import json import time from pathlib import Path from docling_core.types.doc import DocItemLabel, ImageRefMode from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS from docling.datamodel.base_models import InputFormat from docling.datamodel.pipeline_model_specializations import ( HuggingFaceVlmOptions, InferenceFramework, ResponseFormat, granite_vision_vlm_conversion_options, granite_vision_vlm_ollama_conversion_options, phi_vlm_conversion_options, pixtral_12b_vlm_conversion_options, pixtral_12b_vlm_mlx_conversion_options, qwen25_vl_3b_vlm_mlx_conversion_options, smoldocling_vlm_conversion_options, smoldocling_vlm_mlx_conversion_options, ) from docling.datamodel.pipeline_options import ( VlmPipelineOptions, ) from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline from tabulate import tabulate ## Use experimental VlmPipeline pipeline_options = VlmPipelineOptions() # If force_backend_text = True, text from backend will be used instead of generated text pipeline_options.force_backend_text = False pipeline_options.generate_page_images = True ## On GPU systems, enable flash_attention_2 with CUDA: # pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA # pipeline_options.accelerator_options.cuda_use_flash_attention2 = True ## Pick a VLM model. We choose SmolDocling-256M by default # pipeline_options.vlm_options = smoldocling_vlm_conversion_options ## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX # pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options ## Alternative VLM models: # pipeline_options.vlm_options = granite_vision_vlm_conversion_options pipeline_options.vlm_options = phi_vlm_conversion_options # pipeline_options.vlm_options = qwen25_vl_3b_vlm_mlx_conversion_options """ pixtral_vlm_conversion_options = HuggingFaceVlmOptions( repo_id="mistralai/Pixtral-12B-Base-2409", prompt="OCR this image and export it in MarkDown.", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration, ) pipeline_options.vlm_options = pixtral_vlm_conversion_options """ """ pixtral_vlm_conversion_options = HuggingFaceVlmOptions( repo_id="mistral-community/pixtral-12b", prompt="OCR this image and export it in MarkDown.", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration, ) pipeline_options.vlm_options = pixtral_vlm_conversion_options """ """ phi_vlm_conversion_options = HuggingFaceVlmOptions( repo_id="microsoft/Phi-4-multimodal-instruct", # prompt="OCR the full page to markdown.", prompt="OCR this image and export it in MarkDown.", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM, ) pipeline_options.vlm_options = phi_vlm_conversion_options """ """ pixtral_vlm_conversion_options = HuggingFaceVlmOptions( repo_id="mlx-community/pixtral-12b-bf16", prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.MLX, scale=1.0, ) pipeline_options.vlm_options = pixtral_vlm_conversion_options """ """ qwen_vlm_conversion_options = HuggingFaceVlmOptions( repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16", prompt="Convert this full page to markdown. Do not miss any text and only output the bare MarkDown!", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.MLX, ) pipeline_options.vlm_options = qwen_vlm_conversion_options """ def convert(sources: list[Path], converter): for source in sources: #start_time = time.time() print("================================================") print(f"Processing... {source}") print("================================================") print("") res = converter.convert(source) print("") # print(res.document.export_to_markdown()) model_id = pipeline_options.vlm_options.repo_id.replace("/", "_") framework = pipeline_options.vlm_options.inference_framework fname = f"{res.input.file.stem}-{model_id}-{framework}" inference_time = 0.0 for i, page in enumerate(res.pages): inference_time += page.predictions.vlm_response.generation_time print("") print( f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:" ) print(page.predictions.vlm_response.text) print(" ---------- ") print("===== Final output of the converted document =======") with (out_path / f"{fname}.json").open("w") as fp: fp.write(json.dumps(res.document.export_to_dict())) res.document.save_as_json( out_path / f"{fname}.json", image_mode=ImageRefMode.PLACEHOLDER, ) print(f" => produced {out_path / fname}.json") res.document.save_as_markdown( out_path / f"{fname}.md", image_mode=ImageRefMode.PLACEHOLDER, ) print(f" => produced {out_path / fname}.md") res.document.save_as_html( out_path / f"{fname}.html", image_mode=ImageRefMode.EMBEDDED, labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE], split_page_view=True, ) print(f" => produced {out_path / fname}.html") pg_num = res.document.num_pages() print("") print( f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}" ) print("====================================================") # return [source, f"{out_path / fname}.html", model_id, framework, inference_time, ] return [source, model_id, framework, pg_num, inference_time, ] if __name__ == "__main__": sources = [ # "tests/data/2305.03393v1-pg9-img.png", "tests/data/pdf/2305.03393v1-pg9.pdf", ] out_path = Path("scratch") out_path.mkdir(parents=True, exist_ok=True) ## Use VlmPipeline pipeline_options = VlmPipelineOptions() # If force_backend_text = True, text from backend will be used instead of generated text pipeline_options.force_backend_text = False pipeline_options.generate_page_images = True ## On GPU systems, enable flash_attention_2 with CUDA: # pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA # pipeline_options.accelerator_options.cuda_use_flash_attention2 = True rows = [] for vlm_options in [ # smoldocling_vlm_conversion_options, \ smoldocling_vlm_mlx_conversion_options, \ # granite_vision_vlm_conversion_options, \ # phi_vlm_conversion_options, \ # qwen25_vl_3b_vlm_mlx_conversion_options, \ # pixtral_12b_vlm_mlx_conversion_options, # pixtral_12b_vlm_conversion_options, ]: pipeline_options.vlm_options = vlm_options ## Set up pipeline for PDF or image inputs converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), InputFormat.IMAGE: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), }, ) row = convert(sources=sources, converter=converter) print("pipelines: \n", converter._get_initialized_pipelines()) rows.append(row) print(tabulate(rows)) print("see if memory gets released ...") time.sleep(10)