TableFormer: Table Structure Understanding with Transformers
Supplementary Material

1. Details on the datasets
1.1. Data preparation

As a first step of our data preparation process, we have
calculated statistics over the datasets across the following
dimensions: (1) table size measured in the number of rows
and columns, (2) complexity of the table, (3) strictness of
the provided HTML structure and (4) completeness (i.e. no
omitted bounding boxes). A table is considered to be simple
if it does not contain row spans or column spans. Addition-
ally, a table has a strict HTML structure if every row has the
same number of columns after taking into account any row
or column spans. Therefore a strict HTML structure looks
always rectangular. However, HTML is a lenient encoding
format, i.e. tables with rows of different sizes might still
be regarded as correct due to implicit display rules. These
implicit rules leave room for ambiguity, which we want to
avoid. As such, we prefer to have “strict” tables, i.e. tables
where every row has exactly the same length.

We have developed a technique that tries to derive a
missing bounding box out of its neighbors. As a first step,
we use the annotation data to generate the most fine-grained
grid that covers the table structure. In case of strict HTML
tables, all grid squares are associated with some table cell
and in the presence of table spans a cell extends across mul-
tiple grid squares. When enough bounding boxes are known
for a rectangular table, it is possible to compute the geo-
metrical border lines between the grid rows and columns.
Eventually this information is used to generate the missing
bounding boxes. Additionally, the existence of unused grid
squares indicates that the table rows have unequal number
of columns and the overall structure is non-strict. The gen-
eration of missing bounding boxes for non-strict HTML ta-
bles is ambiguous and therefore quite challenging. Thus,
we have decided to simply discard those tables. In case of
PubTabNet we have computed missing bounding boxes for
48% of the simple and 69% of the complex tables. Regard-
ing FinTabNet, 68% of the simple and 98% of the complex
tables require the generation of bounding boxes.

Figure 7 illustrates the distribution of the tables across
different dimensions per dataset.

1.2. Synthetic datasets

Aiming to train and evaluate our models in a broader
spectrum of table data we have synthesized four types of
datasets. Each one contains tables with different appear-

11

ances in regard to their size, structure, style and content.
Every synthetic dataset contains 150k examples, summing
up to 600k synthetic examples. All datasets are divided into
Train, Test and Val splits (80%, 10%, 10%).

The process of generating a synthetic dataset can be de-
composed into the following steps:

1. Prepare styling and content templates: The styling
templates have been manually designed and organized into
groups of scope specific appearances (e.g. financial data,
marketing data, etc.) Additionally, we have prepared cu-
rated collections of content templates by extracting the most
frequently used terms out of non-synthetic datasets (e.g.
PubTabNet, FinTabNet, etc.).

2. Generate table structures: The structure of each syn-
thetic dataset assumes a horizontal table header which po-
tentially spans over multiple rows and a table body that
may contain a combination of row spans and column spans.
However, spans are not allowed to cross the header - body
boundary. The table structure is described by the parame-
ters: Total number of table rows and columns, number of
header rows, type of spans (header only spans, row only
spans, column only spans, both row and column spans),
maximum span size and the ratio of the table area covered
by spans.

3. Generate content: Based on the dataset theme, a set of
suitable content templates is chosen first. Then, this content
can be combined with purely random text to produce the
synthetic content.

4. Apply styling templates: Depending on the domain
of the synthetic dataset, a set of styling templates is first
manually selected. Then, a style is randomly selected to
format the appearance of the synthesized table.

5. Render the complete tables: The synthetic table is
finally rendered by a web browser engine to generate the
bounding boxes for each table cell. A batching technique is
utilized to optimize the runtime overhead of the rendering
process.

2. Prediction post-processing for PDF docu-
ments

Although TableFormer can predict the table structure and
the bounding boxes for tables recognized inside PDF docu-
ments, this is not enough when a full reconstruction of the
original table is required. This happens mainly due the fol-
lowing reasons:



