shows the masks that are created in the HR_SCHEMA.

E@ Schemas -
E| HR_SCHEMA Name Table Name Column MName
: &= All Objects MASK_DATE_OF_BIRTH_OM_EMPLOYEES HR_SCHEMA.EMPLOVEES DATE_OF_BIRTH
=5 Aliases MASK_TAX_ID_OM_EMPLOVYEES HR_SCHEMAEMPLOYEES TAX_ID
m Constraints 3
o B Functions

F)'gufe .3-1 0 Column masks shown in System i Navigator

3.6.6 Activating RCAC

Now that you have created the row permission and the two column masks, RCAC must be
activated. The row permission and the two column masks are enabled (last clause in the
scripts), but now you must activate RCAC on the table. To do so, complete the following steps:

1. Run the SQL statements that are shown in Example 3-10.

Example 3-10 Activating RCAC on the EMPLOYEES table

/* Active Row Access Control (permissions) */
/* Active Column Access Control (masks) */
ALTER TABLE HR_SCHEMA.EMPLOYEES

ACTIVATE ROW ACCESS CONTROL

ACTIVATE COLUMN ACCESS CONTROL;

2. Look at the definition of the EMPLOYEE table, as shown in Figure 3-11. To do this, from

the main navigation pane of System i Navigator, click Schemas - HR_SCHEMA —
Tables, right-click the EMPLOYEES table, and click Definition.

/&g Column Masks
..... f_’} Constraints

..... @ Procedures

Row Permissions
¥ Sequences

il S50L Packages
..[TH Tables

View Contents

Data k
----- Eq Functicns
----- i5¢- Global Variables Definition
""" o Indexes Generate SQL... %
% Journal Receivers .

Index Advisor k
@ Journals

Journaling
Lock Holders
Locked Rows

Permissions

_____ Al Triggers Reset Usage Counts...
..... S Types £ Show Indexes
@ Views Show Materialized Query Tables

Chow Belated

-5 Schemas -
,_:_| HR SCHEMA Name System Mame Number of
(B All Objects EEES EMPLOVEES
2 Aliases Edit Contents

Figure 3-11 Selecting the EMPLOYEES table from System i Navigator

28

Row and Column Access Control Support in IBM DB2 for i

3. The EMPLOYEES table definition is displayed, as shown in Figure 3-12. Note that the
Row access control and Column access control options are checked.

00 HR_SCHEMA.EMPLOYEES - DbZicoe2.rch.stglabs.ibm.com(Db2icoe2) |£|.

£ E] Columns] Key Cnnstraints] Foreign Key Constraints] Check Constraints | Materialized Query F'artitinning]
Marme; |EMFLOYEES

Schema: |l HR_SCHEMA
Systern name: |EMPLOYEES |

™ Preferred storage media is solid-state drive

I~ volatile data

W Row access control

¥ Column access control

Text: |

4

Figure 3-12 RCAC enabled on the EMPLOYEES table

3.6.7 Demonstrating data access with RCAC

You are now ready to start testing RCAC with the four different users. Complete the following
steps:

1. The first SQL statement that is shown in Example 3-11 illustrates the EMPLOYEE count.
You know that there are 42 rows from the query that was run before RCAC was put in
place (see 3.6.3, “Demonstrating data access without RCAC” on page 24).

Example 3-11 EMPLOYEES count
SELECT COUNT(*) as ROW_COUNT FROM HR_SCHEMA.EMPLOYEES;

2. The result of the query for a user that belongs to the HR group profile is shown in
Figure 3-13. This user can see all the 42 rows (employees).

ROW_COUNT
42

Figure 3-13 Count of EMPLOYEES by HR

3. The result of the same query for a user who is logged on as TQSPENSER (Manager) is
shown in Figure 3-14. TQSPENSER has five employees in his department and he can
also see his own row, which is why the count is 6.

ROW_COUNT
6

Figure 3-14 Count of EMPLOYEES by a manager

Chapter 3. Row and Column Access Control 29

4. The result of the same query that is run by an employee (DSSMITH) gives the result that is
shown in Figure 3-15. Each employee can see only his or her own data (row).

ROW_COUNT
1

Figure 3-15 Count of EMPLOYEES by an employee

5. The result of the same query that is run by the Consultant/DBE gives the result that is
shown in Figure 3-16. The consultants/DBE can manage and implement RCAC, but they
do not see any rows at all.

ROW_COUNT
0

Figure 3-16 Count of EMPLOYEES by a consultant

Does the result make sense? Yes, it does because RCAC is enabled.

6. Run queries against the EMPLOYEES table. The query that is used in this example runs
and tests with the four different user profiles and is the same query that was run in 3.6.3,
“Demonstrating data access without RCAC” on page 24. It is shown in Example 3-12.

Example 3-12 SELECT statement to test with the different users

SELECT EMPLOYEE_ID,
LAST_NAME,
JOB_DESCRIPTION,
DATE_OF BIRTH,
TAX_ID,

USER_ID,
MANAGER_OF EMPLOYEE

FROM HR_SCHEMA.EMPLOYEES

30 Row and Column Access Control Support in IBM DB2 for i

7. Figure 3-17 shows the results of the query for a Human Resources (VGLUCCHESS) user
profile. The user can see all the rows and all the columns.

EMPLOYEE_ID | LAST_MAME JOB_DESCRIPTION | DATE_OF BIRTH | TAX D USER_ID MANAGER_OF _EMPLOYEE
noooio HALS MANAGER 1933-08-24 12:3-45-3978 CIHAAS MLTHOMPSON
200011 HEMMINGER HRREEP 1933-08-14 123-49-3979 DUHEMMINGE CIHAAS
200121 ORLANDO HRREP 1942-10-18 123-45-2168 GORLANDO CIHAAS
noo120 O'CONNELL HREREF 1942-10-18 123-45-2167 SOCONNELL CIHAAS
noot110 LUCCHESSI HREREF 1928-11-05 12:3-45-3490 WGLUCCHESS |CIHAAS
ooooz0 THOMPSON BIGBOS3 1848-02-02 123-49-3476 MLTHOMPSON [MLTHOMPSOM
000130 CILIMNTAMA ANALYST 1925-09-15 123-45-4578 DMQUINTAMNA |SAKWYAN
noo140 MICHOLLS ANALYST 1946-01-19 123-45-1793 HANICHOLLS SAKWWAN
200141 MNATZ ANALYST 1946-01-19 123-45-1794 KMNMNATZ SAKWWAN
000030 AN MANAGER 1841-02-11 123-49-4738 SARMYAN MLTHOMPSON
noo1s0 ADAMSON DESIGNER 1947-03-17 12:3-45-4510 BADAMSON IFSTERN
no0zZoo BROWN DESIGNER 1941-03-29 12:3-45-4501 DEROWN IFSTERN
no0160 PLAMNKA, DESIGNER 1955-04-12 123-45-3782 ERPIAMNKA IFSTERN
000060 STERM MANAGER 1845-07-07 123-49-6423 IFSTERM MLTHOMPSON
noo190 WALKER DESIGNER 19592-06-25 12:3-45-2986 JHWALKER IFSTERN
no0zZ20 LUTZ DESIGNER 1848-03-19 123-45-0672 JKLUTZ IFSTERN
200171 YAMAMOTO DESIGNER 1951-01-05 12:3-45-2891 KYAMAMOTO IFSTERN
000170 YOSHIMURA, DESIGNER 1851-01-05 123-45-2830 WY O SHIMUR IFSTERM
noo180 SCOUTTEN DESIGNER 1943-02-21 12:3-45-1682 MSSCOUTTEN |IFSTERN
200221 JOHN DESIGNER 1848-03-19 123-45-6730 REJOHN IFSTERN
nooz10 JONES DESIGNER 1953-02-23 12:3-45-0942 WTJONES IFSTERN
0oo2e0 SMITH CLERK 1839-11-12 123-45-0961 DSSMITH EDPULASKI
nooovo PULASK] MANAGER 19593-03-26 123-45-7831 EDPULASKI MLTHOMPSON
No0230 JEFFERSON CLERK 1935-05-30 12:3-45-2094 JJEFFERSO EDPULASKI
nooZ7o PEREZ CLERK 1953-05-26 123-45-9001 MLPEREZ EDPULASKI
200241 MONTEVERDE CLERK 15854-03-31 123-458-3781 RMMONTEVER |EDPULASKI
no0Z240 MWARING CLERK 1994-03-31 123-45-3780 ShilARIND EDPULASKI
No0ZE0 JOHNSON CLERK 1936-10-05 12:3-45-8953 SPJOHNSON EDPULASKI
noooso GEYER MANAGER 1925-09-15 1235-45-6739 JBGEYER MLTHOMPSON
000280 SCHNEIDER OPERATOR 1836-03-28 123-45-8997 ERSCHMEIDE EWHENDERSO
200281 SCHWARTZ OPERATOR 1936-03-28 12:3-45-8998 ERSCHWARTZ |EWWHENDERSO
noooso HENDERSON MANAGER 1941-05-15 12:3-45-5498 EWHENDERSO |MLTHOMPSON
000290 PARKER OPERATOR 1846-07-08 123-49-4502 JRPARKER EWHENDERSO
000310 SETRIGHT OPERATOR 1931-04-21 123-45-3332 MFSETRIGHT |[EWHENDERSO
200311 SPRINGER OPERATOR 1931-04-21 12:3-45-3333 MESPRINGER |EWWHENDERSO
no0300 ShITH OPERATOR 1936-10-27 1213-45-2095 PRSMITH EWHENDERSO
200331 WONG FIELDOREP 1841-07-18 123-49-2104 HWONG TQSPENSER
000340 GOUNOT FIELOREP 1926-05-17 123-45-5698 JRGOUNOT TQSPENSER
200341 ALDONZD FIELDREF 1926-03-17 12:3-45-5699 REALONZO TQSPENSER
no0320 MEHTA FIELDREF 1932-08-11 12:3-45-9990 RWMEHTA TQSPENSER
ooo100 SPENSER MANAGER 1956-12-18 123-459-0972 TQSPENSER MLTHOMPSON
no0330 LEE FIELDREF 1941-07-18 12:3-45-2103 WWLEE TQSPENSER

Figure 3-17 SQL statement result by Human Resources user profile

8. Figure 3-18 shows the results of the same query for the Manager (TQSPENSER). Notice
the masking of the DATE_OF_BIRTH and TAX_ID columns.

EMPLOYEE_ID | LAST_NAME JOB_DESCRIPTION | DATE_OF_BIRTH | TAX_ID USER_ID MANAGER_OF _EMPLOYEE
200331 WONG FIELDREP 9995-07-18 RRe-2104 HWOMNG TQSFENSER

000340 GOUNOT FIELDREP 9995-05-17 R - D695 JRGOUNOT [TQSPENSER

200341 ALONZO FIELDREP 9995-05-17 R A- 0699 REALONZD |TQSPENSER

000320 MEHTA FIELDREP 9995-08-11 o= 3990 RWMEHTA TQSPENSER

000100 SPENSER MANAGER 1956-12-18 123-45-0972 TQSPENSER |MLTHOMPSON

000330 LEE FIELDREP 9995-07-18 o= 2103 WLEE TQSPENSER

Figure 3-18 SQL statement result by Manager profile

9. Figure 3-19 shows the results of the same query for an employee (DSSMITH). The

employee can only see only his own data with no masking at all.

EMPLOYEE_ID

LAST _MAME

JOB_DESCREIPTION

DATE_OF_BIRTH

TAX_ID

USER_ID

MANAGER_OF_EMPLOYEE

0002450

ShITH

CLERK

18935-11-12

123-45-0961

D55MITH

EDPLILASK]

Figure 3-19 SQL statement result by an employee profile

Chapter 3. Row and Column Access Control

31

10.Figure 3-20 shows the results of the same query for the Consultant/DBE, who is not one of
the company’s employees.

EMPLOYEE_ID | LAST MaME | .JOB_DESCRIPTION | DATE_OF_BIRTH | TAX_ID |USER_ID | MANAGER_OF EMPLOYEE

Empty Set

Figure 3-20 SQL statement result by Consultant/DBE profile

3.6.8 Demonstrating data access with a view and RCAC

This section covers data access with a view and RCAC. Complete the following steps:

1. The EMPLOYEES table has a column that is called On_Leave_Flag (Figure 3-21 on
page 33) indicating that the employee is on Leave of Absence. For this purpose, a view is
created that lists only the employees that are on leave.

32 Row and Column Access Control Support in IBM DB2 for i

EMPLOYEE_ID | LAST_MAME USER_ID MaNAGER_OF EMPLOYEE | ON_LEAVE_FLAG
aooot1o HAAS CIHAAS MLTHOMPSOMN -
200011 HEMMINGER OJHEMMINGE CIHAAS -
200121 DORLAMDO SORLAMDO CIHAAS -
aoo120 O'CONMNELL SOCOMNNELL CIHAAS -
goo110 LUCCHESS! WVELUCCHESS CIHAAS -
aooozo THOMPSON MLTHOMPSOMN MLTHOMPSOMN -
aoo130 CILIMTAMA DWCIINTAMNA TAKWAN -
aoo140 MICHOLLS HAMICHOLLS SARYAN -
200141 MNATZ KNMNATZ SARWWAN -
aoooso KAVAN SARWAN MLTHOMPSOMN -
aoo1a0 ADAMSON BADAMSON IFSTERM -
aoo2oo BROWWN DERCHYWN IFSTERMN -
aoo1&0 PLAMNKA, ERPIANEA IFSTERM -
aooosn STERM IFSTEREM MLTHOMPSOM -
aoo1s0 WaALKER JHYWALIKER IFSTERM -
oooz220 LUTZ JELUTE IFSTERM -
200171 TAMAMOTO Y AMAMOTO IFSTERMN -
aoo170 YOSHIMURA MY OSHIMUR IFSTERM -
aoo1s0 SCOUTTEN MSSCOUTTEN IFSTERMN -
200221 JOHM RKEJOHM IFSTERM -
aooz1o JONES WTJONES IFSTERMN -
aoo2s0 SMITH DS5MITH EDPULASKI -
gooovo PULASKI EDPLULASKI MLTHOMPSOM -
aoo0230 JEFFERS0ONM JJEFFERSD EDPULASKI -
gooz2vo FEREZ MLPEREZ EDPULASKI -
200241 MOMNTEVERDE RMMONTEYER ECPULASKI -
oooz240 MARINGD SMMARIND EDPULASKI -
000260 JOHNSON SPJOHNSON EDPULASKI &
aooos0 GEYER JEGEYER MLTHOMPSON -
ooo2so SCHNEIDER ERSCHNEIDE EVWHENDERSD -
200281 SCHWARTE ERSCHWARTZ EWHENDERSO -
agoooso HEMDERSON EVWHENDERSD MLTHOMPSOMN -
aoo230 PARKER JEPARKER EWHENDERSO -
ooos10 SETRIGHT MESETRIGHT EWHENDERSO -
200311 SPRINGER MFSPRINGER EWHENDERSOD -
ooos00 SMITH FRSMITH EWHENDERSO -
200331 WONG HWONG TASPENSER -
ooo340 GOoOUNMOT JEGOUNOT TQSPENSER -
200341 ALONZO RRALONZD TASPENSER -
agoo320 MEHTA, RYMEHTA, TQSPENSER -
aoo1oo SPENSER TASPENSER MLTHOMPSOMN -
000330 LEE WLEE TQSPENSER R

Figure 3-21 Employees on leave

2. Example 3-13 shows the definition of the view.

Example 3-13 Vlew of employees on leave

CREATE VIEW HR SCHEMA.EMPLOYEES ON_LEAVE (EMPLOYEE ID,

FIRST NAME,
MIDDLE_INITIAL,
LAST_NAME,
WORK_DEPARTMENT,
PHONE_EXTENSION,
JOB_DESCRIPTION,
DATE_OF BIRTH,

Chapter 3. Row and Column Access Control

TAX_ID,
USER_ID,
MANAGER_OF EMPLOYEE,
ON_LEAVE_FLAG)
AS
SELECT EMPLOYEE_ID,
FIRST NAME ,
MIDDLE_INITIAL,
LAST_NAME ,
WORK_DEPARTMENT,
PHONE_EXTENSION,
JOB_DESCRIPTION,
DATE_OF BIRTH,
TAX_ID,
USER_ID,
MANAGER_OF EMPLOYEE,
ON_LEAVE_FLAG
FROM HR_SCHEMA.EMPLOYEES
WHERE ON_LEAVE_FLAG = 'Y';

3. Use the view to query the data and see who is on leave. The SQL statement that is used is
shown in Example 3-14:

Example 3-14 SQL statement for employees on leave

SELECT EMPLOYEE_ID,
LAST_NAME,

JOB_DESCRIPTION,

DATE_OF BIRTH,

TAX_ID,

USER_ID,

MANAGER_OF EMPLOYEE
HR_SCHEMA.EMPLOYEES_ON_LEAVE;

FROM

4. Start with the Human Resources person (VGLUCCHESS) and see what is the result of the
previous query. He sees the two employees that are on leave and no masking is done over
the DATE_OF_BIRTH and TAX_ID columns. The results of the query are shown in

Figure 3-22.
EMPLOYEE ID | LAST_NAME JOB_DESCRIPTION | DATE_OF_BIRTH | TAX_ID USER_ID MAMAGER_OF_EMPLOYEE
000260 JOHNSON CLERK 1936-10-05 123-45-8953 |SPJOHNSON |EDPULASK
000330 LEE FIELOREP 1941-07-13 123-45-2103 |WLEE TQSPEMSER

Figure 3-22 Employees on leave - Human Resources user

5. Figure 3-23 shows what the Manager (TQSPENSER) gets when he runs the same query
over the view. He sees only the employees that are on leave that are managed by him. In
this example, it is one employee. The columns are masked, which confirms that RCAC is
applied to the view as well.

EMPLOYEE_ID

LAST_NAME

JOE_DESCRIPTION

DATE_OF EBIRTH

TAX_ D

USER_ID

MANAGER_OF _EMPLOYEE

000330

LEE

FIELDREP

9595-07-18

AR 2103

WLEE

TQSPENSER

Figure 3-23 Employee on leave - Manager of Field Reps user

34

Row and Column Access Control Support in IBM DB2 for i

6. Figure 3-24 shows what the employee (DSSMITH) gets when he runs the same query
over the view. The employee gets an empty set or he gets only himself if he is on leave.

EMPLOYEE_ID | LAST MAME [JOB_DESCRIPTION | DATE_OF_BIRTH | TAX_ID |USER_D | MANAGER_OF _EMPLOYEE |

Empty Set

Figure 3-24 Employees on leave - employee user

Chapter 3. Row and Column Access Control 35

36 Row and Column Access Control Support in IBM DB2 for i

Implementing Row and Column
Access Control: Banking
example

This chapter illustrates the Row and Column Access Control (RCAC) concepts using a
banking example. Appendix A, “Database definitions for the RCAC banking example” on
page 121 provides a script that you can use to create all the database definitions or DDLs to
re-create this RCAC example.

The following topics are covered in this chapter:

» Business requirements for the RCAC banking scenario
» Description of the users roles and responsibilities
» Implementation of RCAC

© Copyright IBM Corp. 2014. All rights reserved. 37

4.1 Business requirements for the RCAC banking scenario

38

As part of a new internet banking project, the Bank decides to raise the level of data access
control on the following three tables that are involved in the new customer-facing application:

» CUSTOMERS
» ACCOUNTS
» TRANSACTIONS

RCAC will be used to restrict access to the rows in these three tables by using permissions,
and to restrict column values by using masks. The default position is that no user can access
the rows in the tables. From there, specific bank employees are allowed access only to the
rows for their job responsibilities. In addition, columns containing personal or sensitive data
are masked appropriately. Bank customers are allowed access to only their rows and column
values.

In this example, it is assumed that the Bank employees have access to the tables when
working on the premises only. Employee access to data is provided by programs and tools
using standard DB2 interfaces, such as embedded SQL, ODBC, JDBC, and CLI. The
database connection authentication for these interfaces uses the employee's personal and
unique IBM i user profile. Operating in their professional role, employees do not have access
to bank data through the Internet.

Bank customers have access to their accounts and transactions by using a new web
application. Each customer has unique credentials for logging in to the application. The
authentication of the customer is handled by the web server. After the customer is
authenticated, the web server establishes a connection to DB2 for data access. This
connection uses a common IBM i user profile that is known as WEBUSER. This user profile is
secured and is used only by the web application. No Bank employee has access to the
WEBUSER profile, and no customer has an IBM i user profile.

The customer’s identity is passed to DB2 by using a global variable. The global variable is
secured and can be accessed only by the WEBUSER. The web application sets the
CUSTOMER_LOGIN_ID variable to the customer's login value. This value is compared to the
customer's login value that is found in the CUSTOMER_LOGIN_ID column of the
CUSTOMERS table.

Applications that do not use the web interface do not have to be changed because the global
variable is NULL by default.

Row and Column Access Control Support in IBM DB2 for i

A diagram of the internet banking architecture is shown in Figure 4-1:

» The row permission and column masks for the CUSTOMERS table are based on the
group of which the user profile is part. If the user is a customer, their specific login ID also

is tested.

» The row permission and column mask for the ACCOUNTS table are based on the
CUSTOMERS table permission rules. A subquery is used to connect the accounts (child)
with the customer (parent).

» The row permission for the TRANSACTIONS table is based on the ACCOUNTS table
permission rules and the CUSTOMERS table permission rules. A subquery is used to
connect the transactions (child) with the account (parent) and the account (child) with the
customer (parent).

Authenticati i
u en|lca on Server DB Connection Server

Customer

Internet Banking Architecture

‘ Web app sets global variable to user’s login ID value

LOGIN_ID Web “WEBUSER” DB2

Only web server All online banking
understands true customers run
identity of online database transactions
banking customer with WEBUSER profile

CUSTOMER_LOGIN_ID variable used to validate RCAC

Figure 4-1 Internet banking example

4.2 Description of the users roles and responsibilities

During the requirements gathering phase, the following groups of users are identified and

codified:

vyvVyVvVYyVvYyYyvYyy

SECURITY: Security officer and security administrators
DBE: Database engineers

ADMIN: Bank business administrators

TELLER: Bank tellers

CUSTOMER: Bank customers using the internet
PUBLIC: Anyone not already in a group

Chapter 4. Implementing Row and Column Access Control: Banking example 39

Based on their respective roles and responsibilities, the users (that is, a group) are controlled
by row permissions and column masks. The chart that is shown in Figure 4-2 shows the rules
for row and column access in this example.

CUSTOMERS ACCOUNTS TRANSACTIONS
Row Column Row Column Row Column

Permissions ~ Masking Permissions Masking Permissions Masking
SECURITY No
DBE No
ADMIN No
TELLER No
CUSTOMER No
PUBLIC No

Figure 4-2 Rules for row and column access

40 Row and Column Access Control Support in IBM DB2 for i

The chart that is shown in Figure 4-3 shows the column access that is allowed by group and
lists the column masks by table.

CUSTOMERS ACCOUNTS

Row Column Column
Permissions Masking Masking

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL

CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL

CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

SECURITY

ACCOUNT_NUMBER

DBE

ACCOUNT_NUMBER

ADMIN

None None

CUSTOMER_EMAIL
CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION None
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

TELLER

CUSTOMER m

PUBLIC

None None

CUSTOMER_DRIVERS_LICENSE_NUMBER
CUSTOMER_EMAIL

CUSTOMER_LOGIN_ID
CUSTOMER_SECURITY_QUESTION
CUSTOMER_SECURITY_QUESTION_ANSWER
CUSTOMER_TAX_ID

ACCOUNT_NUMBER

Figure 4-3 Column masks

For the demonstration and testing of RCAC in this example, the following users interact with
the database. Furthermore, the column masking rules are developed independently of the
row permissions. If a person does not have permission to access the row, the column mask
processing does not occur.

» Hernando Bedoya is a DB2 for i database engineer with the user profile of HBEDOYA. He
is part of the DBE group.

» Mike Cain is a DB2 for i database engineer with the user profile of MCAIN. He is part of
the DBE group.

» Veronica G. Lucchess is a bank account administrator with the user profile of
VGLUCCHESS. She is part of the ADMIN group.

» Tom Q. Spenser is a bank teller with the user profile of TQSPENSER. He is part of the
TELLER group.

» The IT security officer has the user profile of SECURITY. She is not part of any group.

» The online banking web application uses the user profile WEBUSER. This profile is part of
the CUSTOMER group. Any future customer-facing applications can also use this group if
needed.

» Adam O. Olsen is a bank customer with a web application login ID of KLD72CQR8JG.

Chapter 4. Implementing Row and Column Access Control: Banking example 41

4.3 Implementation of RCAC

Figure 4-4 shows the data model of the banking scenario that is used in this example.

[T CUSTOMERS

ACCOUNT_CUSTOMER_ID_FK

[ACCOUNTS

TRANSACTIONS_ACCOUNT_ID_FK

] TRANSACTIONS

Figure 4-4 Data model of the banking scenario

This section covers the following steps:

Reviewing the tables that are used in this example
Assigning function ID QIBM_DB_SECADM to the Database Engineers group
Creating group profiles for the users and their roles
Creating the CUSTOMER_LOGIN_ID global variable
Defining and creating row permissions

Defining and creating column masks

Restricting the inserting and updating of masked data
Activating row and column access control

Reviewing row permissions

Demonstrating data access with RCAC

Query implementation with RCAC activated

VVYVYYVYYYVYVYVYYVYY

4.3.1 Reviewing the tables that are used in this example

42

This section reviews the tables that are used in this example. As shown in Figure 4-5, there
are three main tables that are involved in the data model: CUSTOMERS, ACCOUNTS, and
TRANSACTIONS. There are 90 customers.

Mame Systern Name MNumber of Rows | Mumber of Deleted Rows
00 ACCOUNTS ACCOUNTS 100 0
0O CUSTOMERS CUSTOMERS a0 1]
00 TRANSACTIONS TRANS 529 0

Figure 4-5 Tables that are used in the banking example

Note: Appendix A, “Database definitions for the RCAC banking example” on page 121
provides a script that you can use to create all the database definitions or DDLs to
re-create this RCAC example.

Row and Column Access Control Support in IBM DB2 for i

To review the attributes of each table that is used in this banking example, complete the

following steps:

1. Review the columns of each the tables through System i Navigator. Expand Database —
named Database — Schemas > BANK_SCHEMA — Tables.

2. Right-click the CUSTOMERS table and select Definition. Figure 4-6 shows the attributes
for the CUSTOMERS table. The Row access control and Column access control options
are not selected, which indicates that the table does not have RCAC implemented.

Cnlumns] ey Cunstraints] Foreign Key Cnnstraintsl Check Cunstraints]

|CUSTOMERS

MHarme:

Schema: |5 BAMK_SCHEMA

Systern name: |CUSTOMERS

I Preferred storage media is solid-state drive
I volatile data
I Row access control

I Column access contral

=l

Text: |

Figure 4-6 CUSTOMERS table attributes

3. Click the Columns tab to see the columns of the CUSTOMERS table, as shown in

Figure 4-7.
Tahle ey Cunstraints] Foreign Key Cnnstraintsl Check Cunstraints] Materialized Quew] Par‘[itiuning]
Column Mame .| Data Type Length | Mullakle Imnplicitly Hidden Cefault Walue
CUSTOMER_ID .| INTEGER Mo
CUSTOMER_NAME | WARCHAR 30 Mo Mo default
CUSTOMER_ADDRESS | WARCHAR 30 Mo Mo default
CUSTOMER_CITY | WARCHAR 30 Mo Mo default
CUSTOMER_STATE ..| CHARACTER 2 Mo Mo default
CUSTOMER_PHOMNE ..| CHARACTER 10 Mo Mo default
CUSTOMER_EMAIL | WARCHAR 30 Mo Mo default
CUSTOMER_TAX_ID ..| CHARACTER n Mo Mo default
CUSTOMER_DRIVERS_LICEMSE_MUMBER | CHARACTER 13 Yes Hull
CUSTOMER_LOGIN_ID | WARCHAR 30 Yes Hull
CUSTOMER_SECURITY_QUESTION | WARCHAR 100 Yes Hull
CUSTOMER_SECURITY_QUESTION_ANSWER | .| WARCHAR 100 Yes Hull
INSERT_TIMESTAMP .| TIMESTAMP 4] Mo Yes Current timestamp
UPDATE_TIMESTAMP | TIMESTAMF 6 Mo Yes

Figure 4-7 Column definitions of the CUSTOMERS table

Chapter 4. Implementing Row and Column Access Control: Banking example

43

4. Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the CUSTOMERS table, as shown in
Figure 4-8. There are no Foreign Key Constraints or Check Constraints on the
CUSTOMERS table.

Table] Columns ' Foreign Key Cunstraints] Check Constraints | Materialized Query| Parditioning

MNarme Type Key Columns
= CUSTOMER_ID_PK Frimary key CLUSTOMER_ID
% CUSTOMER_LOGIN_ID_UK Unigue key CUSTOMER_LOGIMN_ID

Table | Colurns | Key Constraints : Foreign Key Constraints l Check Gonstraints | Materialized Query| P

MNarme Key Columns | Parent Table | Parent Key Constraint

l Materia

Marme Check Condition

Figure 4-8 Reviewing the constraints on the CUSTOMERS table

5. Review the definition of the ACCOUNTS table. The definition of the ACCOUNTS table is
shown in Figure 4-9. RCAC has not been defined for this table yet.

l Cnlumns] ey Cunstraints] Foreign Key Cnnstraintsl Check Cunstraints] Materialize

|ACCOUNTS
Schema: |5 BAMK_SCHEMA
Systern name: |ACCOUNTS |

[Preferred storage media is solid-state drive
[Wolatile data
[Row access contral

[Column access control

Text: |

Figure 4-9 ACCOUNTS table attributes

44 Row and Column Access Control Support in IBM DB2 for i

6. Click the Columns tab to see the columns of the ACCOUNTS table, as shown in
Figure 4-10.

ey Cunstraints] Fareign Key Caonstraints | Check Constraints | Materialized Query | Partitioning
Column Mame .| Data Type Length | Mullakle Implicitly Hidden Default Walue
ACCOUNT_ID .. INTEGER Ma
CLUSTOMER_ID .. INTEGER Ma Mo default
ACCOUNT_MUMBER .| WARCHAR a0 Ma Mo default
ACCOUNT_MAME ... CHARACTER 12 Ma Mo default
ACCOUNT_DATE_OFPEMED ... DATE fes Current date
ACCOUNT_DATE_CLOSED ... DATE fes Mull
ACCOUNT_CURREMNT_BALAMCE ... DECIMAL 11,2 Ma]
INSERT_TIMESTAMP .| TIMESTAMP G il] es Current timestamnp
UPDATE_TIMESTAMP ...| TIMESTAMP 1] Mo fes

Figure 4-10 Column definitions of the ACCOUNTS table

7. Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the ACCOUNTS table, as shown in
Figure 4-11. There is one Foreign Key Constraint and no Check Constraints on the
ACCOUNTS table.

l Fareign kKey Cnnstraintsl Check Cunstraints] Materialized Query | Partiti

Mame Type key Columns
= ACCOUNT_ID_PK Primary key ACCOUNT_ID

Table] Columns | Key Constraints i Foreign Key Canstraints | Check Constraints | Materialized Query| Partitioning

MNarme Key Columns Parent Table Parent Key Constraint Parent Key Columns
ACCOUNT_CUSTOMER_ID_FK CUSTOMER_ID | BAME_SCHEM... | CUSTOMER_ID_PK CUSTOMER_ID

Table] Columns | Key Constraints | Foreigh Key Constraints

Mame | Check Condition

Figure 4-11 Reviewing the constraints on the ACCOUNTS table

Chapter 4. Implementing Row and Column Access Control: Banking example 45

8. Review the definition of the TRANSACTIONS table. The definition of the TRANSACTIONS

table is shown in Figure 4-12. RCAC is not defined for this table yet.

Culumnsl Key Cnnstraintsl Foreign Key Cunstraints] Check Cnnstraintsl Materializ

[TRAMSACTIONS
Schema: |IE5 BANK_SCHEMA
Fystem name: |TRANS j

I Preferred storage media is solid-state drive
I Volatile data
I Row access cantrol

I Column access control

Text: |

Figure 4-12 TRANSACTIONS table attributes

9. Click the Columns tab to see the columns of the TRANSACTIONS table, as shown in

Figure 4-13.
Tahle l Key Constraints | Fareign Key Caonstraints | Check Constraints | Materialized Query | Partitioning
Column Mame .| Diata Type Length | Mullahle Implicitly Hidden Cefault Walue
TRAMSACTION_ID .. INTEGER Ma
ACCOUNT_ID .. INTEGER Ma Mo default
TRAMSACTION_TYPE ...l CHARACTER 1 Ma Mo default
TRAMSACTION_DATE ...| DATE Ma Current date
TRAMSACTION_TIME ...| TIME Ma Currenttime
TRAMSACTION_AMOUNT ...l DECIMAL 11,2 Ma Mo default
INSERT_TIMESTAMP .| TIMESTAMP 4] Mo Yes Current timestamp
UPDATE_TIMESTAMP | TIMESTAMP B Ma fes

Figure 4-13 Column definitions of the TRANSACTIONS table

10.Click the Key Constraints, Foreign Key Constraints, and Check Constraints tabs to
review the key, foreign, and check constraints on the TRANSACTIONS table, as shown in
Figure 4-14. There is one Foreign Key Constraint and one Check Constraint on the

TRANSACTIONS table.

Mame Type key Columns
= TRAMNSACTION_ID_PK Primary key TRANMSACTION_ID

Table] Columns | Key Constraints i Foreign Key Canstraints | Check Constraints | Materialized Query| Partitioning

MNarme Key Columns Parent Table Parent Key Constraint

Parent Key Columns

TRAMSACTIONS_ACCOUNT_ID_FK |ACCOUNT_ID | BANK_SCHEMAACCOUNTS | ACCOUNT_ID_PK ACCOUNT_ID

Table] Columns | Key Constraints | Foreign Key Constraints Materialize

Mame Check Condition
/ TRANSACTIONS_TYPE_CHECK TRAMSACTION_TYPE IM (D', Wy', A"

Figure 4-14 Reviewing the constraints on the TRANSACTIONS table

46 Row and Column Access Control Support in IBM DB2 for i

Now that you have reviewed the database model for this example, the following sections
describe the steps that are required to implement RCAC in this banking scenario.

4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers

group

The first step is to assign the appropriate function usage ID to the Database Engineers
(DBEs) that will be implementing RCAC. For a description of function usage IDs, see 2.1,
“Roles” on page 8. In this example, the DBEs are users MCAIN and HBEDOYA.

Complete the following steps:

1. Right-click the database connection and select Application Administration, as shown in

Figure 4-15.

-7 Basic C Explore

B8 Wark N Open

B Config Customize this View
[]---ﬁ Metwol

[]--- Integra
]-- Securit]
B el a

= File Sys
[]-- Backup
- @ Applics

,_|
[pgEa g}
==l =]

=]

o

el

m

[=]

=

Gwenpl.rc

Connection to System

Run Comrmand...
Send Message...
Display Emulataor...

Users and Groups
Inventory
Maonitors

Fixes

Collection Services

System Values

System Status

Application Adrministration %

Diagnostics

Figure 4-15 Application administration

Chapter 4. Implementing Row and Column Access Control: Banking example

47

48

2. The Application Administration window opens, as shown in Figure 4-16. Click IBM i —
Database and select the function usage ID of Database Security Administrator.

P

Application Administration

P

Select the functions or applications available to users.

System i Na\tiga‘mr] Client Applications Host Applications]

a4

Function |Default Access |&ll Object Access [¢ =
D‘B Backup Recovery and Media Services for IBM i N
{4 CIMOM Server
EH# Digital Certificate Manager (DCM) [

EH# 1B v

G object N
—..d Database
-0 Database Administrator N N
(] Database Information N N
(L Database Security Administrator N N
(0 DDM & DRDA Application Server Access
(L Toelbox Application Server Access
20 1BM Tivoli Directory Server Administrator N N
'E:'D Service O

Remowe Customization |

Applications .. |

Figure 4-16 Application administration for IBM i

3. Click Customize for the function usage ID of Database Security Administrator, as shown

in Figure 4-17.

EHE B |
(0 All object

(£ Database Administrator
(2t Database Information
{2l Database Secu rity Administrator

U oom & DRDA Application Server Access
(0 Toolbox Application Server Access
_@ IBM Tiveli Directory Server Administrator
B Service

o=
4

HEmOOOR

" ORRECOOR R R

Remowe Customization

‘ Customize

Figure 4-17 Customizing the Database Security Administrator function usage 1D

Row and Column Access Control Support in IBM DB2 for i

4. The Customize Access window opens, as shown in Figure 4-18. Click the users that need
to implement RCAC. For this example, HBEDOYA and MCAIN are selected. Click Add and

then click OK.

-
Customize Access

PRl X

Function:

Product :
Function description:

Access:
[~ Default access

lUsers and groups:

[Users with all object system privilege

Customized access for users and groups

Database Securty Administrator

IBM i

Database Securty Administrator Functions

----- ML Mckinley
----- ML Ganzagent

Remowe Customization

_____ Al &

FY

_-' Access allowed:

i Hbedoya

:

Access denied:

&
(=8
\I{

K

ﬂt

Cancel Help

Figure 4-18 Customize Access window

5. The Application Administrator window opens again. The function usage ID of Database
Security Administrator now has an X in the Customized Access column, as shown in

Figure 4-19.

Function

IDe‘FauI‘t Access IAII Object Access ICustomized Access

Databaze Information

EEY

1 Database Security Administrator

| DDM & DRDA Application Server Acce
Toolbox Application Server Access

IOK A T 1 pu " o R By

IR ES | o | o o <1 o S

IRENEY | <

Chapter 4. Implementing Row and Column Access Control: Banking example

Figure 4-19 Function usage ID Database Security Administrator customized

49

6. Run an SQL query that shows which user profiles are enabled to define RCAC. The SQL
query is shown in Figure 4-20.

/~ werify Functional IDs for Database Security ™

SELECT function_id,
LSEr_Nnarme,
usage,
User_type
FROM gsys2 function_usage
WHERE function_id = 'QIBM_DB_SECADK'
ORDER BY user_name;

FUNCTION_|D USER_NAME USAGE USER_TYPE
QIEM_DB_SECADM HEEDOYA, ALLOWED USER
QIEM_DB_SECADM MICAIN ALLOWED USER

Figure 4-20 Query to display user profiles with function usage ID for RCAC

4.3.3 Creating group profiles for the users and their roles

The next step is to create the different group profiles (ADMIN, CUSTOMER, TELLER, and
DBE) and assign the different user profiles to the different group profiles. For a description of
the different groups and users for this example, see 4.2, “Description of the users roles and
responsibilities” on page 39.

Complete the following steps:

1. On the main navigation pane of System i Navigator, right-click Groups and select New
Group, as shown in Figure 4-21.

Eﬁ' Users and Groups
Lo Al Users
= & [
5{;‘5 Qdq Explore
e g Cho Open
Lol Users N Create Shortcut
(-8 Databases reate Share
o2 File Systen Customnize this View 4
-l Bad(f"p) Mew Group...
@ Applicatiol %
-G8 AFP Manay Paste
@- | Db2icoe3.rch.s
- | Dblicoetrchy Properties
-1

Figure 4-21 Creating Qroup profiles

50 Row and Column Access Control Support in IBM DB2 for i

2. The New Group window opens, as shown in Figure 4-22. For each new group, enter the
Group name (ADMIN, CUSTOMER, TELLER, and DBE) and add the user profiles that are
associated to this group by selecting the user profile and clicking Add.

Figure 4-22 shows adding user TQSPENCER to the TELLER group profile.

P

New Group @é]

Group name: |TE|-|-EF'=

Description: |Bank Tellers

All users: Selected users:

. Cycmcimom -~
ﬁ Clypsjsvr
L Secadmin
ﬁ Security 1
I 1 Taspenser

ﬁ Vglucchess
& Webuser -

A

Capabilties

Add ->

Add | Cancel | Help |

Figure 4-22 Creating group profiles and adding users

3. After you create all the group profiles, you should see them listed in System i Navigator
under Users and Groups — Groups, as shown in Figure 4-23.

s TR ¥
@™ Users and Groups
i Al Users

...@@8 Customner
..-@@8 Dbe
L@@ Qdesusr

..@@8 Qwgadmin

..... 8% Users Mot in a Group
-y Databases

Figure 4-23 Newly created group profiles

Chapter 4. Implementing Row and Column Access Control: Banking example 51

4.3.4 Creating the CUSTOMER_LOGIN_ID global variable

In this step, you create a global variable that is used to capture the Customer_Login_ID
information, which is required to validate the permissions. For more information about global
variables, see 3.2.2, “Built-in global variables” on page 19.

Complete the following steps:

1. From System i Navigator, under the schema Bank_Schema, right-click Global Variable
and select New — Global Variable, as shown in Figure 4-24.

E@ Schemas

E1-[&5 BANK_SCHEMA
-|E Al Objects
-2 Aliases

Colurnn Masks
..... Constraints

m

----- E Functions
----- M Global Variables
----- 2 Indexes Explore
pl

-l Journal Receiv Open
ﬁ Journals Create Shortcut
----- % Procedures
Row Permissic Customize this View 3
-JH} Sequences Generate SQL...
----- S0L Packages

g T?bles : Save List Contents...
""" Triggers New 3 Global Variable
- Types L
- # Views -]

Figure 4-24 Creating a global variable

2. The New Global Variable window opens, as shown in Figure 4-25. Enter the global
variable name of CUSTOMER_LOGIN_ID, select the data type of VARCHAR, and leave
the default value of NULL. This default value ensures that users that do not use the web
interface do not have permission to access the data. Click OK.

r@ New Global Variable = | B i
Mame: [CUSTOMER_LOGIN_ID
Scherna: |[E BANK_SCHEMA |
Data type
Data type: |VARCHAR |
Lenagth: ’730

Encoding: |Data type default ﬂ

Default Value

Default Value: | NULL = Praview Yalue
Check Syntax

Text: |Cust0mer's Ibg inwalue passed by web application

Show SQL OK£ | Cancel | Help |"|

Figure 4-25 Creating a global variable called CUSTOMER_LOGIN_ID

52 Row and Column Access Control Support in IBM DB2 for i

3. Now that the global variable is created, assign permissions to the variable so that it can be
set by the program. Right-click the CUSTOMER_LOGIN_ID global variable and select
Permissions, as shown in Figure 4-26.

Name Systemn Name | Data Type
A CUSTOMER_LOGIN_ID

o S Definition o
Generate SQL...
Explain SQL

Permissions

s

Comments...

Delete...

Figure 4-26 Setting permissions on the CUSTOMER_LOGIN_ID global variable

4. The Permissions window opens, as shown in Figure 4-27. Select Change authority for
Webuser so that the application can set this global variable.

() Bank_schema.customer_login_id Permissions @M

Ohbject
|IQSYS.LIEIIEIANK_DDDD1 LIB/CUSTOO0001 SRVPGM

Type: Crwiner; Primary group: Authorization list (ALITL):

|Sentice program Meain |(N0ne) |(N0ne)

Autharities views: IElasic *l

Add.. | Remaove Customize...l
[oMolio} &
nun o

Chetrar Prirmary Graup Authorization List

oK I Cancel Apply Help |"|

Figure 4-27 Setting change permissions for Webuser on the CUSTOMER_LOGIN_ID global variable

Chapter 4. Implementing Row and Column Access Control: Banking example 53

4.3.5 Defining and creating row permissions

You now ready to define the row permissions of the tables. Complete the following steps:

1. From the navigation pane of System i Navigator, click Schemas — BANK_SCHEMA,
right-click Row Permissions, and select New — Row Permission, as shown in
Figure 4-28.

=Ry Db2icoe2
E@ Schemas

-5 BANK_SCHEMA

-{E51 All Objects

20 Aliases

Column Masks

..... f_’} Constraints

..... E Functions

----- i3 Global Variables

----- 2 Indexes

% Journal Receivers

@ Journals

----- B Procedures

-B¥ Sequences Explore
----- il SQL Packages
--[T Tables

----- Triggers
aon Types

@ Views Generate SQL...
..... B ¥ML Schema Re

m

Open
Create Shortcut

Customize this View 3

Save List Contents...

E:l"' HR_SCHEMA New b Row Permission

Figure 4-28 Selecting new row permissions

54 Row and Column Access Control Support in IBM DB2 for i

2. The New Row Permission window opens, as shown in Figure 4-29. Enter the information
regarding the row permissions on the CUSTOMERS table. This row permission defines

what is established in the following policy:

— User profiles that belong to DBE, ADMIN, and TELLER group profiles can see all the

rows.

— User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the

database by using the global variable CUSTOMER_LOGIN_ID. The permission rule

uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

— Any other user profile cannot see any rows at all.
Select the Enabled option. Click OK.

r@ MNew Row Permission SRR X
Mame: |PERMISSION1_ON_CUSTOMERS =]
Table schema: | BAMNE_SCHEMA
Table name: | cUSTOMERS

Carrelation name far table: |C

For Rows Where

Search condition: | vERIFY_GROUP_FOR_USER { SESSION_USER , 'DEE', ‘ADMIN', TELLER') =1
OR
{ YERIFY_GROUP_FOR_USER { SESSION_USER , 'CUSTOMER') = 1
AND (C . CUSTOMER_LOGIN_ID = BANK_SCHEMA.CUSTOMER_LOGIN_ID 3}

v Enahled |

Text: |

Show SGQL

4 |

Figure 4-29 New row permissions on the CUSTOMERS table

Chapter 4. Implementing Row and Column Access Control: Banking example

55

3. Define the row permissions for the ACCOUNTS table. The New Row Permission window
opens, as shown in Figure 4-30. Enter the information regarding the row permissions on
the ACCOUNTS table. This row permission defines what is established in the following
policy:

— User profiles that belong to DBE, ADMIN and TELLER group profiles can see all the
rows.

— User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the
database by using the global variable CUSTOMER_LOGIN_ID. The permission rule
uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

— Any other user profile cannot see any rows at all.
Select the Enabled option. Click OK.

[Mew Row Permission o S e S
Mame: |PERMISSION1_ON_ACCOUNTS

Tahle schema: | BAMNK_SCTHEMA

Tahle name: | AccounTs

Correlation name for table: |A

For Rows Wyhere

Search condition: | wERIFY_GROUP_FOR_USER { SESSION_USER , 'DEE', 'ADMIN', TELLER') =1}
oR
{WERIFY_GROUP_FOR_USER { SESSION_USER , 'CUSTOMER') =1

AND (ACUSTOMER_ID M ¢

SELECT C.CUSTOMER_ID
FROM BAMK_SCHEMA.CUSTOMERS C
where C.CUSTOMER_LOGIMN_ID = BANK_SCHEMACUSTOMER_LOGIN_ID

]

Text: |

Show SGQL
1] ﬂ

Figure 4-30 New row permissions on the ACCOUNTS table

56 Row and Column Access Control Support in IBM DB2 for i

4. Define the row permissions on the TRANSACTIONS table. The New Row Permission
window opens, as shown in Figure 4-31. Enter the information regarding the row
permissions on the TRANSACTIONS table. This row permission defines what is
established in the following policy:

— User profiles that belong to DBE, ADMIN, and TELLER group profiles can see all of the
rows.

— User profiles that belong to the CUSTOMERS group profile (that is, the WEBUSER
user) can see only the rows that match their customer login ID. The login ID value
representing the online banking user is passed from the web application to the
database by using the global variable CUSTOMER_LOGIN_ID. The permission rule
uses a subquery to check whether the global variable matches the
CUSTOMER_LOGIN_ID column value in the CUSTOMERS table.

Note: You must join back to ACCOUNTS and then to CUSTOMERS by using a
subquery to check whether the global variable matches CUSTOMER_LOGIN_ID.
Also, if the row permission or column mask rule text references another table with
RCAC defined, the RCAC for the referenced table is ignored.

— Any other user profile cannot see any rows at all.
Select the Enabled option. Click OK.

kA MNew Row Permission SRR X
Mame: |PERMISSION1_ON_TRANSACTIONS

Tahle schema: | BANK_SCHEMA

Tahle name: ||ID TRAMSACTIONS

Caorrelation name for table: |T

For Rows Yehere

| Search condition: | VERIFY_GROUP_FOR_USER (SESSION_USER , DBE', "ADMIN', TELLER') =1}
OR
{VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER' =1
AND (TACCOUNT_ID M ¢

SELECT AACCOUNT_ID
FROM BAMKE_SCHEMAACCOUMNTS A
WHERE ACUSTOMER_ID IM ¢
SELECT C.CUSTOMER_ID
FROM BAME_SCHEMA CUSTOMERS C
WHERE C . CUSTOMER_LOGIM_ID = BAMK_SCHEMACUSTOMER_LOGIMN_ID

1

v Enabled

Text: |

Show SQL

Figure 4-31 New row permissions on the TRANSACTIONS table

Chapter 4. Implementing Row and Column Access Control: Banking example 57

5. To verify that the row permissions are enabled, from System i Navigator, click Row
Permissions, as shown in Figure 4-32. The three row permissions are created and

enabled.

-y Db2icoe2 - ‘ ‘
=65 Schemas Name Table Name Enabled
5155 BANK_SCHEMA (B3I PERMISSIONI_ON_ACCOUNTS BANK_SCHEMAACCOUNTS Yes
_{E) All Objects [PERMISSIONI_ON_CUSTOMERS BANK_SCHEMA.CUSTOMERS Yes

PERMISSIOMNI_ON_TRAMSACTIONS BANK_SCHEMA. TRAMNSACTIONS Yes

-2 Aliases

Column Masks
f:} Constraints
E Functions

433, Global Variables
i Indexes

% Journal Receivers

@ Journals

E Procedures

W5 Row Permissions
- EIi Sequences Lo

Figure 4-32 List of row permissions on BANK_SCHEMA

4.3.6 Defining and creating column masks

58

This section defines the masks on the columns. Complete the following steps:

1. From the main navigation pane of System i Navigator, click Schemas —
BANK_SCHEMA, right-click Column Masks, and select New — Column Mask, as

shown in Figure 4-33.

B[] Schemas

- BANK_SCHEMA
-[E3 All Objects
-2 Aliases

..... Constraints

..... E Functions

..... i Global Variable

@ Journal Receive
@ Journals

..... % Procedures

L Row Permissio
- [B# Sequences

..... il SQL Packages
[T Tables

MName
Explore
Open
Create Shortcut
Customize this View k

Generate SQL...

Save List Contents...

Mew 3

Column Mask |
I~

L1

by

Figure 4-33 Creating a column mask

Row and Column Access Control Support in IBM DB2 for i

2. In the New Column Mask window, which is shown in Figure 4-34, enter the following
information:

— Select the CUSTOMERS table on which to create the column mask.

— Select the Column to mask; in this example, it is CUSTOMER_EMAIL.
— Define the masking logic depending on the rules that you want to enforce. In this
example, either the ADMIN or CUSTOMER group profiles can see the entire email

address; otherwise, it is masked to ****@****,

Select the Enabled option. Click OK.

CLSTOMER_ERMAIL

‘I

... WARCHAR

Mo default

EA New Column Mask SRR X

Marme: |MASK_EMAIL_ON_CUSTOMERS

Tahle schema: | BARK_SCTHEMA

Tahble narme: | cUSTOMERS

Correlation name for table: | [
Column Mame .| Data Type Length | Null. | Default.. | Tesdt | CCSID | Field Pro
CUSTOMER_ID ..| INTEGER Mo
CUSTOMER_MAME | ..|WARCHAR 30 Mo | Mo default ar
CUSTOMER_ADDR...| ...| WVARCHAR 30 Mo | Mo default ar

For column: | CUSTOMER_CITY ...| WARCHAR 30 Mo | Mo default ar
CUSTOMER_STATE | .| CHARACTER 2 Mo | Mo default ar
CUSTOMER_PHOMNE | ...| CHARACTER 10 Mo | Mo default ar

Return

[Enabled |

CASE expression: |case

EMD

WHEMN VERIFY_GROUF_FOR_USER { SESSION_USER , 'ADMIN') = 1
THEMN C . CUSTOMER_EMAIL

WHEMN VERIFY_GROUF_FOR_USER { SESSION_USER , "CUSTOMER") =1
THEMN C . CUSTOMER_EMAIL

Text: |

g

I Show SQL

o1

Figure 4-34 Defining a column mask on the CUSTOMERS table

3. Repeat steps 1 on page 58 and 2 to create column masks for the following columns:
— MASK_DRIVERS_LICENSE_ON_CUSTOMERS

— MASK_LOGIN_ID_ON_CUSTOMERS

— MASK_SECURITY_QUESTION_ANSWER_ON_CUSTOMERS
— MASK_ACCOUNT_NUMBER_ON_ACCOUNTS

— MASK_SECURITY_QUESTION_ON_CUSTOMERS
— MASK_TAX_ID_ON_CUSTOMERS

Chapter 4. Implementing Row and Column Access Control: Banking example

59

4. To verify that the column masks are enabled, from System i Navigator, click Column
Masks, as shown in Figure 4-35. The seven column masks are created and enabled.

EI iy Databases - ‘ Enabled
E| h DbZicoe? Name Table Name Column Name
i - [E) Schemas MASK_ACCOUNT_NUMEER_ON_ACCOUNTS BANK_SCHEMAACCOUNTS ACCOUNT_NUMBER Yes
5 BAMK_SCHEMA MASK_DRIVERS_LICEMNSE_OM_CUSTOMERS BANK_SCHEMA.CUSTOMERS CUSTOMER_DRIVERS_LICENSE_NUMEBER Yes
All Objects BT MASK_EMAIL_ON_CUSTOMERS BANK_SCHEMA.CUSTOMERS CUSTOMER_EMAIL Yes
&5 Aliaser MASK_LOGIN_ID_ON_CUSTOMERS BANK_SCHEMA.CUSTOMERS CUSTOMER_LOGIN_ID Yes
MASK_SECURITY_QUESTION_ANSWER_ON_CUSTOMERS ~ BANK_SCHEMA.CUSTOMERS CUSTOMER_SECURITY_QUESTION_ANSWER ~ Ves
m% MASK_SECURITY_QUESTION_OMN_CUSTOMERS BANK_SCHEMA.CUSTOMERS CUSTOMER_SECURITY_QUESTION Yes
ER Functions MASK_TAX_ID_OMN_CUSTOMERS BANK_SCHEMA.CUSTOMERS CUSTOMER_TAX ID Yes

Figure 4-35 List of column masks on BANK_SCHEMA

4.3.7 Restricting the inserting and updating of masked data

This step defines the check constraints that support the column masks to make sure that on
INSERTS or UPDATES, data is not written with a masked value. For more information about
the propagation of masked data, see 6.8, “Avoiding propagation of masked data” on

page 108.

Complete the following steps:

1. Create a check constraint on the column CUSTOMER_EMAIL in the CUSTOMERS table.
From the navigation pane of System i Navigator, right-click the CUSTOMERS table and
select Definition, as shown Figure 4-36

E‘j Db2icoe? -
E@ Schemas Name System Name Mumber of Flows | Number|

E1-[65 BANK_SCHEMA BT ACCOUNTS ACCOUNTS 100
.[E5 Al Objects B JSTOMERS gQ
3% Aliases [TRANSACTIO Edit Contents
Column Masks View Contents
----- ‘I‘:; Constraints Data »
----- E Functions
----- - Global Variables Definition
----- P Indexes Generate SO h

Figure 4-36 Definition of the CUSTOMERS table

2. From the CUSTOMERS definition window, click the Check Constraints tab and click Add,
as shown in Figure 4-37.

[BANK_SCHEMA.CUSTOMERS =NRCh X

Table] Columns] Key Constraints | Foreign Key Canstraints EHCHECK Constraints | Materializad Guery | Partitioning =

Name | Check condition Text b

Add...

Figure 4-37 Adding a check constraint

60 Row and Column Access Control Support in IBM DB2 for i

3. The New Check Constraint window opens, as shown in Figure 4-38. Complete the
following steps:

a. Select the CUSTOMER_EMAIL column.

b. Enter the check constraint condition. In this example, specify CUSTOMER_EMAIL to
be different from ****@****, which is the mask value.

c. Select the On update violation, preserve column value option and click OK.

Mew Check Constraint

-

Congtraint name: |CUSTOMER_EMAIL_CHECK —

~ Columns ~ Operators —————— 1 Functions —

Colurnn Marme .| Data Type Length | Nul... | Irmpl + = All
CUSTOMER_ID .| INTEGER Mo - = I
CUSTOMER_NAME | VARCHAR 30 Mo * nCos
CUSTOMER_ADDRESS .| VARCHAR 30 Mo ! MDD MONTH
CUSTOMER_CITY | VARCHAR 30 Mo *" ANTILOG
CUSTOMER_STATE ..| CHARACTER 2 Mo Il e
CUSTOMER_FHONE .| CHARACTER 10 Mo COMNCAT Ak

I OMER_EMAIL .. VARCHAR = ATAR
CUSTOMER_TAY_ID ..| CHARACTER 11 Mo = ATAMNH

| | | cCUSTOMER_DRIWERS_LICENSE_... |..| CHARACTER 13 Yes = BIGINT
CUSTOMER_LOGIN_ID | VARCHAR 30 Yes = — BINARY
CUSTOMER_SECURITY_QUESTION | .| vARCHAR 100 Yes o EIT LENGTF
CUSTOMER_SECURITY_QUESTIO... | .| VARCHAR 100 Yes || = BLOEB
INSERT_TIMESTAMP .| TIMESTAMP B Mo R BETWWEEN CEILING
T | o1 | o || fowan

Add to Check Condition |

| Check condition:
CUSTOMER_EMAIL <= g+

-~ Drata vialation

Actions

[Oninsertviolation, setto column default

I-|7 On update violation, preserve column value I

Text: |

4| | 5 N
Figure 4-38 Specifying a new check constraint on the CUSTOMERS table

Chapter 4. Implementing Row and Column Access Control: Banking example 61

4. Figure 4-39 shows that there is now a check constraint on the CUSTOMERS table that
prevents any masked data from being updated to the CUSTOMER_EMAIL column.

[0 BANK_SCHEMA.CUSTOMERS

Table]Cqumns Key Constraints | Fareign Key Constraints Check Constraints | Materialized Guery | Partitioning

MName Check Condition Text
v’ CUSTOMER_EMAIL_CHECK | CUSTOMER_EMAIL <= e gy

J 2]

Show SQL OK%J Cancel | Help |7|

Figure 4-39 Check constraint on the CUSTOMERS table

5. Create all the other check constraints that are associated to each of the masks on the
CUSTOMERS table. After this is done, these constraints should look like the ones that are
shown in Figure 4-40.

Bl Db2icoe2 -
EI@ Schemas MName Type Table Name Enabled
,_:_| BAMK_SCHEMA v’ CUSTOMER_EMAIL_CHECK Check Constraint CUSTOMERS Yes
[All Objects v’ CUSTOMER_TAX_ID_CHECK Check Constraint CUSTOMERS Yes
= Aliases v’ CUSTOMER_LOGIN_ID_CHECK Check Constraint CUSTOMERS Ves
_[E Column Masks v’ CUSTOMER_SECURITY_QUESTION_CHECK Check Constraint CUSTOMERS Yes
v’ CUSTOMER_SECURITY_QUESTION_ANSWER_CHECK Check Constraint CUSTOMERS Yes
E A— v’ CUSTOMER_DRIVERS_LICENSE_CHECK Check Constraint CUSTOMERS Yes
Global Vericbles _‘ACCOUNT NUMEER,_CHECK Check Constraint ACCOUNTS
s ACCOUNT_CUSTOMER_ID_FK Foreign Key Constraint ACCOUNTS Yes
""" < Indeves [B] TRANSACTIONS_ACCOUNT_ID_FK Foreign Key Constraint TRANSACTIONS Yes
- Journal Receivers ©= ACCOUNT_ID_PK Primary Key Constraint ACCOUNTS Yes
- Journals = TRANSACTION_ID_PK Primary Key Constraint TRAMSACTIONS Yes
""" B Procedures &= CUSTOMER_ID_PK Primary Key Constraint CUSTOMERS Yes
B3] Row Permissions 85 CUSTOMER_LOGIN_ID_UK Unique Key Constraint CUSTOMERS Yes

B Sequences
Bl Seq

Figure 4-40 List of check constraints on the CUSTOMERS table

62 Row and Column Access Control Support in IBM DB2 for i

4.3.8 Activating row and column access control

You are now ready to activate RCAC on all three tables in this example. Complete the

following steps:

1. Start by enabling RCAC on the CUSTOMERS table. From System i Navigator, right-click
the CUSTOMERS table and select Definition. As shown in Figure 4-41, make sure that
you select Row access control and Column access control. Click OK.

0H BANK_SCHEMA.CUSTOMERS

Table] Culumns] key Constraints | Foreign Key Cunstraints] Check Constraints | Materialized Cuery | Partitioning

Marme; |CUSTOMERS
Scherma: | [BAMK_SCHEMA
Syster name: |CUSTOMERS =]

[~ Preferred storage media is solid-state drive

[Volatile data

W Row access contral

Figure 4-41 Enabling RCAC on the CUSTOMERS table

2. Enable RCAC on the ACCOUNTS table. Right-click the ACCOUNTS table and select
Definition. As shown Figure 4-42, make sure that you select Row access control and

Column access control. Click OK.

-

[0 BANK_SCHEMA.ACCOUNTS

Table l Cnlumns] ey Constraints | Foreign kKey Cnnstraintsl Check Constraints | Materialized Query | Partitioning

Marmg: |ACCOUNTS
Schema: |5 BANK_SCHEMA
Systern name: |ACCOUNTS |

[Preferred storage media is solid-state drive

[wolatile data

v Row access contral

Figure 4-42 Enabling RCAC on ACCOUNTS

Chapter 4. Implementing Row and Column Access Control: Banking example 63

3. Enable RCAC on the TRANSACTIONS table. Right-click the TRANSACTIONS table and
select Definition. As shown in Figure 4-43, make sure that you select Row access
control. Click OK.

r

00 BANK_SCHEMATRANSACTIONS

Tahle] Columns] Key Caonstraints | Foreign kKey Constraints] Check Caonstraints | Materialized Query| Parditioning

Marne: [TRANSACTIONS
Schema: |l BANK_SCHEMA
System name: |TRANS j

I~ Preferred storage media is solid-state drive

I~ volatile data

™ Column access control

Figure 4-43 Enabling RCAC on TRANSACTIONS

4.3.9 Reviewing row permissions
This section displays all the row permissions after enabling RCAC. Complete the following
steps:

1. From System i Navigator, click Row Permissions, as shown in Figure 4-44. Three
additional Row Permissions are added (QIBM_DEFAULT*). There is one per each row

permission.
=iy Databases -
E‘h DbZicoe? Name Table Name Enabled
L_—J@ Schemas [E5| PERMISSIONI_ON_ACCQUNTS BANK_SCHEMAACCOUNTS Yes
EI BANK SCHEMA [EH) PERMISSIONL_ON_CUSTOMERS BAMNK_SCHEMA.CUSTOMERS es

PERMISSION] _ON TRAMSACTIONS BANK_SCHEMA TRAMNSACTIONS Yes
QIEM_DEFAULT_ACCOUNTS_BAMK_00001 BANK_SCHEMAACCOUNTS Yes
QIEM_DEFAULT_CUSTOMERS_BAMK_00001 BANK_SCHEMA,CUSTOMERS Yes
QIEM_DEFAULT_TRANS_BAMK_00001 BANK_SCHEMA TRAMSACTIONS Yes

-{EF] All Objects
-2 Aliases

Column Masks
..... Constraints

----- E Functions

----- 58 Global Variables

-{gg) Journal Receivers

@ Journals

----- ER Procedures

B} Sequences *

Figure 4-44 Row permissions after enabling RCAC

64 Row and Column Access Control Support in IBM DB2 for i

2. Look at one of the row permission definitions by right-clicking it and selecting Definition,
as shown in Figure 4-45.

Name

PERMISSION]_OM_ACCOUNTS
PERMISSION]_OM_CUSTOMERS
PERMISSION]_OM_TRAMSACTIONS
QIBM_DEFAULT_ACCOUNTS_BANEK_00001
QIBM_DEFAULT_CUSTOMERS_BANK_00001
QIBM_DEFAULT_TRANS_BANEK_00001

Table Name Enabled

BAMNK_SCHEMAACCOUNTS Yes
BAMK_SCHEMA.CUSTOMERS Yes

Yes

Generate SQL... % ONS es

Comments...

Delete...

Figure 4-45 Selecting row permission definition

3. A window opens, as shown in Figure 4-46. Take note of the nonsensical search condition
(0=1) of the QIBM_DEFAULT row permission. This permission is ORed with all of the
others and it ensures that if someone does not meet any of the criteria from the row
permission then this condition is tested, and because it is false the access is denied.

@ BAMNK_SCHEMAQIEM_DEFAULT_ACCOUNTS_BAMK_00001 l = i[=] ﬂ
Table schema: | BAMNE_SCHEMA fu
Table name: | AcCOUNTS
Correlation name far tahle: |Notspeciﬂed
For Rows Where
Search condition: =13
v Enahled
I Regenerate
Text: |
Show SGQL =
Kl]
Figure 4-46 Search condition of the QIBM_DEFAULT row permission

Chapter 4. Implementing Row and Column Access Control: Banking example 65

4.3.10 Demonstrating data access with RCAC

You are now ready to test the RCAC definitions. Run the following SQL statements with each
type of user (DBE, SECURITY, TELLER, ADMIN, and WEBUSER):

» A SELECT statement that returns the SESSION_USER.

» A SELECT statement that counts the customers from the CUSTOMER table. There are 90
customers in the CUSTOMER table.

» A simple SELECT statement that returns the following output from the CUSTOMERS table
ordered by customer_name:

— customer_id

— customer_name

— customer_email

— customer_tax_id

— customer_drivers_license_number

Data access for a DBE user with RCAC
To test a DBE (MCAIN) user, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-47. In this example, MCAIN is the DBE user.

select session_user as USER from sysibm.sysdummy1)|

USER
MCAIM

Figure 4-47 DBE session user

2. The number of rows that the DBE user MCAIN can see is shown in Figure 4-48.

select count(™) as ROW_COUNT from bank_schema.customers;|

ROwY_COUNT
ao

Figure 4-48 Number of rows that DBE user can see in the CUSTOMERS table

66 Row and Column Access Control Support in IBM DB2 for i

3. The result of the third SQL statement is shown in Figure 4-49. Note the masked columns.
User MCAIN can see all the rows in the CUSTOMERS table, but there are some columns
where the result is masked.

select customer_id,
customer_name,
customer_ermail,
customer_tax_id,
customer_drivers_license_number
fram hank_schema.customers
order by customer_name;|
CUSTOMER_ID | CUSTOMER_MNAME CUSTOMER_EMAIL CUSTOMER_TAX_ID | CUSTOMER_DRIMNERS_LICENSE_NUMEER
1|Adam O. Clsen T RO
2Aimee Comptan T AR
FAmeny WOWright T AR -
4lAnika 5. Holmes R PRI =
SAnn Norton T AR —
GAshely R. Colling T AR il
TiAspen Frost T AR -
gAthena R. Burt R PRI =
YAurelia Hebert T AR —
10|Barry X. Molina T RO il
11|Beck B. Thomas T OO -
12|Benedict ¥. Nolan R AR A r——
13|Bernard K. Bowen T R R KA, i
14|Caldwell Floyd T RO —
15|Carson Curtis T AR il
16|Chloe U. Madden T AR -
17|Ciaran Atking R PRI =
18|Colton Molina T RO —
19|Conan W. Maynard T AR il
20/Demetrius R. Barnes T AR -
21|Drake Preston R R R KA, i
22|Echo Pacheco T AR —
23|Edan Henry T RO il
24|Elvis Grant T OO -
25Emily M. Carpenter R AR A r——
26|Evelyn Y. Velez R PRI =

Figure 4-49 SQL statement that is run by the DBE user with masked columns

Data access for SECURITY user with RCAC
To test a SECURITY user, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-50. In this example, SECURITY is the security officer.

select session_user as USER from sysibm sysdummy1;|

USER
SECURITY

Figure 4-50 SECURITY session user

Chapter 4. Implementing Row and Column Access Control: Banking example 67

2. The number of rows in the CUSTOMERS table that the security officer can see is shown in
Figure 4-51. The security officer cannot see any data at all.

select count(*) as ROW_COUNT from bank_schema customers;|

ROwY_COUNT
a

Figure 4-51 Number of rows that the security officer can see in the CUSTOMERS table

3. The result of the third SQL statement is shown in Figure 4-52. Note the empty set that is
returned to the security officer.

select customer_id,
customer_name,
customer_email,
customer_tax_id,
customer_drivers_license_number

from bank_schema.customers
arder by customer_name;
CUSTOMER_ID | CUSTOMER_NAME CUSTOMER_EMAIL CUSTOMER_TAX_ID CUSTOMER_DRIVERS_LICENSE_NUMBER
Empty Set

Figure 4-52 SQL statement that is run by the SECURITY user - no results

Data access for TELLER user with RCAC
To test a Teller (TQSPENCER) user, complete the following steps:

1. Confirm that the TELLER user is the user of the session by running the first SQL
statement, as shown in Figure 4-53. In this example, TQSPENCER is a TELLER user.

select session_user as USER fram sysibm . sysdummy1|

USER
TQSPEMSER

Figure 4-53 TELLER session user

68 Row and Column Access Control Support in IBM DB2 for i

2. The number of rows in the CUSTOMERS table that the TELLER user can see is shown in
Figure 4-54. The TELLER user can see all the rows.

select count(*) as ROW_COUNT from bank_schema custaomers;|

ROwY_COUNT
ao

Figure 4-54 Number of rows that the TELLER user can see in the CUSTOMERS table

3. The result of the third SQL statement is shown in Figure 4-55. Note the masked columns.
The TELLER user, TQSPENSER, can see all the rows, but there are some columns where

the result is masked.

select customer id,
customer_name,
customer_email,
customer_tax_id,
customer_drivers_license_number
fram hank_schema customers
order by customer_name;

CUSTOMER_ID | CUSTOMER_NAME CUSTOMER_EMAIL CUSTOMER_TAX_ID | CUSTOMER_|
1|Adam 0. Olsen i i R A-032T 158013011208
2Aimee Compton i W A-B075 R10041455585
alAmery W Wright i i R A-0275 WWEEE 3444901
4lAnika 5. Holmes i WK A-B8E3 WW3T38994596
2lAnn Morton i i -rA-9303 B130200513925
BlAshely R Colling i WA 4047 W3TOE5T56164
7|Aspen Frost i i - A-0556 45436122527
glathena R. Burt i W A-BBTT E71527862628
9|Aurelia Hebert i i R A-0744 ABEIZE929521

10|Barry ¥. Molina i Wr-r - 1803 ATI416938734
11|Beck B. Thomas i i r-RA-BE24 »o0729251955
12|Benedict . Nolan i R A-9T61 A03540028524
13|Bernard K. Bowen i i - A-0702 L11397023793]
14| Caldwell Floyd i R 10589 YB2TEE28157]
15|Carson Curtis i i =X A-0070 WO7E71751347
16|Chloe U. Madden i W A-0282 WEE122273009
17|Ciaran Atking i i - A-0955 51650155392
18|Caolton Molina i WK A-0370 R340626283858
19|Conan V. Maynard i i -RA-8181 5021340539596
20|Demetrius R. Barnes i A= 1341 2245939311750
21|Drake Preston i i -RA- 2231 I09807 76373
22|Echo Pacheco i W A-0142 A00960253434
23|Edan Henry i i - A-0560 A7E97 7129664
24|Elvis Grant i R - 1805 C316585926174

Figure 4-55 SQL statement that is run by the TELLER user with masked columns

Chapter 4. Implementing Row and Column Access Control: Banking example 69

Data access for ADMIN user with RCAC
To test an ADMIN (VGLUCCHESS) user, complete the following steps:

1. Confirm that the ADMIN user is the user of the session by running the first SQL statement,
as shown in Figure 4-56. In this example, VGLUCCHESS is an ADMIN user.

select session_user as USER from sysibm . sysdummy1|

USER
WELUCCHESS

Figure 4-56 ADMIN session user

2. The number of rows that the ADMIN user can see is shown in Figure 4-57. The ADMIN
user can see all the rows.

select count(™) as ROW_COUNT fram bank_schema customers;

RO _COUNT
90

Figure 4-57 Number of rows that the ADMIN can see in the CUSTOMERS table

70 Row and Column Access Control Support in IBM DB2 for i

3. The result of the third SQL statement is shown in Figure 4-58. There are no masked
columns.

select customer_id,
customer_name,
customer_email,
customer_tax_id,
customer_drivers_license_number

fram bank_schema . customers
order by customer_name;

CUSTOMER_ID | CUSTOMER_NAME CUSTOMER_EMAIL CUSTOMER_TAX_ID | CUSTOMER_DREI
1Adam 0. Olsen Adarm_O._Qlsenggmail.com 451-30-5327 Q1580150112055
2/Aimee Compton Aimee_Comptong@mail.net 146-92-8075 F100414559519
Jamerny WOWwWright Amery W Wright@Email.net 53536-77-5275 WHEEE3A4480177
4lAnika 5. Holmes Anika_5._HolmesE@mail.net 416-22-8564 W37 38994859631
5lann MNorton Ann_Norton@mail.net TT0-27-9305 B130200519256
glAshely R. Colling Ashely R._Collins@gmail.com 377-14-4047 375657061646
TlAspen Frost Aspeni@mail.net 954-99-0596 454361225229
glAthena R. Burt Athen@mail.net 723-23-6E77 E715278626289
glaurelia Hehert Aurelia_Heberti@aormail.com 202-89-0744 ABBI2E9295219

10|Barry X. Molina Barry@@mail.net 490-90-1604 A7841693575344
11|Beck B. Thomas Beck B._Thomas@mail.net 554-57-6624 WB0T7Z292519585
12|Benedict ¥. Nolan Benedict_¥'._Molan@gmail.com B40-52-9761 Al85400285247
13|Bernard K. Bowen Bernard_K._Bowen@mail.net 229-22-0702 Q1139702379375
14|Caldwell Floyd Caldwizmail.net Ja2-77-1099 27882813752
15|Carson Curtis Carson_Curtis@ogmail.com 157-558-5070 WOTET17513479
16/Chloe U. Madden Chloe_U._Madden@gmail.com 799-58-0282 WEE1222730096
17|Ciaran Atking Ciaran_Atkins@amail.com 501-17-8995 G16501583539276
18|Colton Maolina Colto@mail.net 141-95-0370 F3406262583582
19|Conan W. Maynard Conan_W._Maynard@omail.com T98-23-5181 5021340899699
20Demetrius K. Barnes Demetrius_R._Barnes@gmail.com 350-11-1341 1224893117805
21|Drake Preston Drake_Preston@drmail.com 850-45-2231 WA098077E575T
22|Echo Pacheco Echo_Pacheco@omail.com 575-38-5142 Al09602534560
25/Edan Henry Edan HenrwE@drmail.com T74-89-8560 ATEITT1296645

Figure 4-58 SQL statement that is run by the ADMIN user - no masked columns

Data access for WEBUSER user with RCAC
To test a CUSTOMERS (WEBUSER) user that accesses the database by using the web
application, complete the following steps:

1. Confirm that the user is the user of the session by running the first SQL statement, as
shown in Figure 4-59. In this example, WEBUSER is a CUSTOMER user.

select session_user as USER fram sysibm sysdurmrmy1;

USER
WWEBUSER

Figure 4-59 WEBUSER session user

Chapter 4. Implementing Row and Column Access Control: Banking example 71

72

2. A global variable (CUSTOMER_LOGIN_ID) is set by the web application and then is used
to check the row permissions. Figure 4-60 shows setting the global variable by using the
customer login ID.

set bank_schema.customer_login_id = 'KLD72CQREIG", < set by web application

select bank_schema.customer_login_id as CUSTOMER_LOGIM_ID from S5Y'5I18M. 5 S0URMMWMY T,

CUSTOMER_LOGIN_ID
KLD72CARBIG

Figure 4-60 Setting the global variable CUSTOMER_LOGIN_ID

3. Verify that the global variable was set with the correct value by clicking the Global
Variable tab, as shown in Figure 4-61.

set hank_schema.customer login_id = 'KLD72CQREJG"

Name | value
&- BANK_SCHEMA CUSTOMER_LOGIN_ID 'KLD72CGREJG'

Messages| Global variables |

Figure 4-61 Viewing the global variable value

4. The number of rows that the WEBUSER can see is shown in Figure 4-62. This user can
see only the one row that belongs to his web-based user ID.

select count(™ as ROw_COUNT from bank_schema.customers,

ROV COUNT
1

Figure 4-62 Number of rows that the WEBUSER can see in the CUSTOMERS table

Row and Column Access Control Support in IBM DB2 for i

5. The result of the third SQL statement is shown in Figure 4-63. There are no masked
columns, and the user can see only one row, which is the user’s own row.

select customer_id,
customer_name,
customer_email,
customer_tax_id,
customer_drivers_license_number

from bank_schema.customers
order by custumer_name;|
CUSTOMER_ID | CUSTOMER_MAME | CUSTOMER_EMAIL CUSTOMER_TAX_ID | CUSTOMER_DRIVERS_LICENSE_NUMBEER
1|Adam O. Olsen Adam_0. Olsengdgmail.com [451-30-5327 Q580130112053

Figure 4-63 SQL statement that is run by WEBUSER - no masked columns

Other examples of data access with RCAC

To run an SQL statement that lists all the accounts and current balance by customer,
complete the following steps:

1. Run the SQL statement that is shown in Figure 4-64 using the WEBUSER user profile.
The SQL statement has no WHERE clause, but the WEBUSER can see only his

accounts.

L- Obtain list of accounts and current balance by customer

select c.customer_name,
a.account_number,
a.account_current_halance

fram bank_schema.customers c
inner join bank_schema accounts a

o (c.customer_id = a.customer_id)
order by a.account_number,

CUSTOMER_MAME ACCOUNT_MUMBER ACCOUNT_CURRENT_BALANCE
Adarn 0. Dlsen ESR297776393895751651945 2188.10
Adam 0. Olsen MDB094870133007960377717 3175.88
Adam 0. Dlsen ROZ5Z0079584 143566592904 3104 .36

Figure 4-64 List of accounts and current balance by customer using the WEBUSER user profile

Chapter 4. Implementing Row and Column Access Control: Banking example 73

2. Figure 4-65 shows running a more complex SQL statement that calculates transaction
total by account for year and quarter. Run this statement using the WEBUSER profile. The
SQL statement has no WHERE clause, but the WEBUSER user can see only his
transactions.

-- Calculate transaction total by account for year and quarter

select C.CUstOmer_name as name,
a.account_number as account,
year(t transaction_date) as year,
guarter(t.transaction_date) as quarter,
sum(t transaction_amaount) as total

from bank_schema.customers ¢
inner join hank_schema.accounts a

on (c.customer_id = a.customer_id)
inner join hank_schema transactions t

on (a.account_id = t.account id)

group by £ customer_narme,
a.account_number,
year(t transaction_date),
quarter(t transaction_date)
order by £ customer_narme,
a.account_number,
year(t transaction_date),
quarter(t transaction_date);

MNAME ACCOUNT YEAR | QUARTER TOTAL
Adarm O. 0lsen ESEZ9777E393893751651545 2013 3 B34.35
Adam O. Olsen ESEYS77763938553751651945 2013 4 8920.59
Adarm O. 0lsen ESEZ9777E393893751651545 2014 1 346.41
Adam O. Olsen ESEYS77763938553751651945 2014 2 286.75
Adarm O. 0lsen MODBO94570133007960377717 2013 2 T16.41
Adam O. Olsen MOB0948701.33007960577717 2013 g -278.28
Adarm O. 0lsen MODBO94570133007960377717 2013 4 1506.35
Adam O. Olsen MOB0948701.33007960577717 2014 1 2010.37
Adarm O. 0lsen MODBO94570133007960377717 2014 2 -775.95
Adam O. Olsen RO25L0029584143366592804 2013 4 2324.04
Adarm O. 0lsen RO2570079584143566592804 2014 1 11583.69
Adam O. Olsen RO25L00429584143366592804 2014 2 -403.37

Figure 4-65 Calculate transaction total by account for year and quarter using the WEBUSER profile

74 Row and Column Access Control Support in IBM DB2 for i

3. Run the same SQL statement that lists the accounts and current balance by customer, but
use a TELLER user profile. The result of this SQL statement is shown in Figure 4-66. The
TELLER user can see all the rows in the CUSTOMERS table.

-- Obtain list of accounts and current balance by customer
select C.customer_name,
a.account_number,
a.account_current_balance

fram bank_schema.customers o
inner join fhank_schema.accounts a
on (c.customer_id = a.customer_id)
order by a.accnunt_number;|

CUSTOMER_NAME ACCOUNT_MUMBER ACCOUNT_CURRENT_BALAMCE
Bernard K. Bowen ADO463553:39023145964 101965 0.0o
Evelyn . Velez ADSS00255175441289225701 0.0o
Barry X. Molina ADBO7E223565008050426825 4509.64
Evelyn . Velez ALSEZ226760957465659207 726336 0.0o
Emily M. Carpenter ALBSETE3455227241259835215840 0.0o
Griffith K. Houston AT025553951060191435 0.0o
Edan Henry AT228233541853170130 0.0o
Athena R. Burt AZ33284179664581735937389369 3406.587
Fritz Mendoza AZA0294326545209152260806426 0.0o
Beck B. Thomas AZ9855205825340600422745 1634 4356.33
Griffith K. Houston BAB11667035494848539 0.0o
Amery W.OwWright EGOGSIES92157851305880 336847
Benedict . Malan BGE2PAT Q5524 14750253069 0.0o
Amery W, Wright BHE1276149127304731856 1848.63
Griffin T. Miewves CH947226702627 1632989 0.0o
Farrah Gray CR78968153784330877615 0.0o
Ciaran Atking CR9383751672140421147 0.0o
Athena R. Burt CZ2483265860184555754259 2396.09
Beck B. Thomas CZ27E328E613152842021101 2791.32
Griffin T. MNiewves CZ6117397346176186517859 0.0o
Grady F. Curry DE9S5756732171571929510 0.0o
Evelyn . Velez DKO486118222853611 0.0o
Ferris Livingston DK1538983647512967 0.0o

Figure 4-66 List of accounts and current balance by customer using a TELLER user profile

4.3.11 Query implementation with RCAC activated

This section looks at some other interesting information that is related to RCAC by comparing
the access plans of the same SQL statement without RCAC and with RCAC. This example
uses Visual Explain and runs an SQL statement that lists the accounts and current balance

by customer.

Chapter 4. Implementing Row and Column Access Control: Banking example

75

Complete the following steps:

1. Figure 4-67 shows the SQL statement in Visual Explain ran with no RCAC. The
implementation of the SQL statement is a two-way join, which is exactly what the SQL
statement is doing.

Final Select

o0

==
Mested Loop Join

N

3 £ <

= p———

Sorted List Scan Table Prohe
BAMNK_SCHEMA.CUSTOMERS

\ P

Ternporary Sorted List Index Prohe
BANK_SCHEMA.CUSTOMER_ID_PK

00

Tahle Scan
BAMNK_SCHEMA ACCOUNTS

Figure 4-67 Visual Explain with no RCAC enabled

76 Row and Column Access Control Support in IBM DB2 for i

2. Figure 4-68 shows the Visual Explain of the same SQL statement, but with RCAC
enabled. It is clear that the implementation of the SQL statement is more complex
because the row permission rule becomes part of the WHERE clause.

==
Mested Loap Jain

k!
/ \
Mested Loop Join Fetch K Rows
T

¥ o

Table Scan Table Probe Union all
BANE_SCHEMACUSTOMERS BANK_SCHEMAACCOUNTS

& LV

Index Probe Logic And

BAMNK_SCHEMAACCOUNT_CUSTOMER_ID_FK
<1
/ \
Cd
] +Eﬂ_=
—

Logic Table Prohe
BAMK_SCHEMA CUSTOMERS

|
%

Index Probe
BAMK_SCHEMA CUSTOMER_ID_PK

Figure 4-68 Visual Explain with RCAC enabled

3. Compare the advised indexes that are provided by the Optimizer without RCAC and with
RCAC enabled. Figure 4-69 shows the index advice for the SQL statement without RCAC
enabled. The index being advised is for the ORDER BY clause.

ol Index and Statistics Advisor &J

| statistics Advisar|

Itis recommended that the fallowing indexes he created:

Create | Tahle Mame | Schema Index Type Columns Sort Sequence ||
v ACCOUNTS BANE_ODOD1 Binary Radix ACCOUNT_NUMBER Mone (Sort by hexadecimal value)

Figure 4-69 Index advice with no RCAC

Chapter 4. Implementing Row and Column Access Control: Banking example 77

4. Now, look at the advised indexes with RCAC enabled. As shown in Figure 4-70, there is an
additional index being advised, which is basically for the row permission rule. For more
information, see 6.4.2, “Index advisor” on page 99.

o) Index and Statistics Advisor ﬁ

Statistics Advisor |

Itis recommended that the following indexes be created:

Create | Table Mame | Schema Index Type Calumns Sort Sequence | |
v ACCOUNTS BAmE_00001 Binary Radix ACCOUNT_NUMEER Mone {Sort by hexadecimal value)
v CLSTOMERS BAmE_00001 Binary Radixk CUSTOMER_LOGIM_ID Mone {Sort by hexadecimal value)
CUSTOMER_ID

Figure 4-70 Index advice with RCAC enabled

78 Row and Column Access Control Support in IBM DB2 for i

RCAC and non-SQL interfaces

A benefit of Row and Column Access Control (RCAC) is that its security controls are enforced
across all the interfaces that access DB2 for i because the security rules are defined and
enforced at the database level. The examples that are shown in this paper focus on
SQL-based access, but row permissions and column masks also are enforced for non-SQL
interfaces, such as native record-level access in RPG and COBOL programs and CL
commands, such as Display Physical File Member (DSPPFM) and Copy File (CPYF).

This consistent enforcement across all interfaces is a good thing, but there are some nuances
and restrictions as a result of applying an SQL-based technology such as RCAC to non-SQL
interfaces. These considerations are described in this chapter.

The following topics are covered in this chapter in this chapter:

v

Unsupported interfaces

Native query result differences
Accidental updates with masked values
System CL commands considerations

vvyy

© Copyright IBM Corp. 2014. All rights reserved. 79

5.1 Unsupported interfaces

It is not possible to create a row permission or column mask on a distributed table or a
program-described file.

After a row permission or column mask is added to a table, there are some data access
requests that no longer work. An attempt to open or query a table with activated RCAC
controls involving any of the following scenarios is rejected with the CPD43A4 error message:

» Alogical file with multiple formats if the open attempt requests more than one format.
» A table or query that specifies an ICU 2.6.1 sort sequence.
» A table with read triggers.

This unsupported interface error occurs when a table with RCAC controls is accessed, not
when the RCAC control is created and activated.

For example, assume that there is a physical file, PF1, which is referenced by a single format
logical file (LFS) and a multi-format logical file (LFM). A row permission is successfully
created and activated for PF1. Any application that accesses PF1 directly or LFS continues to
work without any issues. However, any application that opens LFM with multiple formats
receives an error on the open attempt after the row permission is activated for PF1.

Important: This potential runtime error places a heavy emphasis on a comprehensive
testing plan to ensure that all programs are tested. If testing uncovers an unsupported
interface, then you must investigate whether the application can be rewritten to use a data
access interface that is supported by RCAC.

5.2 Native query result differences

80

The SQL Query Engine (SQE) is the only engine that is enhanced by IBM to enforce RCAC
controls on query requests. In order for native query requests to work with RCAC, these
native query requests are now processed by SQE instead of the Classic Query Engine
(CQE). Native query requests can consist of the following items:

Query/400

QQQQRY API

Open Query File (OPNQRYF) command

Run Query (RUNQRY) command

Native open (RPG, COBOL, OPNDBF, and so on) of an SQL view

vyvyyvyyy

Legacy queries that have been running without any issues for many years and over many
IBM i releases are now processed by a different query engine. As a result, the runtime
behavior and results that are returned can be different for native query requests with RCAC
enabled. The OPNQRYF command and Query/400 run with SQE by default.

The following list documents some of the query output differences that can occur when native
query requests are processed by CQE:

Different ordering in the result set

Different values for null columns or columns with errors
Suppression of some mapping error messages

Loss of RRN positioning capabilities

Duplicate key processing behavior differences

Missing key feedback

vVvyYvYyvYyYYyy

Row and Column Access Control Support in IBM DB2 for i

For a list of the differences and additional details, see the IBM i Memo to Users Version 7.2,
found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/rzahg/rzahgmtu.htm

In addition, the performance of a native query with SQE can be different. It is possible that a
new index or keyed logical file might need to be created to improve the performance.

Important: Based on the potential impacts of query result set and performance
differences, you should perform extensive functional testing and performance
benchmarking of applications and reports that use native query interfaces.

5.3 Accidental updates with masked values

The masked values that are returned by a column mask can potentially cause the original
data value to be accidentally overwritten, especially with applications using native record-level
access.

For example, consider a table containing three columns of first name, last name, and tax ID
that is read by an RPG program. The user running the program is not authorized to see the
tax ID value, so a masked value (*****3333) is written into the program's record buffer, as
shown Figure 5-1.

In this example, the application reads the data for an update to correct the misspelling of the
last name. The last name value is changed to Smith in the buffer. Now, a WRITE request is
issued by the program, which uses the contents of the record buffer to update the row in the
underlying DB2 table. Unfortunately, the record buffer still contains a masked value for the tax
ID, so the tax ID value in the table is accidentally set to the masked value.

HLL Program using Native Record-Level Access

READ
Record Buffer-> Joe Smyth ***#%*3333

/* Application logic corrects last name to Smith */

WRITE

Record Buffer-> Joe Smith ****%*3333

TaxID value changed
from 11122333 to *****3333

Figure 5-1 Accidental update with masked values scenario

Chapter 5. RCAC and non-SQL interfaces 81

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm

Obviously, careful planning and testing should be exercised to avoid accidental updates with
masked values.

DB2 for i also enhanced its check constraint support in the IBM i 7.2 release with a new ON
UPDATE clause that allows the existing value to be preserved when a masked value is detected
by a check constraint. Details about how to employ this new check constraint support can be
found in 6.8.1, “Check constraint solution” on page 108.

5.4 System CL commands considerations

As stated earlier, RCAC controls are enforced on all data access interfaces. This enforcement
is not limited to programmatic interfaces; it also includes system CL commands that read and
insert data, such as the Create Duplicate Object (CRTDUPOBJ) and Start DFU (STRDFU) CL
commands. This section documents the behavior of the Create Duplicate Object (CRTDUPOBJ),
Copy File (CPYF), and Copy Library (CPYLIB) CL commands with RCAC.

5.4.1 Create Duplicate Object (CRTDUPOBJ) command

The CRTDUPOBJ command is enhanced with a new Access Control (ACCCTL) parameter in the
IBM i 7.2 release to copy RCAC controls to the new object being created. Row permissions
and column masks are copied to the new object by default because the default value for the
ACCCTL parameter is *ALL.

If the invoker of the CRTDUPOBJ command asks for data to be copied with a value of *YES for
the DATA parameter, the value of the ACCCTL parameter must be *ALL. If not, the command
invocation receives an error.

When data is copied to the duplicated object with the DATA parameter, all rows and unmasked
column values are copied into the new object, even if the command invoker is not authorized
to view all rows or certain column values. This behavior occurs because the RCAC controls
also are copied to the new object. The copied RCAC controls enforce that only authorized
users are allowed to view row and column values in the newly duplicated object.

5.4.2 Copy File (CPYF) command

82

The CPYF command copies only data, so there is no new parameter to copy RCAC controls to
the target table. Therefore, if CPYF is used to create a target table, there are no RCAC controls
placed on the target table.

When RCAC controls are in place on the source table, the CPYF command is limited to reading
rows and column values that are based on the invoker of the CPYF command. If a user is
authorized to see all rows and column values, then all rows and unmasked column values are
copied to the target table (assuming no RCAC controls are on the target table). If a user
without full access runs the CPYF command, the CPYF command can copy only a subset of the
rows into the target table. In addition, if that user can view only masked column values, then
masked values are copied into the target table. This also applies to the Copy to Import File
(CPYTOIMPF) command.

If the target table has RCAC controls defined and activated, then the CPYF command is
allowed only to add or replace rows in the target table based on the RCAC controls. If CPYF
tries to add a row to the target table that the command invoker is not allowed to view
according to the target RCAC controls, then an error is received.

Row and Column Access Control Support in IBM DB2 for i

5.4.3 Copy Library (CPYLIB) command

The CPYLIB command is enhanced with the same Access Control (ACCCTL) parameter as the
CRTDUPOBJ command in the IBM i 7.2 release (see 5.4.1, “Create Duplicate Object
(CRTDUPOBJ) command” on page 82). Row permissions and column masks are copied to
the new object in the new library by default because the default value for the ACCCTL
parameter is *ALL.

Chapter 5. RCAC and non-SQL interfaces 83

84 Row and Column Access Control Support in IBM DB2 for i

Additional considerations

This chapter covers additional considerations that must be taken into account when
implementing Row and Column Access Control (RCAC), including the following functions:

Timing of column masking

Data movement

Joins

Views

Materialized query tables

Index advisor

Monitoring, analysis, and debugging
Performance and scalability

vVVyVYyVYVYVYYVvYYyY

The following topics are covered in this chapter:

Timing of column masking

RCAC effects on data movement

RCAC effects on joins

Monitoring, analyzing, and debugging with RCAC

Views, materialized query tables, and query rewrite with RCAC
RCAC effects on performance and scalability

Exclusive lock to implement RCAC (availability issues)
Avoiding propagation of masked data

Triggers and functions (SECURED)

RCAC is only one part of the solution

YVYVYVYVYVYVYVYYVYY

© Copyright IBM Corp. 2014. All rights reserved. 85

6.1 Timing of column masking

An important design and implementation consideration is the fact that RCAC column masking
occurs after all of the query processing is complete, which means that the query results are
not at all based on the masked values. Any local selection, joining, grouping, or ordering
operations are based on the unmasked column values. Only the final result set is the target of
the masking.

An example of this situation is shown in Figure 6-1. However, note that aggregate functions (a
form of grouping) are based on masked values.

SELECT CREDIT_CARD_NUMBER,
SUM(AMOUNT) AS TOTAL

FROM TRANSACTIONS

GROUP BY CREDIT_CARD_NUMBER

ORDER BY CREDIT_CARD_NUMBER;

Without RCAC Masking

CREDIT_CARD_NUMBER TOTAL

With RCAC Masking

CREDIT_CARD_NUMBER TOTAL

86

3785 0000 0000 1234 233.50 HAAE HAAA Ak 1234 233.50
378511111111 1234 105.10 HREK okkk xkA% 1234 105.10
37852222 2222 1234 300.00 HAHKK Aokokk xxx% 1234 300.00
37853333 33331234 1,775.00 HAAE HAAR AR 1234 1,775.00
5466 4444 4444 1234 601.70 HRKK okkk xkA% 1234 601.70
5466 5555 5555 1234 37.80 A oAk Akkx 1234 37.80
5466 6666 6666 1234 490.45 K okkk xkAk 1234 490.45
6011 7777 7777 1234 1005.00 HHK okkk xxx% 1234 1005.00
6011 8888 8888 1234 750.33 HAAE kK Ak 1234 750.33
6011 9999 9999 0001 10.00 RIEE xAAR XEXX 0001 10.00

Figure 6-1 Timing of column masking

Row and Column Access Control Support in IBM DB2 for i

Conversely, field procedure masking causes the column values to be changed (that is,
masked) and stored in the row. When the table is queried and the masked columns are
referenced, the masked data is used for any local selection, joining, grouping, or ordering
operations. This situation can have a profound effect on the query's final result set and not
just on the column values that are returned. Field procedure masking occurs when the
column values are read from disk before any query processing. RCAC masking occurs when
the column values are returned to the application after query processing. This difference in
behavior is shown in Figure 6-2.

Note: Column masks can influence an SQL INSERT or UPDATE. For example, you cannot
insert or update a table with column access control activated with masked data generated
from an expression within the same statement that is based on a column with a column
mask.

. 4
[

[]
RCAC
Column mask
processing
8
SQE Selectigh Processing
FieldProc
Decode and mask
r3vS#45zt!J9*m$p6 processing

Figure 6-2 Masking differences between Fieldproc and RCAC

Chapter 6. Additional considerations 87

6.2 RCAC effects on data movement

As described earlier and shown in Figure 6-3, RCAC is applied pervasively regardless of the
data access programming interface, SQL statement, or IBM i command. The effects of RCAC
on data movement scenarios can be profound and possibly problematic. It is important to
understand these effects and make the appropriate adjustments to avoid incorrect results or
data loss.

RCAC

Permissions
Masks

Source

SELECT INSERT

Table

Figure 6-3 RCAC and data movement

The “user” that is running the data movement application or process, whether it be a high
availability (HA) scenario, an extract, transform, load (ETL) scenario, or just copying data from
one file or table to another one, must have permission to all the source rows without masking,
and not be restricted from putting rows into the target. Allowing the data movement
application or process to bypass the RCAC rules must be based on a clear and concise
understanding of the organization's object security and data access policy. Proper design,
implementation, and testing are critical success factors when applying RCAC.

Important: RCAC is applied to the table or physical file access. It is not applied to the
journal receiver access. Any and all database transactions are represented in the journal
regardless of RCAC row permissions and column masks. This makes it essential that
IBM i security is used to ensure that only authorized personnel have access to the
journaled data.

This section covers in detail the following three examples:

» Effects when RCAC is defined on the source table
» Effects when RCAC is defined on the target table
» Effects when RCAC is defined on both source and target tables

6.2.1 Effects when RCAC is defined on the source table

88

Example 6-1 shows a simple example that illustrates the effect of RCAC as defined on the
source table.

Example 6-1 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

Row and Column Access Control Support in IBM DB2 for i

For example, given a “source” table with a row permission defined as NAME <> 'CAIN' and a
column mask that is defined to project the value 999.99 for AMOUNT, the SELECT statement
produces a result set that has the RCAC rules applied. This reduced and modified result set is
inserted into the “target” table even though the query is defined as returning all rows and all

columns. Instead of seven rows that are selected from the source, only three rows are

returned and placed into the target, as shown in Figure 6-4.

0001

Source
Table

CAIN

RCAC Effects on Data Movement

10.00

0002

BEDOYA

25.50

0003

CAIN

333.00

0004

BEDOYA

75.25

0005

CAIN

987.65

0006

BEDOYA

123.45

0007

CAIN

1.00

RCAC Rule Text

Permission: WHERE NAME <> ‘CAIN’

Mask: AMOUNT - 999.99

PKey
0002

Name

BEDOYA

Amount

999.99

0004

BEDOYA

999.99

0006

BEDOYA

999.99

—
INSERT INTO TARGET (SELECT * FROM SOURCE);

Figure 6-4 RCAC effects on data movement from SOURCE

6.2.2 Effects when RCAC is defined on the target table

Example 6-2 shows a simple example that illustrates the effect of RCAC as defined on the

target table.

Example 6-2 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

Chapter 6. Additional considerations

89

Given a “target” table with a row permission defined as NAME <> 'CAIN' and a column mask
that is defined to project the value 999.99 for AMOUNT, the SELECT statement produces a
result set that represents all the rows and columns. The seven row result set is inserted into
the “target”, and the RCAC row permission causes an error to be returned, as shown in
Figure 6-5. The source rows where NAME = 'CAIN' do not satisfy the target table's permission,
and therefore cannot be inserted. In other words, you are inserting data that you cannot read.

RCAC Effects on Data Movement

RCAC Rule Text

Source

Table

Mask: AMOUNT - 999.99

PKey Name Amount

0001 | CAIN 10.00

0002 | BEDOYA 25.50 I

0003 | CAIN 333.00 m m I INSERT or UPDATE
0004 | BEDOYA 75.25 I does not satisfy
0005 | CAIN 987.65

0006 | BEDOYA 123.45

0007 | CAIN 00| INSERT INTO TARGET (SELECT * FROM SOURCE);

row perm|55|ons

Figure 6-5 RCAC effects on data movement on TARGET

6.2.3 Effects when RCAC is defined on both source and target tables

90

Example 6-3 shows a simple example that illustrates the effect of RCAC as defined on both
the source and the target tables.

Example 6-3 INSERT INTO TARGET statement

INSERT INTO TARGET (SELECT * FROM SOURCE);

Given a “source” table and a “target” table with a row permission defined as NAME <> 'CAIN'
and a column mask that is defined to project the value 999.99 for AMOUNT, the SELECT
statement produces a result set that has the RCAC rules applied. This reduced and modified
result set is inserted into the “target” table even though the query is defined as returning all
rows and all columns. Instead of seven rows that are selected from the source, only three
rows are returned.

Row and Column Access Control Support in IBM DB2 for i

Although the source rows where NAME <> 'CAIN' do satisfy the target table's permission, the
AMOUNT column value of 999.99 represents masked data and therefore cannot be inserted.
An error is returned indicating the failure, as shown in Figure 6-6. In this scenario, DB2 is
protecting against an overt attempt to insert masked data.

RCAC Effects on Data Movement

RCAC Rule Text

Source Permission: WHERE NAME <> ‘CAIN’

Table :

Mask: AMOUNT - 999.99 |

PKey Name Amount

5

0001 | CAIN 10.00

0002 | BEDOYA 25.50 ERROR:

0003 | CAIN 333.00 Row or column
0004 | BEDOYA 75.25 access control is not
0005 | CAIN 987.65

valid.

0006 | BEDOYA 123.45

—>
0007 | cAIN 20| INSERT INTO TARGET (SELECT * FROM SOURCE);

Figure 6-6 RCAC effects on data movement on SOURCE and TARGET

6.3 RCAC effects on joins

As mentioned previously, a fundamental concept of row permission is that it defines a logical
subset of rows that a user or group of users is permitted to access and use. This subset
becomes the new basis of any query against the table that has RCAC enabled.

Note: Thinking of the row permission as defining a virtual set of rows that can be operated
on is the secret to understanding the effect of RCAC on any join operation.

Chapter 6. Additional considerations 91

As shown in Figure 6-7, there are two different sets, set A and set B. However, set B has a
row permission that subsets the rows that a user can see.

Figure 6-7 Set A and set B with row permissions

6.3.1 Inner joins

Inner join defines the intersection of two data sets. For a row to be returned from the inner join
query, it must appear in both sets, as shown in Figure 6-8.

Result of Intersection

Set A Set B

Figure 6-8 Inner join without RCAC permission

92 Row and Column Access Control Support in IBM DB2 for i

Given that row permission serves to eliminate logically rows from one or more sets, the result
set from an inner join (and a subquery) can be different when RCAC is applied. RCAC can
reduce the number of rows that are permitted to be accessed by the join, as shown in

Figure 6-9.

Effect of column masks on inner joins: Because column masks are applied after the
query final results are determined, the masked value has no effect on the join processing
and corresponding query result set.

\
Permitted

Result of Intersection -; 1

Set A Set B

Figure 6-9 Inner join with RCAC permission

Chapter 6. Additional considerations 93

6.3.2 Outer joins

Quter joins preserve one or both sides of two data sets. A row can be returned from the outer
join query if it appears in the primary set (LEFT, RIGHT, or both in the case of FULL), as
shown in Figure 6-10. Column values from the secondary set are returned if the row has a
match in the primary set. Otherwise, NULL is returned for the column value by default.

Set A Set B

Figure 6-10 Outer join without RCAC permission

94 Row and Column Access Control Support in IBM DB2 for i

Given that row permission serves to eliminate logically rows from one or more sets, more
column values that are returned from the secondary table in outer join can be NULL when
RCAC is applied, as shown in Figure 6-11.

Effect of column masks on inner joins: Because column masks are applied after the
query final results are determined, the masked value has no effect on the join processing
and corresponding query result set.

Figure 6-11 Outer join with RCAC permission

Chapter 6. Additional considerations 95

6.3.3 Exception joins

Exception joins preserve one side of two data sets. A row can be returned from the exception
join query if it appears in the primary set (LEFT or RIGHT) and the row does not appear in the
secondary set, as shown in Figure 6-12. Column values from the secondary set are returned
as NULL by default.

Set A SetB

Figure 6-12 Exception join without RCAC permission

Given that row permission serves to eliminate logically rows from one or more sets, more
rows can appear to be exceptions when RCAC is applied, as shown in Figure 6-13. Also,
because column masks are applied after the query final results are determined, the masked
value has no effect on the join processing and corresponding query result set.

Set A SetB

Figure 6-13 Exception join with RCAC permission

96 Row and Column Access Control Support in IBM DB2 for i

6.4 Monitoring, analyzing, and debugging with RCAC

It is assumed (and it is a critical success factor) that the database engineer or application
developer has a thorough understanding of the DB2 for i Query Optimizer, Database Engine,
and all the associated tools and techniques.

The monitoring, analyzing, and debugging process basically stays the same when RCAC row
permissions or column masks are in place, with a few important differences:

» The underlying data access plan can be different and more complex based on the rule
text.

» The database results can be reduced or modified based on the rule text and user profile.

» The run time of the request can be affected either positively or negatively based on the
rule text.

» For high-level language record level access, query plans must be considered, and not just
program code.

During analyzing and debugging, it is important to account for all of the RCAC definitions for
each table or file to understand the logic and corresponding work that is associated with
processing the row permissions and column masks. It is also important to realize that,
depending on the user profile in effect at run time, the database actions and query results can
be different.

RCAC is designed and implemented to be transparent to the user. It is possible for user
“Mike” and user “Hernando” to run the exact same query, against the exact same data on the
exact same system, and get different result sets. There is no error, no warning, and no
indication that RCAC reduced or modified the respective answers that are returned.
Furthermore, it is also likely that user “Mike” and user “Hernando” have different query run
times even though it appears that everything is the same for both users. The actual query
plan contains the RCAC logic, and this additional code path can alter the amount of work that
is needed to produce results, based on the user running the query.

When monitoring, analyzing, and debugging a database process when RCAC is enabled, it is
critical to keep as many of the “variables” the same as possible. Use a good scientific
process. For example, when re-creating a problem situation running under the same user
profile with the same data and under the same conditions, it is almost mandatory. Otherwise,
the database behavior and query results can be different.

To successfully perform monitoring, analyzing, and debugging when RCAC is enabled likely
involves changes in the security and data access policies of the organization, and require new
responsibilities, authority, and oversight within the data-centric application development
community. As such, establishing and staffing the position of “database engineer” becomes
even more important.

6.4.1 Query monitoring and analysis tools

When monitoring and collecting metrics on database requests, DB2 for i provides additional
information that indicates row permissions or column masks are being applied. This
information is integrated and part of the standard tools, such as Visual Explain, SQL Plan
Cache Snapshot, and SQL Performance Monitor.

Chapter 6. Additional considerations 97

Figure 6-14 shows how Visual Explain externalizes RCAC.

4

(=] Attribute Yalue
Additional information about SOL statement
= CLOSQLCSRE Value
T ALWCPYDTAValue Any Time
FPseudo Open Mo
Pseudo Close Mo
Hard Close Reason Code Mot Available
CDP Implementation Reusahle
Dyhnamic Replan Reason Code Access plan was not rebuilt
Timestamp VWhen Plan Was Created 2014-06-24-14.01.16.866360
Data Conwersion Reason Code Mot applicahle
e Blocking Enabled ALWELKALLREAD)
¥ ™ = Delay Prep Yes
[y Y mez.:'H Statement is Explainable Yes
/ F _E’ Maming Convention Sl
m -] il | Type of Dynamic Processing Local Prepared Staternent
Bk ACARLCLTOUERS i S WLBALEOUNTS et S0L Path "QSYS" ' A8YS2" "SYSPROC! 'S
o El—\ z Concurrent Access Resolution Used WAIT FOR OUTCOME
T [IP Port Mumber 8,471
s ——_ /‘ N Client IP Address 91012798
§,¢ & IP Address Type 1
B e e ML data CCEID 64,607
r._T AQP Usedin Access Plan Mo
R AQP Access Plan feration 1
e + ||Access Control Row and Column I

[»

Figure 6-14 Visual Explain indicating that RCAC is applied

Figure 6-15 shows the main dashboard of an SQL Performance Monitor. Click Summary.

5§l SQL Performance Data Analysis - BANK query with RCAC

=AR=n X

File Actions Help

Walue | Summary Availahle | Statements Available

E‘@ Gr24/14 4:06:40 P to B6i24/14 4:06:40 PM
B L Overview

- Users 1 v
- Johs 1 v -
- # Threads 1 %
- @ Average Table Rows 93.333
-4 Average Rows Retumed 201 L\,
-4 Average Runtime 0.022372

l -4 Ayerage Parallel Degree Used 1
- @ Maximum Parallel Dearee 1
- # SOE 1 v v

Figure 6-15 SQL Performance Monitor

Figure 6-16 shows the summary of an SQL Performance Monitor with an indication that

RCAC is applied.

ﬁ BANK query with RCAC - SQL Statements - Summary =NREh X

File ‘iew Actions Help

Runtime

Row and Column Access Control

Staterment Text

0.134232

Row and column access contrals

select c.customer_name, aaccount_number, a.account_current_balance from bank_sche

Figure 6-16 SQL Performance Monitor indicating that RCAC is applied

98 Row and Column Access Control Support in IBM DB2 for i

Figure 6-17 shows the statements of an SQL Performance Monitor and how RCAC is
externalized.

Bl BANK query with RCAC - SQL Statements - Statements =NRSN X
File View Actions Help
Start Time End Time Runtime | Statement Outcome | SALSTATE | SQLCODE | Operation Row and Column Access Contral | Stal
2014-06-24 16:06:40.473588 2014-06-24 16:06:40.542539 0.064792 Successiul aoooo 0 FETCH
2014-06-24 16:06:40.473588 2014-06-24 16:06:40.537996 0.064408 Successful noooo 0 OFPEN Row and column access contrals | sele
2014-06-24 16:06:40.538384 2014-06-24 16:06:40.542611 0.004224 Successful oogoo 0 CLOSE Row and column access controls | CLC
2014-06-24 16:06:40 469807 2014-06-24 16:06:40.470608 0.000808 Successiul aoooo 0 PREPARE..DESCRIEE sele
2014-06-24 16:06:40.575708 2014-06-24 16:06:40.575938 0.000232 Successiul aoooo 0 CALL CAL
2014-06-24 16:06:40.538388 2014-06-24 16:06:40.538388 0.000000 Successful aoooo 0 CLOSE iHard) HAF
KT — 1|

b

Figure 6-17 SQL Performance Monitor showing statements and RCAC

When implementing RCAC as part of a comprehensive and pervasive data access control
initiative, consider that the database monitoring and analysis tools can collect literal values

that are passed as part of SQL statements. These literal values can be viewed as part of the
information collected. If any of the literals are based on or are used with masked columns, it is
important to review the database engineer's policy for viewing these data elements. For
example, supposed that column CUSTOMER_TAX_ID is deemed masked for the database
engineer and the CUSTOMER_TAX_ID column is used in a predicate as follows:

WHERE CUSTOMER_TAX ID = '123-45-7890'

The literal value of '123-45-7890' is visible to the analyst, effectively exposing sensitive
information. If this is not acceptable, you must implement the
SYSPROC.SET_COLUMN_ATTRIBUTE procedure.

The SET_COLUMN_ATTRIBUTE procedure sets the SECURE attribute for a column so that
variable values that are used for the column cannot be seen in the SQL Performance Monitor,
SQL Plan Cache Snapshot, or Visual Explain.

6.4.2 Index advisor

Because the RCAC rule text can be almost any valid SQL logic, including local selection
predicates, join conditions, and subqueries, the standard query tuning techniques still apply.
Without a doubt, a proper and adequate indexing strategy is a good starting point.

The index advisor is not specifically enhanced for RCAC, but because the rule text is a fully
integrated part of the query plan, any opportunities for indexing is advised based on the
current Query Optimizer functionality. If an index is advised because of the RCAC rule text
logic, there is no RCAC reason code provided. Analyzing the query plan and the RCAC rule
text provides the understanding as to why the index is being advised.

Chapter 6. Additional considerations 99

For example, the query that is shown in Figure 6-18 produces index advice for the user's
predicate and the RCAC predicate.

| SELECT *

: FROM ACCOUNTS A
:_WHERE A.ACCOUNT_NUMBER = ?

AND A.CUSTOMER_ID IN (
SELECT C.CUSTOMER_ID

|
|
|
1
: FROM CUSTOMERS C
|

A.CUSTOMER_ID has an index (via the foreign key constraint)

A.ACCOUNT_NUMBER does not have an index
C.CUSTOMER_LOGIN_ID, C.CCUSTOMER_ID does not have an index

Figure 6-18 Index advice and RCAC

In Figure 6-19, index advisor is showing an index for the ACCOUNTS and CUSTOMERS
tables based on the RCAC rule text.

+ Index and Statistics Advisor Iﬁ

Itis recommended that the following indexes be created:

Create | Table Mame | Schema Index Type Calumns Sort Sequence ||
v ACCOUNTS BAmE_00001 Binary Radix ACCOUNT_NUMEER Mone {Sort by hexadecimal value)
v CLSTOMERS BAmE_00001 Binary Radixk CUSTOMER_LOGIM_ID Mone {Sort by hexadecimal value)
CUSTOMER_ID

Figure 6-19 Index advisor based on the RCAC rule

For more information about creating and using indexes, see IBM DB2 for i indexing methods
and strategies, found at:

http://www.ibm.com/partnerworld/wps/servliet/ContentHandler/stg_ast_sys_wp_db2_i_in
dexing_methods_strategies

6.4.3 Metadata using catalogs

To make the discovery and identification of RCAC row permissions and column masks
programmatically, query the QSYS2.SYSCONTROLS catalog view or the
QSYS2.SYSCONTROLSDEP catalog view directly. Otherwise, the System i Navigator
Database graphical interface can be used interactively.

100 Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_indexing_methods_strategies

Figure 6-20 shows the QSYS2.SYSCONTROLS catalog view.

select *

from fjsys2 syscontrols

where reac_schema = 'BANK_SCHEMA!|

RCAC_SCHEMA RCAC_MAME RCAC_OWNER TABLE_SCHEMA TABLE_MAME
BANK_SCHEMA MASK _DRIWERS_LICENSE_OM_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA MASK_EMAIL_ON_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA MASK_LOGIN_ID_ON_CUSTOMERS WICAIN BANK_SCHEMA CUSTOMERS
BANK_SCHEMA MASK _SECURITY_QUESTION_ANSWER_OM_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA MASK _SECURITY_QUESTION_ON_ACCOUNTS MCAIN BAMNK_SCHEMA ACCOUNTS
BANK_SCHEMA MASK _SECURITY_QUESTION_ON_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA MASK_TAX ID_ON_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA PERMISSIONT _DON_ACCOUNTS WICAIN BANK_SCHEMA ACCOUNTS
BANK_SCHEMA PERMISSIONT_ONM_CUSTOMERS MCAIN BAMNK_SCHEMA CUSTOMERS
BANK_SCHEMA PERMISSIONT _ON_TRAMSACTIONS MCAIN BANK_SCHEMA TRANSACTIONS

Figure 6-20 RCAC and catalogs

The SYSCONTROLS catalog view contains the following columns:

COLUMN_NAME
CONTROL_TYPE
CREATE_TIME

ENABLE

ENFORCED
ASP_NUMBER

IMPLICIT

LABEL

LAST_ALTERED
LONG_COMMENT
RCAC_NAME
RCAC_OWNER
RCAC_SCHEMA
RULETEXT
SYSTEM_COLUMN_NAME
SYSTEM_TABLE_NAME
SYSTEM_TABLE_SCHEMA
TABLE_NAME
TABLE_SCHEMA
TBCORRELATION

YVVYYVYYYVYYYYYYYYVYYVYVYVYVYVYYY

The SYSCONTROLSDEP catalog view contains the following columns:

COLUMN_NAME
CONTROL_TYPE
IASP_NUMBER
OBJECT_NAME
OBJECT_SCHEMA
OBJECT_TYPE
PARM_SIGNATURE
RCAC_NAME
RCAC_SCHEMA
SYSTEM_TABLE_NAME
SYSTEM_TABLE_SCHEMA

VYVYYVYYYVYVYVYYY

For more information, see the IBM i 7.2 DB2 for i SQL Reference Guide, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i _72/db2/rbafzintro.htm?1ang
=en

Chapter 6. Additional considerations 101

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en

6.5 Views, materialized query tables, and query rewrite with
RCAC

This section covers the implications to views, materialized query tables (MQTSs), and query
rewrite when RCAC is activated on a table.

6.5.1 Views

Any access to an SQL view that is over one or more tables that have RCAC also have those
row permissions and column masking rules applied. If an SQL view has predicates, those are
logically ANDed with any search condition that is specified in the permissions that are defined
on the underlying tables. The view does not have to project the columns that are referenced

by the permissions. Figure 6-21 shows an example of a view definition and user query.

CREATE VIEW OPEN_ACCOUNTS_VIEW AS (
SELECT ACCOUNT_NUMBER,

ACCOUNT_CURRENT_BALANCE
FROM ACCOUNTS A
WHERE A. ACCOUNT_DATE_CLOSED IS NULL)

[mmm - ———

I SELECT *

. I

j FROM OPEN_ACCOUNTS_VIEW A I
I

: WHERE A.ACCOUNT_NUMBER =? |

Note: PERMISSION1_ON_ACCOUNTS allows access to the row
based the user’s group and CUSTOMER_ID value

Figure 6-21 View definition and user query

102 Row and Column Access Control Support in IBM DB2 for i

What the query optimizer plans for and what the database engine runs is shown in the
Figure 6-22.

CREATE VIEW OPEN_ACCOUNTS_VIEW AS (
SELECT ACCOUNT_NUMBER,

ACCOUNT_CURRENT_BALANCE
FROM ACCOUNTS A
WHERE A. ACCOUNT_DATE_CLOSED IS NULL)

o e e e
| SELECT *

I I
;| FROM OPEN_ACCOUNTS_VIEW A I
|

Note: PERMISSION1_ON_ACCOUNTS allows access to the row
based the user’s group and CUSTOMER_ID value

Figure 6-22 Query rewrite with RCAC

6.5.2 Materialized query tables

When the query to populate a materialized query table (MQT) is run by the system on either
the create table or a refresh table, and one or more source tables have RCAC defined, the
row permissions and column masks are ignored. This means that the MQT has all of the data.

Because the MQT is a copy of the base table data, when a permission is created on the base
table, all the related MQTs are altered to have a default row permission. This default
permission prevents any of the rows from being directly queried.

When a query implicitly uses an MQT, the underlying row permissions and column masks are
built into the query that uses the MQT. In order for the MQT to be used for optimization, the
MQT must include any columns that are used by the row permissions and column masks.

The following example illustrates this scenario:

1. Create schema and tables:

CREATE SCHEMA Schemal;

CREATE TABLE Schemal.employee(userID varchar(128), LocationID integer, Regionid
integer);

CREATE TABLE Schemal.Sales (INVOICE INTEGER NOT NULL, SALEAMT DECIMAL(5,2),
TAXAMT DECIMAL(5,2), LOCATIONID INTEGER, REGIONID INTEGER);

Chapter 6. Additional considerations 103

2. Create a row permission that allows the employees to see only rows from the region they
work in:

/* Create permission that only allows the employees to see rows from the region
they work in */

CREATE PERMISSION Schemal.Sales PERM1

ON schemal.sales FOR ROWS

WHERE CURRENT_USER in (SELECT userId FROM schemal.employee E

WHERE e.regionid = regionid)

ENFORCED FOR ALL

ACCESS ENABLE;

3. Create an MQT to summarize sales by location:

-- Create MQT to summarize sales by location

-- This has all of the data. The schemal.sales_perml predicate was not applied
CREATE TABLE Schemal.lLocation_Sales MQT as

AS (SELECT LocationID, SUM(Saleamt) as Total Location_Sales

FROM SCHEMA1.SALES

GROUP BY LOCATIONID)

DATA INITIALLY DEFERRED

REFRESH DEFERRED

MAINTAINED BY USER;

4. Populate the MQT (permission is not applied):

/* Populate the MQT - Permission not applied here */
REFRESH TABLE Schemal.Location_Sales_MQT

The following query matches Location_Sales_MQT, but it cannot be used because it does
not have column regionid, which is needed by the schemai.sales_PERM1 permission:

SELECT Locationid, sum(SALEAMT) FROM schemal.sales
GROUP BY Tocationid;

5. Create an MQT to summarize by region and location:

-- MQT to summarize by region and Tocation

Create table schemal.Region Location Sales MQT as

AS (SELECT REGIONID, LocationID, SUM(Saleamt) as Total Location Sales
FROM SCHEMA1.SALES

GROUP BY REGIONID, LOCATIONID)

DATA INITIALLY DEFERRED

REFRESH DEFERRED

MAINTAINED BY USER;

6. Populate the Region_location_Sales_MQT (permission not applied):

/* Populate the Region_location Sales MQT - Permission not applied here */
Refresh table schemal.Region_Location_Sales MQT

The following query can use the Region_location_SALES_MQT because it has
REGIONID, which is required for the schema1.sales_PERM1 permission:

SELECT Locationid, sum(SALEAMT) FROM schemal.sales
GROUP BY Tocationid;

104 Row and Column Access Control Support in IBM DB2 for i

This example has the following additional implications:

» Users must be prevented from explicitly querying the MQT or a view that is created over it.
Those two cases bypass the row permission and column mask rules from the underlying
tables.

» If the user writes code to update incrementally an MQT, that code must be run from a user
that has permission to view all of the rows and all columns in their unmasked state.
Otherwise, the MQT contents are not complete and queries that implicitly use the MQT
might get wrong results.

» To prevent this, a check constraint can be created to cause an error if masked data was
inserted into the MQT.

6.5.3 Query rewrite

Query rewrite is a technique that the optimizer can use to change the original request to
improve performance.

For example, a query that references Table1 might be rewritten to access an MQT over
Table1, or it might also be optimized to access only the fields in an index that is defined over
Table1 and avoid touching Table1. With RCAC, defining these rewrites can still occur, but the
MQT or index also must include all columns that are needed by the row permissions or
column masks that are defined on Table1.

As part of adding RCAC, the impact to these potentially significant performance optimizations
must be considered. Usage of MQTs or index-only access might be reduced or eliminated by
enabling RCAC.

6.6 RCAC effects on performance and scalability

As with any discussion that is related to performance and scalability, nothing is certain or
guaranteed. There are always many variables that are involved. First, a good foundation of
knowledge and skill is required to appreciate fully what is occurring when a database request
is handled within an RCAC enabled environment. Implementing the row permission or column
masks involves the query optimizer and database engine. The process that identifies the rows
that you have permission to access is considered a “query”, and as such a query plan must
be formulated. In the case of SQL requests, the RCAC portion of the query is combined with
the user's query, much like a query referencing a view.

For native record level access, this RCAC “query” is also built and used to test the permission.
When a file is opened, the RCAC rule text logic is included, optimized, and run as part of the
native read, write, update, or delete operation. The amount of work (and time) required to
identify the record based on the user's permission is directly related to the complexity and
depth of the logic that is needed to identify the records that can be returned.

A simple example to illustrate this concept is a random read using a keyed logical file (that is,
an index). In its purest form, a random read uses two data access methods: index probe (find
the key and RRN) and table probe (find the record using RRN). If the RCAC rule text specifies
five nested subqueries to determine whether the user has access to the record, this logic
must be added to the path. The subquery processing now becomes part of the original
“random read” request. Instead of two simple I/Os to retrieve the record, there can be a
minimum of 12 I/Os to retrieve the same record. These 1/Os can be done with a result of “not
found” if the user is not entitled to any of the records.

Chapter 6. Additional considerations 105

For programs that access records sequentially, in or out of key order, the added RCAC logic
can have a profound effect on the performance and scalability. Reading the “next record” in
order is no longer a simple matter of positioning to the next available key, as shown in
Figure 6-23.

RRN Record Data

1 123CAIN aaaadb56
2 123CAIN bbbb456
3 123CAIN cccc4b6

No RCAC 4 123CAIN dddd456

5 123CAIN eeeed56

Native RLA Request \Y)

1000001 123CAIN vvvv456
1000002 123CAIN wwww456
1000003 123CAIN xxxx456
1000004 123BEDOYAyyyy456
1000005 123BEDOYAzzzz456

Figure 6-23 Native record access with no RCAC

106 Row and Column Access Control Support in IBM DB2 for i

Before the record, as identified by the key, is considered available, the RCAC logic must be
run. If the record is rejected by RCAC, the next record in sequence that is permissible must be
identified. This spinning through the records can take a long time and uses many resources,
as shown in Figure 6-24.

ALYAIO Ran | Recordbaia
Native RLA Request X——> 1 123CAINaaaaaa4d56
X— 2 123CAINbbbbbb456
X—— 3 123CAINccccccdb6
X—» 4 123CAINdddddd456
X— 5 123CAINeeeceeced56
[]
Row Permission: spin
- thru
WHERE NAME <> ‘CAIN’ | |* i”}ds
X——> 1000001 123CAINvvvvvv456
X————-> 1000002 123CAINwwwwww456
X————> 1000003 123CAINxxxxxx456
/——1{p 1000004 123BEDOYAYyyy456 |
L 1000005 123BEDOYAzzzz456

Figure 6-24 Native record level access with RCAC

After the row permissions and column masks are designed and implemented, adequate
performance and scalability testing are recommended.

6.7 Exclusive lock to implement RCAC (availability issues)

When defining permissions or enabling RCAC, an exclusive lock on the base table is
obtained. The impact to other applications depends on the order of create permission and the
alter table to activate RCAC.

Consider the following scenarios:

» Scenario 1: Adding permissions and RCAC is not enabled on the table:

— Job 1 reading data from the table (open for input) holds a *SHRRD on the member and
a *SHRRD on the data.

— Job 2 adding, updating, or deleting rows from table (open for output) holds a *SHRRD
on the member and a *SHRUPD on the data.

— Job 4 allocates the object and gets a “SHRRD on the file and a *EXCLRD on the data.

— Job 3 attempts to add a permission to the table. Permission is added and the
pseudo-closed cursors for Job1 and Job 2 are closed. Job 4 still holds the *SHRRD on
the file and *EXCLRD on the data.

The net result from Scenario 1 is that you can add permissions without having to end the
applications that are reading the base table.

Chapter 6. Additional considerations 107

» Scenario 2: Altering a table to activate RCAC requires that all applications using the table
be ended. The alter table requires exclusive use of the table.

» Scenario 3: Altering the table to activate RCAC before the permissions are added. The
alter table requires exclusive use of the table, as in scenario 2. All applications must be
ended to perform this alter. After the alter is complete, any applications trying to read data
do not get any results, and attempts to insert new rows returns the following message:

SQ20471] INSERT or UPDATE does not satisfy row permissions.

To create a permission in this case requires that you end all the applications, unlike
scenario 1 where permissions can be added while the applications were active. In this
case, the applications must be ended to run the create permission.

6.8 Avoiding propagation of masked data

Operations such as insert or update into a table with active column access control can fail if
the input data is masked data. This can happen when data to be inserted or updated contains
the masked value as a result of a SELECT from a table with active column access control.

For example, assume TABLE1 and TABLE2 have active column access control and for insert,
selecting data from TABLE2 returns the masked data. The following INSERT returns an error:
INSERT INTO TABLE1 SELECT * FROM TABLE2

The masked data that is returned from the SELECT * FROM TABLE2 might not be valid input
data for TABLE1 because of data type or column check constraint.

There are two ways to prevent this situation from happening: Define a check constraint or
create a before trigger.

6.8.1 Check constraint solution

One way to prevent this problem is to define a check constraint.

As part of RCAC, new SQL syntax is provided to allow an action to be performed when a
violation of the check constraints check condition occurs instead of giving that error. However,
if the check condition is still not met after the action, a hard error is returned. A check
constraint with the new on-violation-clause is allowed on both the CREATE TABLE and ALTER
TABLE statements.

In the Example 6-4, the mask is defined to return a value of 'XXX-XX-nnnn' for any query that
is not done by a user profile in the DBMGR group. The constraint checks that the column SSN
does not have the masked value.

Example 6-4 Check constraint to avoid masked data

CREATE SCHEMA MY_LIB
SET SCHEMA MY_LIB
CREATE TABLE MY_LIB.EMP_INFO
(COL1_name CHAR(10) WITH DEFAULT 'DEFAULT',
COL2_ssn CHAR(11) WITH DEFAULT 'DEFAULT')
CREATE MASK MASK_ssn ON MY_LIB.EMP_INFO
FOR COLUMN COL2_ssn RETURN
CASE
WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBMGR') =1
THEN COL2_ssn

108 Row and Column Access Control Support in IBM DB2 for i

ELSE 'XXX-XX-'||SUBSTR(COL2_ssn,8,4)
END
ENABLE
|
/* Check constraint for the update and insert.*/
ALTER TABLE MY_LIB.EMP_INFO
ADD CONSTRAINT MASK_ssn_preserve
CHECK(SUBSTR(COL2_ssn,1,7)<>'XXX-XX-') -- Allow any value other than the mask
ON UPDATE VIOLATION PRESERVE COL2_ssn -- Don't update the mask portion of the existing value
ON INSERT VIOLATION SET COL2_ssn = DEFAULT -- for insert set this to the default value.

6.8.2 Before trigger solution

The actions that are described in Example 6-4 on page 108 for ON UPDATE VIOLATION and ON
INSERT VIOLATION also can be handled by a before trigger, as shown in Example 6-5.

Example 6-5 Before trigger to avoid masked data

CREATE TRIGGER PREVENT_MASK_SSN BEFORE INSERT OR UPDATE ON MY_LIB.EMP_INFO
REFERENCING NEW ROW AS N OLD ROW AS O

FOR EACH ROW MODE DBZ2ROW

SECURED

WHEN(SUBSTR(N.COL2_ssn,1,7) = 'XXX-XX-')

BEGIN

IF INSERTING THEN SET N.COL2_ssn = DEFAULT;

ELSEIF UPDATING THEN SET N.COL2_ssn = 0.COL2_ssn;

END IF;

END

6.9 Triggers and functions (SECURED)

There are some considerations that must be considered when there are triggers and
functions on tables that have RCAC enabled. The purpose of SECURE for triggers and
functions is so that a user who is allowed to create a trigger or function is not necessarily able
to make it SECURE themselves. This prevents the trigger/function developer from adding
code that skims off data that they are not allowed to see.

6.9.1 Triggers

Triggers have access to the data in rows outside of the row permission or column masking.
An after trigger has access to the new row image after the permission has allowed the update
or insert to occur. Therefore, the triggers can potentially change the insert or update image
value so that it violates the permission.

Chapter 6. Additional considerations 109

Any triggers that are defined on a table must be created with an attribute that designates that
it is SECURED when RCAC definitions are created or altered for that table, as shown in
Example 6-6. The same applies to a view that has an instead of trigger. That trigger must be
secure at the point RCAC is enabled for any of the underlying tables the view is over.

Example 6-6 Trigger SECURED

/* Trigger created with the SECURED attribute */
CREATE TRIGGER PREVENT_MASK _SSN BEFORE INSERT OR UPDATE ON MY_LIB.EMP_INFO
REFERENCING NEW ROW AS N OLD ROW AS O
FOR EACH ROW MODE DB2ROW
SECURED
WHEN(SUBSTR(N.COL2 ssn,1,7) = 'XXX-XX-')
BEGIN
IF INSERTING THEN SET N.COL2_ssn = DEFAULT;
ELSEIF UPDATING THEN SET N.COLZ_ssn = 0.COL2_ssn;
END IF;
END

6.9.2 Functions

110

Within a CREATE PERMISSION or CREATE MASK, a function can be called. Because that UDF has
access to the data before the RCAC rules are applied, the SECURE attribute is required on
that function, as shown in Example 6-7.

Example 6-7 Specifying SECURED on a function

CREATE PERMISSION SCHEMA.PERM1 ON SCHEMA.TABLE1 FOR ROWS WHERE
MY _UDF (CURRENT USER,COLUMN1) = 1
ENFORCED FOR ALL ACCESS ENABLE;

CREATE FUNCTION MY UDF
(INP1 CHAR(32),
INP2 INTEGER)

Returns INTEGER

LANGUAGE SQL

CONTAINS SQL

SECURED

The SECURED attribute of MY_UDF signifies that the function is considered secure for
RCAC. If a function is called from an SQL statement, and references a column in a table that
has RCAC, it must be declared as secure. In that case, if the secure function calls other
functions, they are not validated to confirm whether they are secure.

Consider the following examples:

» Table1 has RCAC defined and enabled. SELECT MY_UDF2(Column2) from schema.table1.

MY_UDF2 must be created with the SECURED attribute. If MY_UDF2 invokes MY_UDF3,
there is no checking to ensure that it is also created with SECURED.

NOT SECURED is the default on the create function unless SECURED is explicitly
selected.

This same rule applies for any function that might be invoked with a masked column
specified as an argument.

Row and Column Access Control Support in IBM DB2 for i

» Table2 column SSN has a column mask that is defined on it.

SELECT MY_UDF4(SSN) from table2. Because SSN has a column mask that is defined,
MY_UDF4 must be created with the SECURED attribute.

6.10 RCAC is only one part of the solution

When designing and implementing RCAC row permissions, special attention should be given
to the effectiveness and limitations of controlling data access. Data can be housed in objects
other than tables or physical files. The role and responsibility of the database user, for
example, the database engineer, must be reconciled with their respective authority and
access privileges.

Figure 6-25 illustrates that object level security is the first check and that RCAC permissions
provide control only on tables and physical files.

Object RCAC Functional
Level Permission ID
Authority Allowance
C 1V \'} DR
\
- 1
/
—1v > Journal Receiver | «
LV V SQL Plan Cache ~\
\
1
/
L1V vV SQL Plan Cache Snapshot &g
LI \ SQL Performance Monitor

Figure 6-25 Object-level security and RCAC permissions

To get access to the table and the rows, the user must pass the object level authority test and
the RCAC permission test.

The IBM i journal captures the transactional data and places an image of the row in the
journal receiver. If the user has access to the journal receiver, the row image can be viewed if
the user has authority to the journal receiver.

Although the SQL Plan Cache data, the SQL Plan Cache Snapshot data, and the SQL
Performance Monitor data do not reveal the results of queries, they can show the literal values
that are passed along with the SQL statements.

Chapter 6. Additional considerations 111

The ability to monitor, analyze, debug, and tune data-centric applications effectively and
efficiently requires some understanding of the underlying data, or at least the attributes of the
data. The organization must be willing to reconcile the conflicting requirements of “restricting
access to data”, and “needing access to data”.

112 Row and Column Access Control Support in IBM DB2 for i

Row and Column Access Control
management

After Row and Column Access Control (RCAC) definitions are defined and activated in a
database, your management processes must be adjusted to accommodate these new
security controls. This chapter highlights some of the changes that should be considered.

The following topics are covered in this chapter:

» Managing row permissions and column masks
» Managing tables with row permissions and column masks
» Monitoring and auditing function usage

© Copyright IBM Corp. 2014. All rights reserved. 113

7.1 Managing row permissions and column masks

This section focuses on the management of the RCAC row permissions and column masks.

7.1.1 Source management

The SQL statements that are used to define row permissions and column masks should be
managed with a change management process. Ideally, you already are using a change
management process for your database definitions, and that same process can be extended
to cover your RCAC definitions.

If you are using SQL DDL to define your DB2 tables, then you have the option of adding the

RCAC definitions to the same source file as the table definition. The benefit of this approach
is that it keeps all DDL that is related to a table in a single source file. The downside is that if
you must re-create only the RCAC definitions and leave the table unchanged, then you must
identify and extract only the RCAC definitions from the source file. There are situations where
the row permissions and column masks must be changed or re-created without changing the
definition of the associated table.

7.1.2 Modifying definitions

After RCAC is activated for a table, the row permission and column mask definitions can be
re-created to change the data access behavior for that table. Usage of the OR REPLACE clause
on the CREATE MASK and CREATE PERMISSION SQL statements simplifies the re-creation
process by folding in the deletion of the existing RCAC definition.

This capability makes it easy to change your RCAC definitions as you test the controls with
your applications and identify tweaks that must be made to your RCAC implementation.
However, re-creation of RCAC definitions does require an exclusive lock to be acquired on the
table during the process.

7.1.3 Turning on and off

As described in 3.1.2, “Enabling and activating RCAC” on page 16, the SQL ALTER statement
can turn on and off row permissions and column masks. The ALTER MASK and ALTER
PERMISSION statements allow an individual row permission or column mask to be turned off
with the DISABLE option and back on with the ENABLE option. The ALTER TABLE statement can
deactivate enforcement of all the row permissions and column masks for a single table.

Important: Although these capabilities make it easy to temporarily turn off RCAC security
so that you can make environment or application changes, these processes require an
exclusive lock to be obtained on a table. Therefore, this activity must be planned carefully
to avoid disruptions and outages.

7.1.4 Regenerating

DB2 also can regenerate an existing row permission or column mask. This regenerate option
can be useful with more complex RCAC definitions that reference other DB2 objects.

114 Row and Column Access Control Support in IBM DB2 for i

For example, consider a row permission on an ACCOUNTS table
(PERMISSION1_ON_ACCOUNTS). The ACCOUNTS table row permission references and
compares columns in the CUSTOMERS table. When the definition of the CUSTOMERS table
changes, DB2 does not check to determine whether the change to the CUSTOMERS table
breaks the ACCOUNTS table row permission. If this table definition change does break the
row permission, an error does not surface until an application tries to read rows from the
ACCOUNTS table.

Instead of waiting for an application to detect this error, the REGENERATE option can be used on
the ACCOUNTS row permission. The REGENERATE option returns an error if the change in the
CUSTOMERS table definition causes the row permission to be invalid. In this way, the row
permission can be proactively corrected before an application discovers the error.

7.2 Managing tables with row permissions and column masks

This section examines the object management considerations after RCAC is added to a DB2
table.

7.2.1 Save and restore

Row permissions and column masks are stored in the DB2 table object itself, so they are
automatically saved and restored when the DB2 table object is saved and restored.
Therefore, no adjustments must be made to your database backup process to accommodate
RCAC.

Save and restore processing works fine with RCAC if the RCAC definition does not reference
other DB2 objects other than the table over which they are defined. When the RCAC definition
has dependencies on other DB2 objects, the restore process is much more challenging.

Chapter 7. Row and Column Access Control management 115

For example, assume that the BANKSCHEMA library (which is the system name or short
name for the schema long name of BANK_SCHEMA) is saved and restored into a library
named BANK_TEST. Recall from the example in 7.1.4, “Regenerating” on page 114 that the
row permission on the ACCOUNTS table references the CUSTOMERS table (...SELECT
C.CUSTOMER_ID FROM CUSTOMERS C...). After the restore operation, the ACCOUNTS row
permission still references the CUSTOMERS table in BANK_SCHEMA because DB2
explicitly qualifies all object references when the row permission or column mask is created.
The restore processing does not change the explicit qualification from BANK_SCHEMA to
BANK_TEST. As a result, the restored ACCOUNTS row permission now depends on DB2
objects residing in a different schema, even though it was not created that way originally. For
more details, see Figure 7-1.

Move

Copy
Duplicate

Restore

BANK_SCHEMA BANK_TEST
ACCOUNTS ACCOUNTS

Permission

CUSTOMERS CUSTOMERS

References BANK_SCHEMA.CUSTOMERS References BANK_SCHEMA.CUSTOMERS

Figure 7-1 Restoring tables to different schemas

The only way to fix this issue is to re-create the row permission or column mask after the
restore operation. Re-creation of the row permission or column mask is required only for
definitions that reference other DB2 objects, but it is simpler to re-create all of the RCAC
definitions instead of a subset. For example, generate the SQL using System i Navigator,
clear the “Schema qualify names for objects” and select the “OR REPLACE clause”, and then
run the generated script.

7.2.2 Table migration

116

There are several IBM i CL commands, such as Move Object (MOVOBJ), Create Duplicate
Object (CRTDUPOBJ), and Copy Library (CPYLIB), which are used to migrate a table from one
library to another one. Often, this migration is done to create different versions of the table
that can be used for development or testing purposes.

The migration of a table with RCAC has the same challenges as restore processing. If the
RCAC definition references other DB2 objects, then IBM i CL commands do not change the
schema names that are explicitly qualified by the DB2 internal RCAC processing.

Again, re-creating the row permission or column mask is the only way to fix the issue of
references to DB2 objects in other schemas.

Row and Column Access Control Support in IBM DB2 for i

7.3 Monitoring and auditing function usage

While establishing proper roles for users, separating duties using function usage IDs, and
defining RCAC policies allows you to implement an effective and pervasive data access
control scheme. How do you monitor and audit everyone who is involved in the
implementation of that scheme? The answer is to use IBM i journaling. A special journal that
is called QAUDJRN, also known as the audit journal, can provide a record and audit trail of
many security relevant events that occur on the system, including RCAC-related events.

The tasks and operations of security administrators and database engineers who are
collaborating can (and should) be effectively monitored and audited to ensure that the
organization's data access control and governance policies are in place and enabled. For
example, the Database Engineers can be involved in designing and developing functions and
triggers that must be secured using the SECURE attribute. Otherwise, without properly
securing functions and triggers, the RCAC controls can be bypassed.

A new journal entry type of “AX” for journal entry code “T” (audit trail) is now used for RCAC.
More information about the journaling of RCAC operations can be found in the following
documents:

» IBM i Version 7.2 Journal Management Guide, found at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/rzaki/rzakiprintthis
.htm?1lang=en

» IBM i Version 7.2 Security Reference Guide, found at:

http://www-01.1ibm.com/support/knowledgecenter/ssw_ibm i 72/rzarl/rzarlkickoff.h
tm?lang=en

Chapter 7. Row and Column Access Control management 117

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.htm?lang=en

118 Row and Column Access Control Support in IBM DB2 for i

Designing and planning for
success

Although successfully implementing Row and Column Access Control (RCAC) is based on
knowledge and skills, designing and planning are fundamental aspects. This chapter
describes the need for a deep understanding of the technology, and good design, proper
planning, and adequate testing.

The following topics are covered in this chapter:

» Implementing RCAC with good design and proper planning
» DB2 for i Center of Excellence

© Copyright IBM Corp. 2014. All rights reserved. 119

8.1 Implementing RCAC with good design and proper planning

By using RCAC, the row and column data that is returned to the requester can be controlled
and governed by a set of data-centric policies that are defined with SQL and implemented
within DB2 for i.

RCAC provides fine-grained access control and is complementary to IBM i object-level
security. With the new RCAC feature of DB2 for i, the database engineer, in partnership with
the data owner and security officer, can ensure that users have access to the data based on
their level of authorization and responsibility.

This situation also can include separation of duties, such as allowing the application
developers to design and implement the solutions, but restricting them from accessing the
production data based on policy. Just because someone writes and owns the program, it does
not mean that they have access to all the sensitive data that their program can potentially
read.

This paper has described the following pervasive power and advantages of RCAC:

Access can be controlled through simple or sophisticated logic.

Virtually no application changes are required.

The implementation of the access policy is part of the DB2 data access layer.
Table data is protected regardless of the interface that is used.

No user is inherently exempted from the access control policies.

Groups of users can share policies and permissions.

vyVyVYyVvYVvYyYy

A deep understanding of the technology, and proper planning, good design, adequate testing,
and monitored deployment are critical for success. This includes the usage of quality
assurance testing, and realistic performance and scalability exercises that serve to
demonstrate that all of your requirements are being met. As part of the verification process,
the usage of in-depth proofs of concepts and proofs of technology are recommended, if not
essential. When RCAC is activated, the results of queries can change. Anticipating this
change and realizing the effects of RCAC before going live are of the utmost importance.

With the ever-growing value of data, and the vast and varied database technology that is
available today, it is crucial to have a person or persons on staff who specialize in data-centric
design, development, and deployment. This role and responsibility falls on the database
engineer. With the availability of DB2 RCAC, the importance of full-time database engineering
has grown.

8.2 DB2 for i Center of Excellence

120

To further assist you with understanding and implementing RCAC, the DB2 for i Center of
Excellence team offers an RCAC education and consulting workshop. In addition to
knowledge transfer, a working session allows for a review of your data access control
requirements, review of the current environment, solution ideation, and high-level solution
design.

If you are interested in engaging with the DB2 for i Center of Excellence, contact Mike Cain at
mcain@us.ibm.com.

Row and Column Access Control Support in IBM DB2 for i

mailto:mcain@us.ibm.com

Database definitions for the
RCAC banking example

This appendix provides the database definitions or DDLs to re-create the Row and Column
Access Control (RCAC) scenario that is described in Chapter 4, “Implementing Row and
Column Access Control: Banking example” on page 37. The script that is shown in
Example A-1 is the DDL script that is used to implement this example.

Example A-1 DDL script to implement the RCAC banking example

/* Database Definitions for RCAC Bank Scenario */
/* Schema */
CREATE SCHEMA BANK_SCHEMA FOR SCHEMA BANKSCHEMA ;

/* Global Variable */
CREATE VARIABLE BANK_SCHEMA.CUSTOMER_LOGIN_ID
VARCHAR(30) ;

LABEL ON VARIABLE BANK_SCHEMA.CUSTOMER_LOGIN_ID IS 'Customer''s Tog in value passed by web application' ;
/* Tables */

CREATE TABLE BANK_SCHEMA.CUSTOMERS (
CUSTOMER_ID FOR COLUMN CUST000001 INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
CUSTOMER_NAME FOR COLUMN CUST000002 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_ADDRESS FOR COLUMN CUST000003 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_CITY FOR COLUMN CUST000004 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_STATE FOR COLUMN CUST000005 CHAR(2) CCSID 37 NOT NULL ,
CUSTOMER_PHONE FOR COLUMN CUST000006 CHAR(10) CCSID 37 NOT NULL ,
CUSTOMER_EMAIL FOR COLUMN CUST000007 VARCHAR(30) CCSID 37 NOT NULL ,
CUSTOMER_TAX_ID FOR COLUMN CUST000008 CHAR(11) CCSID 37 NOT NULL ,
CUSTOMER _DRIVERS_LICENSE_NUMBER FOR COLUMN CUST000012 CHAR(13) CCSID 37 DEFAULT NULL ,
CUSTOMER_LOGIN_ID FOR COLUMN CUST000009 VARCHAR(30) CCSID 37 DEFAULT NULL ,
CUSTOMER_SECURITY_QUESTION FOR COLUMN CUSTO00010 VARCHAR(100) CCSID 37 DEFAULT NULL ,

© Copyright IBM Corp. 2014. All rights reserved. 121

CUSTOMER_SECURITY_QUESTION_ANSWER FOR COLUMN CUST000011 VARCHAR(100) CCSID 37 DEFAULT NULL ,
INSERT_TIMESTAMP FOR COLUMN INSER00001 TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDATO00001 TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE

AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK SCHEMA.CUSTOMER_ID PK PRIMARY KEY(CUSTOMER_ID)) ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_LOGIN_ID UK
UNIQUE(CUSTOMER LOGIN ID) ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_DRIVERS LICENSE_CHECK
CHECK(CUSTOMER_DRIVERS_LICENSE_NUMBER <> !'**¥¥sskaxxisskl)
ON UPDATE VIOLATION PRESERVE CUSTOMER_DRIVERS_LICENSE_NUMBER ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_EMAIL_CHECK
CHECK(CUSTOMER EMAIL <> '****@xx¥x!)
ON UPDATE VIOLATION PRESERVE CUSTOMER_EMAIL ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_LOGIN_ID CHECK
CHECK(CUSTOMER_LOGIN_ID <> 'xxxx')
ON INSERT VIOLATION SET CUSTOMER_LOGIN_ID = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_LOGIN_ID ;

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_SECURITY_QUESTION_CHECK
CHECK(CUSTOMER_SECURITY_QUESTION_ANSWER <> '**#=*x!)
ON INSERT VIOLATION SET CUSTOMER_SECURITY_QUESTION_ANSWER = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_SECURITY_QUESTION_ANSWER

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_SECURITY_QUESTION_ANSWER
CHECK(CUSTOMER_SECURITY_QUESTION <> '**#*x!)
ON INSERT VIOLATION SET CUSTOMER_SECURITY_QUESTION = DEFAULT
ON UPDATE VIOLATION PRESERVE CUSTOMER_SECURITY_QUESTION

ALTER TABLE BANK_SCHEMA.CUSTOMERS
ADD CONSTRAINT BANK_SCHEMA.CUSTOMER_TAX_ID_ CHECK
CHECK(CUSTOMER _TAX_ID <> 'XXX-XX-XXXX' AND SUBSTR (CUSTOMER_TAX_ ID , 1 , 7) <> 'XXX-XX-')
ON UPDATE VIOLATION PRESERVE CUSTOMER_TAX_ID

CREATE TABLE BANK_SCHEMA.ACCOUNTS (
ACCOUNT_ID INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
CUSTOMER_ID FOR COLUMN CUSTID INTEGER NOT NULL ,
ACCOUNT_NUMBER FOR COLUMN ACCOUNTNO VARCHAR(50) CCSID 37 NOT NULL ,
ACCOUNT_NAME FOR COLUMN ACCOUNTNAM CHAR(12) CCSID 37 NOT NULL ,
ACCOUNT_DATE_OPENED FOR COLUMN OPENDATE DATE DEFAULT CURRENT_DATE ,
ACCOUNT_DATE_CLOSED FOR COLUMN CLOSEDATE DATE DEFAULT NULL ,
ACCOUNT_CURRENT_BALANCE FOR COLUMN ACCTBAL DECIMAL(11, 2) NOT NULL DEFAULT O ,
INSERT_TIMESTAMP FOR COLUMN INSDATE TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDDATE TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK_SCHEMA.ACCOUNT_ID PK PRIMARY KEY(ACCOUNT_ID));

122 Row and Column Access Control Support in IBM DB2 for i

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ADD CONSTRAINT BANK_SCHEMA.ACCOUNT_CUSTOMER_ID FK
FOREIGN KEY(CUSTOMER_ID)
REFERENCES BANK_SCHEMA.CUSTOMERS (CUST000001)
ON DELETE RESTRICT
ON UPDATE RESTRICT ;

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ADD CONSTRAINT BANK_SCHEMA.ACCOUNT_NUMBER_CHECK
CHECK(ACCOUNT_NUMBER <> '*****!)
ON UPDATE VIOLATION PRESERVE ACCOUNT_NUMBER

CREATE TABLE BANK_SCHEMA.TRANSACTIONS FOR SYSTEM NAME TRANS (
TRANSACTION_ID FOR COLUMN TRANS00001 INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
ACCOUNT_ID INTEGER NOT NULL ,
TRANSACTION_TYPE FOR COLUMN TRANS00002 CHAR(1) CCSID 37 NOT NULL ,
TRANSACTION_DATE FOR COLUMN TRANS00003 DATE NOT NULL DEFAULT CURRENT_DATE ,
TRANSACTION_TIME FOR COLUMN TRANS00004 TIME NOT NULL DEFAULT CURRENT_TIME ,
TRANSACTION_AMOUNT FOR COLUMN TRANS00005 DECIMAL(11, 2) NOT NULL ,
INSERT_TIMESTAMP FOR COLUMN INSER0O0001 TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP IMPLICITLY HIDDEN ,
UPDATE_TIMESTAMP FOR COLUMN UPDATO0001 TIMESTAMP GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP NOT NULL IMPLICITLY HIDDEN ,
CONSTRAINT BANK_SCHEMA.TRANSACTION_ID PK PRIMARY KEY(TRANSACTION_ID)) ;

ALTER TABLE BANK_SCHEMA.TRANSACTIONS
ADD CONSTRAINT BANK_SCHEMA.TRANSACTIONS_ACCOUNT_ID_FK
FOREIGN KEY(ACCOUNT_ID)
REFERENCES BANK_SCHEMA.ACCOUNTS (ACCOUNT_ID)
ON DELETE RESTRICT
ON UPDATE RESTRICT ;

/* Permissions and Masks */

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER') = 1)
OR
(QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') =1
AND (C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER_LOGIN_ID))
ENFORCED FOR ALL ACCESS
ENABLE

CREATE MASK BANK_SCHEMA.MASK_EMAIL_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_EMAIL
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') =1

THEN C . CUSTOMER_EMAIL

WHEN QSYS2 . VERIFY_GROUP_FOR _USER (SESSION_USER , 'CUSTOMER') =1

THEN C . CUSTOMER_EMAIL

ELSE ! ****@‘k‘k*‘k !

END
ENABLE

CREATE MASK BANK_SCHEMA.MASK_TAX_ID ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_TAX_ID
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1

Appendix A. Database definitions for the RCAC banking example 123

THEN C . CUSTOMER_TAX_ID
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION USER , 'TELLER')
THEN ('XXX-XX-' CONCAT QSYS2 . SUBSTR (C . CUSTOMER TAX_ID ,
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER'
THEN C . CUSTOMER_TAX_ID
ELSE 'XXX-XX-XXXX'
END

ENABLE ;

~ 0 1

[

—
—
—

CREATE MASK BANK_SCHEMA.MASK_DRIVERS_LICENSE_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_DRIVERS_LICENSE_NUMBER
RETURN CASE
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') =1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR USER (SESSION_USER , 'TELLER') =1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') =1
THEN C . CUSTOMER_DRIVERS_LICENSE_NUMBER
ELSE Ixkkkkkhkkkkkkk!
END
ENABLE

CREATE MASK BANK_SCHEMA.MASK_LOGIN_ID_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_LOGIN_ID
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') = 1

THEN C . CUSTOMER_LOGIN_ID

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') = 1

THEN C . CUSTOMER_LOGIN_ID

ELSE Thxkkx!

END
ENABLE ;

CREATE MASK BANK_SCHEMA.MASK_SECURITY_QUESTION_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_SECURITY_QUESTION
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') =1

THEN C . CUSTOMER_SECURITY_QUESTION

WHEN QSYS2 . VERIFY_GROUP_FOR _USER (SESSION_USER , 'CUSTOMER') =1

THEN C . CUSTOMER_SECURITY_QUESTION

ELSE Thkkkk1

END
ENABLE

CREATE MASK BANK_SCHEMA.MASK_SECURITY_QUESTION_ANSWER_ON_CUSTOMERS ON BANK_SCHEMA.CUSTOMERS AS C
FOR COLUMN CUSTOMER_SECURITY_QUESTION_ANSWER
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') =1

THEN C . CUSTOMER_SECURITY_QUESTION_ANSWER

WHEN QSYS2 . VERIFY_GROUP_FOR _USER (SESSION_USER , 'CUSTOMER') =1

THEN C . CUSTOMER_SECURITY_QUESTION_ANSWER

ELSE Thkkkk!

END
ENABLE

ALTER TABLE BANK_SCHEMA.CUSTOMERS

ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL ;

124 Row and Column Access Control Support in IBM DB2 for i

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_ACCOUNTS ON BANK_SCHEMA.ACCOUNTS AS A
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER') = 1)

OR

(QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'CUSTOMER') =1

AND (A . CUSTOMER_ID IN (
SELECT C . CUSTOMER_ID
FROM BANK_SCHEMA . CUSTOMERS C

WHERE C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER LOGIN_ ID

ENFORCED FOR ALL ACCESS
ENABLE

CREATE MASK BANK_SCHEMA.MASK_ACCOUNT_NUMBER_ON_ACCOUNTS ON BANK_SCHEMA.ACCOUNTS AS A

FOR COLUMN ACCOUNT_NUMBER
RETURN CASE

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'ADMIN') =1

THEN A . ACCOUNT_NUMBER

WHEN QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'TELLER') =1

THEN A . ACCOUNT_NUMBER

WHEN QSYS2 . VERIFY_GROUP_FOR _USER (SESSION_USER , 'CUSTOMER') =1

THEN A . ACCOUNT_NUMBER
ELSE !#%%%*1
END

ENABLE

ALTER TABLE BANK_SCHEMA.ACCOUNTS
ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL ;

CREATE PERMISSION BANK_SCHEMA.PERMISSION1_ON_TRANSACTIONS ON BANK_SCHEMA.TRANSACTIONS AS T
FOR ROWS WHERE (QSYS2 . VERIFY_GROUP_FOR_USER (SESSION_USER , 'DBE' , 'ADMIN' , 'TELLER')

OR

(QSYS2 . VERIFY_GROUP_FOR USER (SESSION_USER , 'CUSTOMER') =1

AND (T . ACCOUNT_ID IN (
SELECT A . ACCOUNT_ID

FROM BANK_SCHEMA . ACCOUNTS A
WHERE A . CUSTOMER _ID IN (
SELECT C . CUSTOMER_ID

FROM BANK_SCHEMA . CUSTOMERS C

WHERE C . CUSTOMER_LOGIN_ID = BANK_SCHEMA . CUSTOMER_LOGIN_ID

ENFORCED FOR ALL ACCESS
ENABLE

ALTER TABLE BANK_SCHEMA.TRANSACTIONS
ACTIVATE ROW ACCESS CONTROL ;

/* END */

Appendix A. Database definitions for the RCAC banking example

125

126 Row and Column Access Control Support in IBM DB2 for i

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this paper.

Other publications

These publications are relevant as further information sources:
» IBM DB2 for i indexing methods and strategies white paper:

http://www.ibm.com/partnerworld/wps/servliet/ContentHandler/stg_ast_sys wp_db2_i
_indexing_methods strategies

» IBM i Memo to Users Version 7.2
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/rzahg/rzahgmtu.htm
» IBM i Version 7.2 DB2 for i SQL Reference Guide:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/db2/rbafzintro.htm?1
ang=en

» IBM | Version 7.2 Journal Management Guide:

http://www-01.1ibm.com/support/knowledgecenter/ssw_ibm i 72/rzaki/rzakiprintthis
.htm?Tang=en

» IBM i Version 7.2 Security Reference Guide:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm i 72/rzarl/rzarikickoff.h
tm?Tang=en

Online resources

These websites are relevant as further information sources:
» Database programming topic of the IBM i 7.2 IBM Knowledge Center:

http://www-01.1ibm.com/support/knowledgecenter/ssw_ibm i 72/rzahg/rzahgdbp.htm?1
ang=en

» Identity Theft Resource Center
http://www.idtheftcenter.org
» Ponemon Institute

http://www.ponemon.org/

© Copyright IBM Corp. 2014. All rights reserved. 127

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgmtu.htm
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaki/rzakiprintthis.htm?lang=en
http://www.idtheftcenter.org
http://www.ponemon.org/
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahg/rzahgdbp.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzarl/rzarlkickoff.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/db2/rbafzintro.htm?lang=en
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_indexing_methods_strategies

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

128 Row and Column Access Control Support in IBM DB2 for i

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Row and Column Access Control

Support in IBM DB2 for i

Implement roles and
separation of duties

Leverage row
permissions on the
database

Protect columns by
defining column
masks

This IBM Redpaper publication provides information about the IBM i 7.2
feature of IBM DB2 for i Row and Column Access Control (RCAC). It
offers a broad description of the function and advantages of controlling
access to data in a comprehensive and transparent way. This
publication helps you understand the capabilities of RCAC and provides
examples of defining, creating, and implementing the row permissions
and column masks in a relational database environment.

This paper is intended for database engineers, data-centric application
developers, and security officers who want to design and implement
RCAC as a part of their data control and governance policy. A solid
background in IBM i object level security, DB2 for i relational database
concepts, and SQL is assumed.

REDP-5110-00

W
@

Redpaper-

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you

implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	DB2 for i Center of Excellence
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Securing and protecting IBM DB2 data
	1.1 Security fundamentals
	1.2 Current state of IBM i security
	1.3 DB2 for i security controls
	1.3.1 Existing row and column control
	1.3.2 New controls: Row and Column Access Control

	Chapter 2. Roles and separation of duties
	2.1 Roles
	2.1.1 DDM and DRDA application server access: QIBM_DB_DDMDRDA
	2.1.2 Toolbox application server access: QIBM_DB_ZDA
	2.1.3 Database Administrator function: QIBM_DB_SQLADM
	2.1.4 Database Information function: QIBM_DB_SYSMON
	2.1.5 Security Administrator function: QIBM_DB_SECADM
	2.1.6 Change Function Usage CL command
	2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view

	2.2 Separation of duties

	Chapter 3. Row and Column Access Control
	3.1 Explanation of RCAC and the concept of access control
	3.1.1 Row permission and column mask definitions
	3.1.2 Enabling and activating RCAC

	3.2 Special registers and built-in global variables
	3.2.1 Special registers
	3.2.2 Built-in global variables

	3.3 VERIFY_GROUP_FOR_USER function
	3.4 Establishing and controlling accessibility by using the RCAC rule text
	3.5 SELECT, INSERT, and UPDATE behavior with RCAC
	3.6 Human resources example
	3.6.1 Assigning the QIBM_DB_SECADM function ID to the consultants
	3.6.2 Creating group profiles for the users and their roles
	3.6.3 Demonstrating data access without RCAC
	3.6.4 Defining and creating row permissions
	3.6.5 Defining and creating column masks
	3.6.6 Activating RCAC
	3.6.7 Demonstrating data access with RCAC
	3.6.8 Demonstrating data access with a view and RCAC

	Chapter 4. Implementing Row and Column Access Control: Banking example
	4.1 Business requirements for the RCAC banking scenario
	4.2 Description of the users roles and responsibilities
	4.3 Implementation of RCAC
	4.3.1 Reviewing the tables that are used in this example
	4.3.2 Assigning function ID QIBM_DB_SECADM to the Database Engineers group
	4.3.3 Creating group profiles for the users and their roles
	4.3.4 Creating the CUSTOMER_LOGIN_ID global variable
	4.3.5 Defining and creating row permissions
	4.3.6 Defining and creating column masks
	4.3.7 Restricting the inserting and updating of masked data
	4.3.8 Activating row and column access control
	4.3.9 Reviewing row permissions
	4.3.10 Demonstrating data access with RCAC
	4.3.11 Query implementation with RCAC activated

	Chapter 5. RCAC and non-SQL interfaces
	5.1 Unsupported interfaces
	5.2 Native query result differences
	5.3 Accidental updates with masked values
	5.4 System CL commands considerations
	5.4.1 Create Duplicate Object (CRTDUPOBJ) command
	5.4.2 Copy File (CPYF) command
	5.4.3 Copy Library (CPYLIB) command

	Chapter 6. Additional considerations
	6.1 Timing of column masking
	6.2 RCAC effects on data movement
	6.2.1 Effects when RCAC is defined on the source table
	6.2.2 Effects when RCAC is defined on the target table
	6.2.3 Effects when RCAC is defined on both source and target tables

	6.3 RCAC effects on joins
	6.3.1 Inner joins
	6.3.2 Outer joins
	6.3.3 Exception joins

	6.4 Monitoring, analyzing, and debugging with RCAC
	6.4.1 Query monitoring and analysis tools
	6.4.2 Index advisor
	6.4.3 Metadata using catalogs

	6.5 Views, materialized query tables, and query rewrite with RCAC
	6.5.1 Views
	6.5.2 Materialized query tables
	6.5.3 Query rewrite

	6.6 RCAC effects on performance and scalability
	6.7 Exclusive lock to implement RCAC (availability issues)
	6.8 Avoiding propagation of masked data
	6.8.1 Check constraint solution
	6.8.2 Before trigger solution

	6.9 Triggers and functions (SECURED)
	6.9.1 Triggers
	6.9.2 Functions

	6.10 RCAC is only one part of the solution

	Chapter 7. Row and Column Access Control management
	7.1 Managing row permissions and column masks
	7.1.1 Source management
	7.1.2 Modifying definitions
	7.1.3 Turning on and off
	7.1.4 Regenerating

	7.2 Managing tables with row permissions and column masks
	7.2.1 Save and restore
	7.2.2 Table migration

	7.3 Monitoring and auditing function usage

	Chapter 8. Designing and planning for success
	8.1 Implementing RCAC with good design and proper planning
	8.2 DB2 for i Center of Excellence

	Appendix A. Database definitions for the RCAC banking example
	Related publications
	Other publications
	Online resources
	Help from IBM

	Back cover

