docling/docling/pipeline/vlm_pipeline.py
Maksym Lysak 1b968e4984 Fixes to preserve page image and demo export to html
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
2025-02-24 12:56:56 +01:00

552 lines
22 KiB
Python

import itertools
import logging
import re
from io import BytesIO
from pathlib import Path
from typing import Optional
from docling_core.types import DoclingDocument
from docling_core.types.doc import (
BoundingBox,
DocItem,
DocItemLabel,
DoclingDocument,
GroupLabel,
ImageRef,
ImageRefMode,
PictureItem,
ProvenanceItem,
TableCell,
TableData,
TableItem,
)
from PIL.Image import Image
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.models.smol_docling_model import SmolDoclingModel
from docling.pipeline.base_pipeline import PaginatedPipeline
from docling.utils.profiling import ProfilingScope, TimeRecorder
_log = logging.getLogger(__name__)
class VlmPipeline(PaginatedPipeline):
_smol_vlm_path = "SmolDocling-0.0.2"
def __init__(self, pipeline_options: PdfPipelineOptions):
super().__init__(pipeline_options)
print("------> Init VLM Pipeline!")
self.pipeline_options: PdfPipelineOptions
if pipeline_options.artifacts_path is None:
self.artifacts_path = self.download_models_hf()
else:
self.artifacts_path = Path(pipeline_options.artifacts_path)
keep_images = (
self.pipeline_options.generate_page_images
or self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
)
self.build_pipe = [
SmolDoclingModel(
artifacts_path=self.artifacts_path / VlmPipeline._smol_vlm_path,
accelerator_options=pipeline_options.accelerator_options,
),
]
self.enrichment_pipe = [
# Other models working on `NodeItem` elements in the DoclingDocument
]
@staticmethod
def download_models_hf(
local_dir: Optional[Path] = None, force: bool = False
) -> Path:
from huggingface_hub import snapshot_download
from huggingface_hub.utils import disable_progress_bars
disable_progress_bars()
# TODO download the correct model (private repo)
download_path = snapshot_download(
repo_id="ds4sd/xxx",
force_download=force,
local_dir=local_dir,
)
return Path(download_path)
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
with TimeRecorder(conv_res, "page_init"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
print("VLM, assembling document...")
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
# Read and concatenate the page doctags:
document_tags = ""
for page in conv_res.pages:
if page.predictions.doctags is not None:
document_tags += page.predictions.doctags.tag_string
conv_res.document = self._turn_tags_into_doc(document_tags, page.image)
"""
image_bytes = BytesIO()
if page.image:
page.image.save(image_bytes, format="PNG")
# TODO implement this function
conv_res.document = self._turn_tags_into_doc(
document_tags, image_bytes.getvalue()
)
# Generate page images in the output
if self.pipeline_options.generate_page_images:
for page in conv_res.pages:
assert page.image is not None
page_no = page.page_no + 1
conv_res.document.pages[page_no].image = ImageRef.from_pil(
page.image, dpi=int(72 * self.pipeline_options.images_scale)
)
"""
# Generate images of the requested element types
if (
self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
):
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
) or (
isinstance(element, TableItem)
and self.pipeline_options.generate_table_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res
# def _turn_tags_into_doc(self, xml_content: str, image_bytes: bytes) -> (DoclingDocument, list):
def _turn_tags_into_doc(
self, xml_content: str, input_image: Optional[Image] = None
) -> DoclingDocument:
def extract_text(tag_content: str) -> str:
return re.sub(r"<.*?>", "", tag_content).strip()
def extract_bounding_box(tag_content: str) -> Optional[BoundingBox]:
locs = re.findall(r"<loc_(\d+)>", tag_content)
if len(locs) == 4:
l, t, r, b = map(float, locs)
l, t, r, b = [coord / 500.0 for coord in (l, t, r, b)]
return BoundingBox(l=l, t=t, r=r, b=b)
return None
def parse_table_content_old(otsl_content: str) -> TableData:
rows = []
table_cells = []
for row_content in otsl_content.split("<nl>"):
row_content = row_content.strip()
if not row_content:
continue
current_row = []
cells = re.findall(r"<(fcel|ecel)>([^<]*)", row_content)
for cell_type, cell_content in cells:
if cell_type == "fcel":
current_row.append(cell_content.strip())
elif cell_type == "ecel":
current_row.append("")
if current_row:
rows.append(current_row)
for r_idx, row in enumerate(rows):
for c_idx, cell_text in enumerate(row):
table_cells.append(
TableCell(
text=cell_text.strip(),
row_span=1,
col_span=1,
start_row_offset_idx=r_idx,
end_row_offset_idx=r_idx + 1,
start_col_offset_idx=c_idx,
end_col_offset_idx=c_idx + 1,
)
)
return TableData(
num_rows=len(rows),
num_cols=max(len(row) for row in rows) if rows else 0,
table_cells=table_cells,
)
def parse_texts(texts, tokens):
split_word = "<nl>"
split_row_tokens = [
list(y)
for x, y in itertools.groupby(tokens, lambda z: z == split_word)
if not x
]
table_cells = []
# print("\nText parts:")
r_idx = 0
c_idx = 0
def count_right(tokens, c_idx, r_idx, which_tokens):
# for t in tokens:
# print(t)
span = 1
c_idx_iter = c_idx
while tokens[r_idx][c_idx_iter] in which_tokens:
c_idx_iter += 1
if c_idx_iter >= len(tokens[r_idx]):
break
span += 1
return span
def count_down(tokens, c_idx, r_idx, which_tokens):
span = 1
r_idx_iter = r_idx
while tokens[r_idx_iter][c_idx] in which_tokens:
r_idx_iter += 1
if r_idx_iter >= len(tokens):
break
span += 1
return span
for i, text in enumerate(texts):
# print(f" {text}")
cell_text = ""
if text in ["<fcel>", "<ecel>", "<ched>", "<rhed>", "<srow>"]:
row_span = 1
col_span = 1
right_offset = 1
if text != "<ecel>":
cell_text = texts[i + 1]
right_offset = 2
# TODO: Check next element(s) for lcel / ucel / xcel, set properly row_span, col_span
next_right_cell = texts[i + right_offset]
next_bottom_cell = ""
if r_idx + 1 < len(split_row_tokens):
next_bottom_cell = split_row_tokens[r_idx + 1][c_idx]
if next_right_cell in ["<lcel>", "<xcel>"]:
# we have horisontal spanning cell or 2d spanning cell
col_span += count_right(
split_row_tokens, c_idx + 1, r_idx, ["<lcel>", "<xcel>"]
)
if next_bottom_cell in ["<ucel>", "<xcel>"]:
# we have a vertical spanning cell or 2d spanning cell
row_span += count_down(
split_row_tokens, c_idx, r_idx + 1, ["<lcel>", "<xcel>"]
)
table_cells.append(
TableCell(
text=cell_text.strip(),
row_span=row_span,
col_span=col_span,
start_row_offset_idx=r_idx,
end_row_offset_idx=r_idx + row_span,
start_col_offset_idx=c_idx,
end_col_offset_idx=c_idx + col_span,
)
)
if text in [
"<fcel>",
"<ecel>",
"<ched>",
"<rhed>",
"<srow>",
"<lcel>",
"<ucel>",
"<xcel>",
]:
c_idx += 1
if text == "<nl>":
r_idx += 1
c_idx = 0
return table_cells, split_row_tokens
def extract_tokens_and_text(s: str):
# Pattern to match anything enclosed by < > (including the angle brackets themselves)
pattern = r"(<[^>]+>)"
# Find all tokens (e.g. "<otsl>", "<loc_140>", etc.)
tokens = re.findall(pattern, s)
# Remove any tokens that start with "<loc_"
tokens = [
token
for token in tokens
if not (token.startswith("<loc_") or token in ["<otsl>", "</otsl>"])
]
# Split the string by those tokens to get the in-between text
text_parts = re.split(pattern, s)
text_parts = [
token
for token in text_parts
if not (token.startswith("<loc_") or token in ["<otsl>", "</otsl>"])
]
# Remove any empty or purely whitespace strings from text_parts
text_parts = [part for part in text_parts if part.strip()]
return tokens, text_parts
def parse_table_content(otsl_content: str) -> TableData:
tokens, mixed_texts = extract_tokens_and_text(otsl_content)
table_cells, split_row_tokens = parse_texts(mixed_texts, tokens)
return TableData(
num_rows=len(split_row_tokens),
num_cols=(
max(len(row) for row in split_row_tokens) if split_row_tokens else 0
),
table_cells=table_cells,
)
doc = DoclingDocument(name="Example Document")
current_group = None
lines = xml_content.split("\n")
# pil_image = input_image #Image.open(BytesIO(image_bytes))
bounding_boxes = []
for line in lines:
line = line.strip()
line = line.replace("<doc_tag>", "")
if line.startswith("<paragraph>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "red"))
doc.add_text(
label=DocItemLabel.PARAGRAPH,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<title>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "blue"))
current_group = doc.add_group(label=GroupLabel.SECTION, name=content)
doc.add_text(
label=DocItemLabel.TITLE,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<section-header>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "green"))
current_group = doc.add_group(label=GroupLabel.SECTION, name=content)
doc.add_text(
label=DocItemLabel.SECTION_HEADER,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<otsl>"):
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "aquamarine"))
table_data = parse_table_content(line)
doc.add_table(data=table_data, parent=current_group)
elif line.startswith("<footnote>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "orange"))
doc.add_text(
label=DocItemLabel.FOOTNOTE,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<page-header>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "purple"))
doc.add_text(
label=DocItemLabel.PAGE_HEADER,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<page-footer>"):
content = extract_text(line)
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "cyan"))
doc.add_text(
label=DocItemLabel.PAGE_FOOTER,
text=content,
parent=current_group,
prov=(
# [ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)]
ProvenanceItem(bbox=prov_item, charspan=(0, 0), page_no=1)
if prov_item
else None
),
)
elif line.startswith("<figure>"):
bbox = extract_bounding_box(line)
if bbox:
bounding_boxes.append((bbox, "yellow"))
# Convert bounding box normalized to 0-100 into pixel coordinates for cropping
"""
width, height = pil_image.size
crop_box = (
int(bbox.l * width),
int(bbox.t * height),
int(bbox.r * width),
int(bbox.b * height),
)
cropped_image = pil_image.crop(crop_box)
doc.add_picture(
parent=current_group,
image=ImageRef.from_pil(image=cropped_image, dpi=300),
prov=ProvenanceItem(bbox=bbox, charspan=(0, 0), page_no=1),
)
"""
elif line.startswith("<list>"):
content = extract_text(line)
prov_item_inst = None
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "brown"))
prov_item_inst = ProvenanceItem(
bbox=prov_item, charspan=(0, 0), page_no=1
)
doc.add_text(
label=DocItemLabel.LIST_ITEM,
text=content,
parent=current_group,
prov=prov_item_inst if prov_item_inst else None,
)
elif line.startswith("<caption>"):
content = extract_text(line)
prov_item_inst = None
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "magenta"))
prov_item_inst = ProvenanceItem(
bbox=prov_item, charspan=(0, 0), page_no=1
)
doc.add_text(
label=DocItemLabel.PARAGRAPH,
text=content,
parent=current_group,
prov=prov_item_inst if prov_item_inst else None,
)
elif line.startswith("<checkbox-unselected>"):
content = extract_text(line)
prov_item_inst = None
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "gray"))
prov_item_inst = ProvenanceItem(
bbox=prov_item, charspan=(0, 0), page_no=1
)
doc.add_text(
label=DocItemLabel.CHECKBOX_UNSELECTED,
text=content,
parent=current_group,
prov=prov_item_inst if prov_item_inst else None,
)
elif line.startswith("<checkbox-selected>"):
content = extract_text(line)
prov_item_inst = None
prov_item = extract_bounding_box(line)
if prov_item:
bounding_boxes.append((prov_item, "black"))
prov_item_inst = ProvenanceItem(
bbox=prov_item, charspan=(0, 0), page_no=1
)
doc.add_text(
label=DocItemLabel.CHECKBOX_SELECTED,
text=content,
parent=current_group,
prov=prov_item_inst if prov_item_inst else None,
)
# return doc, bounding_boxes
return doc
@classmethod
def get_default_options(cls) -> PdfPipelineOptions:
return PdfPipelineOptions()
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, PdfDocumentBackend)
# def _turn_tags_into_doc(self, document_tags):
# return DoclingDocument()