docling/examples/export_multimodal.py
Michele Dolfi 3e789dfbdd feat: export document pages as multimodal output
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2024-08-30 14:14:46 +02:00

88 lines
2.8 KiB
Python

import logging
import time
from pathlib import Path
import pandas as pd
from docling.datamodel.base_models import AssembleOptions, ConversionStatus
from docling.datamodel.document import DocumentConversionInput
from docling.document_converter import DocumentConverter
from docling.utils.export import generate_multimodal_pages
_log = logging.getLogger(__name__)
IMAGE_RESOLUTION_SCALE = 2.0
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./test/data/2206.01062.pdf"),
]
output_dir = Path("./scratch")
input_files = DocumentConversionInput.from_paths(input_doc_paths)
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
# scale=1 correspond of a standard 72 DPI image
assemble_options = AssembleOptions()
assemble_options.images_scale = IMAGE_RESOLUTION_SCALE
doc_converter = DocumentConverter(assemble_options=assemble_options)
start_time = time.time()
converted_docs = doc_converter.convert(input_files)
output_dir.mkdir(parents=True, exist_ok=True)
for doc in converted_docs:
if doc.status != ConversionStatus.SUCCESS:
_log.info(f"Document {doc.input.file} failed to convert.")
continue
doc_filename = doc.input.file.stem
rows = []
for _pack in generate_multimodal_pages(doc):
content_text, content_md, page_cells, page_segments, page = _pack
dpi = page._default_image_scale * 72
rows.append(
{
"document": doc.input.file.name,
"hash": doc.input.document_hash,
"page_hash": page.page_hash,
"image": {
"width": page.image.width,
"height": page.image.height,
"bytes": page.image.tobytes(),
},
"cells": page_cells,
"contents": content_text,
"contents_md": content_md,
"segments": page_segments,
"extra": {
"page_num": page.page_no + 1,
"width_in_points": page.size.width,
"height_in_points": page.size.height,
"dpi": dpi,
},
}
)
df = pd.json_normalize(rows)
output_filename = output_dir / f"{doc_filename}.parquet"
df.to_parquet(output_filename)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if __name__ == "__main__":
main()