mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-24 19:14:23 +00:00
* Unify temperature options for Vlm models * Dynamic prompt support with example * DCO Remediation Commit for Shkarupa Alex <shkarupa.alex@gmail.com> I, Shkarupa Alex <shkarupa.alex@gmail.com>, hereby add my Signed-off-by to this commit:34d446cb98
I, Shkarupa Alex <shkarupa.alex@gmail.com>, hereby add my Signed-off-by to this commit:9c595d574f
Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> * Replace Page with SegmentedPage * Fix example HF repo link Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com> * Sign-off Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> * DCO Remediation Commit for Shkarupa Alex <shkarupa.alex@gmail.com> I, Shkarupa Alex <shkarupa.alex@gmail.com>, hereby add my Signed-off-by to this commit:1a162066dd
Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> * Use lmstudio-community model Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com> * Swap inference engine to LM Studio Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> --------- Signed-off-by: Shkarupa Alex <shkarupa.alex@gmail.com> Signed-off-by: Christoph Auer <60343111+cau-git@users.noreply.github.com> Co-authored-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
226 lines
7.0 KiB
Python
Vendored
226 lines
7.0 KiB
Python
Vendored
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import requests
|
|
from docling_core.types.doc.page import SegmentedPage
|
|
from dotenv import load_dotenv
|
|
|
|
from docling.datamodel.base_models import InputFormat
|
|
from docling.datamodel.pipeline_options import (
|
|
VlmPipelineOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
|
|
|
### Example of ApiVlmOptions definitions
|
|
|
|
#### Using LM Studio
|
|
|
|
|
|
def lms_vlm_options(model: str, prompt: str, format: ResponseFormat):
|
|
options = ApiVlmOptions(
|
|
url="http://localhost:1234/v1/chat/completions", # the default LM Studio
|
|
params=dict(
|
|
model=model,
|
|
),
|
|
prompt=prompt,
|
|
timeout=90,
|
|
scale=1.0,
|
|
response_format=format,
|
|
)
|
|
return options
|
|
|
|
|
|
#### Using LM Studio with OlmOcr model
|
|
|
|
|
|
def lms_olmocr_vlm_options(model: str):
|
|
def _dynamic_olmocr_prompt(page: Optional[SegmentedPage]):
|
|
if page is None:
|
|
return (
|
|
"Below is the image of one page of a document. Just return the plain text"
|
|
" representation of this document as if you were reading it naturally.\n"
|
|
"Do not hallucinate.\n"
|
|
)
|
|
|
|
anchor = [
|
|
f"Page dimensions: {int(page.dimension.width)}x{int(page.dimension.height)}"
|
|
]
|
|
|
|
for text_cell in page.textline_cells:
|
|
if not text_cell.text.strip():
|
|
continue
|
|
bbox = text_cell.rect.to_bounding_box().to_bottom_left_origin(
|
|
page.dimension.height
|
|
)
|
|
anchor.append(f"[{int(bbox.l)}x{int(bbox.b)}] {text_cell.text}")
|
|
|
|
for image_cell in page.bitmap_resources:
|
|
bbox = image_cell.rect.to_bounding_box().to_bottom_left_origin(
|
|
page.dimension.height
|
|
)
|
|
anchor.append(
|
|
f"[Image {int(bbox.l)}x{int(bbox.b)} to {int(bbox.r)}x{int(bbox.t)}]"
|
|
)
|
|
|
|
if len(anchor) == 1:
|
|
anchor.append(
|
|
f"[Image 0x0 to {int(page.dimension.width)}x{int(page.dimension.height)}]"
|
|
)
|
|
|
|
# Original prompt uses cells sorting. We are skipping it in this demo.
|
|
|
|
base_text = "\n".join(anchor)
|
|
|
|
return (
|
|
f"Below is the image of one page of a document, as well as some raw textual"
|
|
f" content that was previously extracted for it. Just return the plain text"
|
|
f" representation of this document as if you were reading it naturally.\n"
|
|
f"Do not hallucinate.\n"
|
|
f"RAW_TEXT_START\n{base_text}\nRAW_TEXT_END"
|
|
)
|
|
|
|
options = ApiVlmOptions(
|
|
url="http://localhost:1234/v1/chat/completions",
|
|
params=dict(
|
|
model=model,
|
|
),
|
|
prompt=_dynamic_olmocr_prompt,
|
|
timeout=90,
|
|
scale=1.0,
|
|
max_size=1024, # from OlmOcr pipeline
|
|
response_format=ResponseFormat.MARKDOWN,
|
|
)
|
|
return options
|
|
|
|
|
|
#### Using Ollama
|
|
|
|
|
|
def ollama_vlm_options(model: str, prompt: str):
|
|
options = ApiVlmOptions(
|
|
url="http://localhost:11434/v1/chat/completions", # the default Ollama endpoint
|
|
params=dict(
|
|
model=model,
|
|
),
|
|
prompt=prompt,
|
|
timeout=90,
|
|
scale=1.0,
|
|
response_format=ResponseFormat.MARKDOWN,
|
|
)
|
|
return options
|
|
|
|
|
|
#### Using a cloud service like IBM watsonx.ai
|
|
|
|
|
|
def watsonx_vlm_options(model: str, prompt: str):
|
|
load_dotenv()
|
|
api_key = os.environ.get("WX_API_KEY")
|
|
project_id = os.environ.get("WX_PROJECT_ID")
|
|
|
|
def _get_iam_access_token(api_key: str) -> str:
|
|
res = requests.post(
|
|
url="https://iam.cloud.ibm.com/identity/token",
|
|
headers={
|
|
"Content-Type": "application/x-www-form-urlencoded",
|
|
},
|
|
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
|
|
)
|
|
res.raise_for_status()
|
|
api_out = res.json()
|
|
print(f"{api_out=}")
|
|
return api_out["access_token"]
|
|
|
|
options = ApiVlmOptions(
|
|
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
|
|
params=dict(
|
|
model_id=model,
|
|
project_id=project_id,
|
|
parameters=dict(
|
|
max_new_tokens=400,
|
|
),
|
|
),
|
|
headers={
|
|
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
|
|
},
|
|
prompt=prompt,
|
|
timeout=60,
|
|
response_format=ResponseFormat.MARKDOWN,
|
|
)
|
|
return options
|
|
|
|
|
|
### Usage and conversion
|
|
|
|
|
|
def main():
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
data_folder = Path(__file__).parent / "../../tests/data"
|
|
input_doc_path = data_folder / "pdf/2305.03393v1-pg9.pdf"
|
|
|
|
pipeline_options = VlmPipelineOptions(
|
|
enable_remote_services=True # <-- this is required!
|
|
)
|
|
|
|
# The ApiVlmOptions() allows to interface with APIs supporting
|
|
# the multi-modal chat interface. Here follow a few example on how to configure those.
|
|
|
|
# One possibility is self-hosting model, e.g. via LM Studio, Ollama or others.
|
|
|
|
# Example using the SmolDocling model with LM Studio:
|
|
# (uncomment the following lines)
|
|
pipeline_options.vlm_options = lms_vlm_options(
|
|
model="smoldocling-256m-preview-mlx-docling-snap",
|
|
prompt="Convert this page to docling.",
|
|
format=ResponseFormat.DOCTAGS,
|
|
)
|
|
|
|
# Example using the Granite Vision model with LM Studio:
|
|
# (uncomment the following lines)
|
|
# pipeline_options.vlm_options = lms_vlm_options(
|
|
# model="granite-vision-3.2-2b",
|
|
# prompt="OCR the full page to markdown.",
|
|
# format=ResponseFormat.MARKDOWN,
|
|
# )
|
|
|
|
# Example using the OlmOcr (dynamic prompt) model with LM Studio:
|
|
# (uncomment the following lines)
|
|
# pipeline_options.vlm_options = lms_olmocr_vlm_options(
|
|
# model="hf.co/lmstudio-community/olmOCR-7B-0225-preview-GGUF",
|
|
# )
|
|
|
|
# Example using the Granite Vision model with Ollama:
|
|
# (uncomment the following lines)
|
|
# pipeline_options.vlm_options = ollama_vlm_options(
|
|
# model="granite3.2-vision:2b",
|
|
# prompt="OCR the full page to markdown.",
|
|
# )
|
|
|
|
# Another possibility is using online services, e.g. watsonx.ai.
|
|
# Using requires setting the env variables WX_API_KEY and WX_PROJECT_ID.
|
|
# (uncomment the following lines)
|
|
# pipeline_options.vlm_options = watsonx_vlm_options(
|
|
# model="ibm/granite-vision-3-2-2b", prompt="OCR the full page to markdown."
|
|
# )
|
|
|
|
# Create the DocumentConverter and launch the conversion.
|
|
doc_converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_options=pipeline_options,
|
|
pipeline_cls=VlmPipeline,
|
|
)
|
|
}
|
|
)
|
|
result = doc_converter.convert(input_doc_path)
|
|
print(result.document.export_to_markdown())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|