docling/docs/examples/minimal_vlm_pipeline.py
Peter Staar 661f7c9780 fixed the pipeline for Phi4
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
2025-05-16 15:55:49 +02:00

222 lines
8.0 KiB
Python

import json
import time
from pathlib import Path
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_model_specializations import (
HuggingFaceVlmOptions,
InferenceFramework,
ResponseFormat,
granite_vision_vlm_conversion_options,
granite_vision_vlm_ollama_conversion_options,
phi_vlm_conversion_options,
pixtral_12b_vlm_conversion_options,
pixtral_12b_vlm_mlx_conversion_options,
qwen25_vl_3b_vlm_mlx_conversion_options,
smoldocling_vlm_conversion_options,
smoldocling_vlm_mlx_conversion_options,
)
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from tabulate import tabulate
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
## Pick a VLM model. We choose SmolDocling-256M by default
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
# pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
pipeline_options.vlm_options = phi_vlm_conversion_options
# pipeline_options.vlm_options = qwen25_vl_3b_vlm_mlx_conversion_options
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mistralai/Pixtral-12B-Base-2409",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mistral-community/pixtral-12b",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
phi_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="microsoft/Phi-4-multimodal-instruct",
# prompt="OCR the full page to markdown.",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
)
pipeline_options.vlm_options = phi_vlm_conversion_options
"""
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/pixtral-12b-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=1.0,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
qwen_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
prompt="Convert this full page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
)
pipeline_options.vlm_options = qwen_vlm_conversion_options
"""
def convert(sources: list[Path], converter):
for source in sources:
#start_time = time.time()
print("================================================")
print(f"Processing... {source}")
print("================================================")
print("")
res = converter.convert(source)
print("")
# print(res.document.export_to_markdown())
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
fname = f"{res.input.file.stem}-{model_id}-{framework}"
inference_time = 0.0
for i, page in enumerate(res.pages):
inference_time += page.predictions.vlm_response.generation_time
print("")
print(
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
)
print(page.predictions.vlm_response.text)
print(" ---------- ")
print("===== Final output of the converted document =======")
with (out_path / f"{fname}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
res.document.save_as_json(
out_path / f"{fname}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.json")
res.document.save_as_markdown(
out_path / f"{fname}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.md")
res.document.save_as_html(
out_path / f"{fname}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
split_page_view=True,
)
print(f" => produced {out_path / fname}.html")
pg_num = res.document.num_pages()
print("")
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("====================================================")
# return [source, f"{out_path / fname}.html", model_id, framework, inference_time, ]
return [source, model_id, framework, pg_num, inference_time, ]
if __name__ == "__main__":
sources = [
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
## Use VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
rows = []
for vlm_options in [
# smoldocling_vlm_conversion_options, \
# smoldocling_vlm_mlx_conversion_options, \
# granite_vision_vlm_conversion_options, \
phi_vlm_conversion_options, \
# qwen25_vl_3b_vlm_mlx_conversion_options, \
# pixtral_12b_vlm_mlx_conversion_options,
# pixtral_12b_vlm_conversion_options,
]:
pipeline_options.vlm_options = vlm_options
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
},
)
row = convert(sources=sources, converter=converter)
print("pipelines: \n", converter._get_initialized_pipelines())
rows.append(row)
print(tabulate(rows))
print("see if memory gets released ...")
time.sleep(10)