
There is a number of definitions in the scope. The developer is about to define,
at the position marked by !, the body of the function getData that computes
a value of type Data. When the developer invokes isynth, the result is a list
of valid expressions (snippets) for the given program point, composed from the
values in the scope. Assuming that among the definitions we have functions fopen
and fread, of types shown above, the tool will return as one of the suggestions
fread(fopen(fname), currentPos), which is a simple way to retrieve data from the
file given the available operations. In our experience, isynth often returns snippets
in a matter of milliseconds. Such snippets may be difficult to find manually for
complex and unknown APIs, so isynth can also be thought as a sophisticated
extension of a search and code completion functionality.

Parametric polymorphism. We next illustrate the support of parametric
polymorphism in isynth. Consider the standard higher-order function map that
applies a given function to each element of the list. Assume that the map function
is in the scope. Further assume that we wish to define a method that takes as
arguments a function from integers to strings and a list of strings, and returns
a list of strings.

def map[A,B](f:A ⇒ B, l:List[A]):List[B] = { ... }
def stringConcat(lst : List[String]) : String = { ... }
...
def printInts(intList:List[Int], prn: Int ⇒ String): String = !

isynth returns stringConcat(map[Int, String](fun, intList)) as a result, instantiat-
ing polymorphic definition of map and composing it with stringConcat. isynth
efficiently handles polymorphic types through resolution and unification.

Using code behavior. The next example shows how isynth applies testing
to discard those snippets that would make code inconsistent. Define the class
FileManager containing methods for opening files either for reading or for writing.

class Mode(mode:String)
class File(name:String, val state:Mode)

object FileManager {
private final val WRITE:Mode = new Mode(”write”)
private final val READ:Mode = new Mode(”read”)

def openForReading(name:String):File = !

ensuring { result => result.state == READ}
}
object Tests { FileManager.openForReading(”book.txt”) }

If it would be based only on the type inferences rules, isynth would return both
new File(name, WRITE) and new File(name, READ). However, it also checks the
method contract (pre- and post-conditions) and verifies whether each of the
returned snippets complies with them. Because of postconditions requiring that
the file is open for reading, isynth discards the snippet new File(name, WRITE)
and returns only new File(name, READ).

where we ask for a code snippet. Additionally, it also takes as an argument the
maximum number of resolution steps.

The first step of the algorithm is to traverse the program syntax tree, create
the clauses, and assign the weights to the symbols and clauses. We pick a minimal
weight clause and resolve it with all other clauses of greater weight. If we derive
a contradiction (empty clause), we extract its proof tree. Moreover, based on this
proof tree we derive a new clause that prevents the same derivation of the empty
clause in the future. This new clause is then added to the clause set. We repeat
this procedure until the clause set becomes saturated or the given threshold on
the resolution steps is exceeded. Finally, we reconstruct terms from the proof
trees, and create the code snippets. They snippets are further tested by invoking
a test case that involves the code and discarding the snippet if the code crashes.

Backward Reasoning. In isynth we combine the algorithm described in
Figure 1 with backward reasoning. With ? T we denote the query asking for a
value of the type T . The main rule we use is

hasType(x, Arrow(T1, T2)) ? T2

? T1

This way we managed to accelerate search for solutions.

INPUT: partial Scala program, program point, maximal number of steps
OUTPUT: list of code snippets

def basicSynthesizeSnippet(p : partial Scala program, maxSteps : Int) : List[Snippet] = {
var weightedClauses = extractClauses(p)
var saturated = false
var solutions = emptySet
var step = 0
while (step < maxSteps && !saturated) {

val c : Clause = pickMinWeight(weightedClauses)
saturated = true
for (c’ <− weight(c) < weight(c’) || (weight(c) = weight(c’) && c != c’)) {

val newC = resolution(c,c’)
if !(newC in weightedClauses) {

saturated = false
if (newC.isEmptyClause) {

val s = extractSolution(newC)
solutions = solutions union { s }
val cBlock = createClausePreventingThisProof(s)
weightedClauses = weightedClauses union { cBlock }

}
}

}
step++

}
return (solutions.map(proofToSnippet)).filter(passesTest(p))

}

Fig. 1. Basic algorithm for synthesizing code snippets

CHAPTER 1. NUMBER SETS

11

60. nìçíáÉåí áå mçä~ê oÉéêÉëÉåí~íáçå
()
() () ()[]ONON

O

N

OOO

NNN

O

N ëáåáÅçë
ê

ê

ëáåáÅçëê

ëáåáÅçëê

ò

ò
ϕ−ϕ+ϕ−ϕ=

ϕ+ϕ
ϕ+ϕ

=

61. mçïÉê çÑ ~ `çãéäÉñ kìãÄÉê

()[] () ()[]ϕ+ϕ=ϕ+ϕ= åëáåáåÅçëêëáåáÅçëêò ååå

62. cçêãìä~ ±aÉ jçáîêÉ≤

() () ()ϕ+ϕ=ϕ+ϕ åëáåáåÅçëëáåáÅçë å

63. kíÜ oççí çÑ ~ `çãéäÉñ kìãÄÉê

() 





 π+ϕ

+
π+ϕ

=ϕ+ϕ=
å

âO
ëáåá

å

âO
ÅçëêëáåáÅçëêò ååå I

ïÜÉêÉ
NåIIOINIMâ −= K K

64. bìäÉê∞ë cçêãìä~
ñëáåáñÅçëÉáñ +=

http://fribok.blogspot.com/

CHAPTER 2. ALGEBRA

16

101.
~

~

~

N å Nå

å

−

= I M~ ≠ K

102.
O

Ä~~

O

Ä~~
Ä~

OO −−
±

−+
=±

103.
Ä~

Ä~

Ä~

N

−
=

±
m

2.5 Logarithms

mçëáíáîÉ êÉ~ä åìãÄÉêëW ñI óI ~I ÅI â
k~íìê~ä åìãÄÉêW å

104. aÉÑáåáíáçå çÑ içÖ~êáíÜã
ñäçÖó ~= áÑ ~åÇ çåäó áÑ ó~ñ = I M~ > I N~ ≠ K

105. MNäçÖ~ =

106. N~äçÖ~ =

107.




<∞+
>∞−

=
N~áÑ

N~áÑ
MäçÖ~

108. () óäçÖñäçÖñóäçÖ ~~~ +=

109. óäçÖñäçÖ
ó

ñ
äçÖ ~~~ −=

http://fribok.blogspot.com/

