mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
51 lines
1.6 KiB
Python
Vendored
51 lines
1.6 KiB
Python
Vendored
from pathlib import Path
|
|
|
|
from docling_core.types.doc import DoclingDocument
|
|
|
|
from docling.datamodel import asr_model_specs
|
|
from docling.datamodel.base_models import ConversionStatus, InputFormat
|
|
from docling.datamodel.document import ConversionResult
|
|
from docling.datamodel.pipeline_options import AsrPipelineOptions
|
|
from docling.document_converter import AudioFormatOption, DocumentConverter
|
|
from docling.pipeline.asr_pipeline import AsrPipeline
|
|
|
|
|
|
def get_asr_converter():
|
|
"""Create a DocumentConverter configured for ASR with whisper_turbo model."""
|
|
pipeline_options = AsrPipelineOptions()
|
|
pipeline_options.asr_options = asr_model_specs.WHISPER_TURBO
|
|
|
|
converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.AUDIO: AudioFormatOption(
|
|
pipeline_cls=AsrPipeline,
|
|
pipeline_options=pipeline_options,
|
|
)
|
|
}
|
|
)
|
|
return converter
|
|
|
|
|
|
def asr_pipeline_conversion(audio_path: Path) -> DoclingDocument:
|
|
"""ASR pipeline conversion using whisper_turbo"""
|
|
# Check if the test audio file exists
|
|
assert audio_path.exists(), f"Test audio file not found: {audio_path}"
|
|
|
|
converter = get_asr_converter()
|
|
|
|
# Convert the audio file
|
|
result: ConversionResult = converter.convert(audio_path)
|
|
|
|
# Verify conversion was successful
|
|
assert result.status == ConversionStatus.SUCCESS, (
|
|
f"Conversion failed with status: {result.status}"
|
|
)
|
|
return result.document
|
|
|
|
|
|
if __name__ == "__main__":
|
|
audio_path = Path("<audio-file.wav/mp3>")
|
|
|
|
doc = asr_pipeline_conversion(audio_path=audio_path)
|
|
print(doc.export_to_markdown())
|