docling/tests/data/xml/10-1055-a-2313-0311.nxml

297 lines
61 KiB
Plaintext

<!DOCTYPE article
PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD with MathML3 v1.3 20210610//EN" "JATS-archivearticle1-3-mathml3.dtd">
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" article-type="research-article" xml:lang="en" dtd-version="1.3"><?properties open_access?><processing-meta base-tagset="archiving" mathml-version="3.0" table-model="xhtml" tagset-family="jats"><restricted-by>pmc</restricted-by></processing-meta><front><journal-meta><journal-id journal-id-type="nlm-ta">Thromb Haemost</journal-id><journal-id journal-id-type="iso-abbrev">Thromb Haemost</journal-id><journal-id journal-id-type="doi">10.1055/s-00035024</journal-id><journal-title-group><journal-title>Thrombosis and Haemostasis</journal-title></journal-title-group><issn pub-type="ppub">0340-6245</issn><issn pub-type="epub">2567-689X</issn><publisher><publisher-name>Georg Thieme Verlag KG</publisher-name><publisher-loc>R&#x000fc;digerstra&#x000df;e 14, 70469 Stuttgart, Germany</publisher-loc></publisher></journal-meta>
<article-meta><article-id pub-id-type="pmid">38657649</article-id><article-id pub-id-type="pmc">11518614</article-id>
<article-id pub-id-type="doi">10.1055/a-2313-0311</article-id><article-id pub-id-type="publisher-id">TH-23-06-0235</article-id><article-categories><subj-group><subject>Stroke, Systemic or Venous Thromboembolism</subject></subj-group></article-categories><title-group><article-title>Exploring the Two-Way Link between Migraines and Venous Thromboembolism: A Bidirectional Two-Sample Mendelian Randomization Study</article-title></title-group><contrib-group><contrib contrib-type="author"><contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-4357-7451</contrib-id><name><surname>Wang</surname><given-names>Yang</given-names></name><xref rid="AF23060235-1" ref-type="aff">1</xref></contrib><contrib contrib-type="author"><name><surname>Hu</surname><given-names>Xiaofang</given-names></name><xref rid="AF23060235-2" ref-type="aff">2</xref></contrib><contrib contrib-type="author"><name><surname>Wang</surname><given-names>Xiaoqing</given-names></name><xref rid="AF23060235-3" ref-type="aff">3</xref></contrib><contrib contrib-type="author"><name><surname>Li</surname><given-names>Lili</given-names></name><xref rid="AF23060235-3" ref-type="aff">3</xref></contrib><contrib contrib-type="author"><name><surname>Lou</surname><given-names>Peng</given-names></name><xref rid="AF23060235-1" ref-type="aff">1</xref></contrib><contrib contrib-type="author"><name><surname>Liu</surname><given-names>Zhaoxuan</given-names></name><xref rid="AF23060235-4" ref-type="aff">4</xref><xref rid="CO23060235-1" ref-type="author-notes"/></contrib></contrib-group><aff id="AF23060235-1"><label>1</label><institution>Vascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, China</institution></aff><aff id="AF23060235-2"><label>2</label><institution>Department of Neurology, Shandong Public Health Clinical Center, Shandong University, Jinan, China</institution></aff><aff id="AF23060235-3"><label>3</label><institution>Interventional Department, Shandong Public Health Clinical Center, Shandong University, Jinan, China</institution></aff><aff id="AF23060235-4"><label>4</label><institution>Vascular Surgery, Shandong First Medical University affiliated Central Hospital, Jinan, China</institution></aff><author-notes><corresp id="CO23060235-1"><bold>Address for correspondence </bold>Zhaoxuan Liu, MD <institution>Vascular Surgery, Shandong first Medical University affiliated Central Hospital</institution><addr-line>No. 105 Jiefang Road, Jinan city</addr-line><country>China</country><email>liuxin2014@hotmail.com</email></corresp></author-notes><pub-date pub-type="epub"><day>20</day><month>5</month><year>2024</year></pub-date><pub-date pub-type="collection"><month>11</month><year>2024</year></pub-date><pub-date pub-type="pmc-release"><day>1</day><month>5</month><year>2024</year></pub-date><volume>124</volume><issue>11</issue><fpage>1053</fpage><lpage>1060</lpage><history><date date-type="received"><day>10</day><month>6</month><year>2023</year></date><date date-type="accepted"><day>10</day><month>4</month><year>2024</year></date></history><permissions><copyright-statement>
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (
<uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://creativecommons.org/licenses/by-nc-nd/4.0/">https://creativecommons.org/licenses/by-nc-nd/4.0/</uri>
)
</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>The Author(s).</copyright-holder><license><ali:license_ref xmlns:ali="http://www.niso.org/schemas/ali/1.0/" specific-use="textmining" content-type="ccbyncndlicense">https://creativecommons.org/licenses/by-nc-nd/4.0/</ali:license_ref><license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.</license-p></license></permissions><abstract abstract-type="graphical"><p><bold>Background</bold>
&#x02003;The objective of this study is to utilize Mendelian randomization to scrutinize the mutual causality between migraine and venous thromboembolism (VTE) thereby addressing the heterogeneity and inconsistency that were observed in prior observational studies concerning the potential interrelation of the two conditions.
</p><p><bold>Methods</bold>
&#x02003;Employing a bidirectional Mendelian randomization approach, the study explored the link between migraine and VTE, incorporating participants of European descent from a large-scale meta-analysis. An inverse-variance weighted (IVW) regression model, with random-effects, leveraging single nucleotide polymorphisms (SNPs) as instrumental variables was utilized to endorse the mutual causality between migraine and VTE. SNP heterogeneity was evaluated using Cochran's Q-test and to account for multiple testing, correction was implemented using the intercept of the MR-Egger method, and a leave-one-out analysis.
</p><p><bold>Results</bold>
&#x02003;The IVW model unveiled a statistically considerable causal link between migraine and the development of VTE (odds ratio [OR]&#x02009;=&#x02009;96.155, 95% confidence interval [CI]: 4.342&#x02013;2129.458,
<italic>p</italic>
&#x02009;=&#x02009;0.004), implying that migraine poses a strong risk factor for VTE development. Conversely, both IVW and simple model outcomes indicated that VTE poses as a weaker risk factor for migraine (IVW OR&#x02009;=&#x02009;1.002, 95% CI: 1.000&#x02013;1.004,
<italic>p</italic>
&#x02009;=&#x02009;0.016). The MR-Egger regression analysis denoted absence of evidence for genetic pleiotropy among the SNPs while the durability of our Mendelian randomization results was vouched by the leave-one-out sensitivity analysis.
</p><p><bold>Conclusion</bold>
&#x02003;The findings of this Mendelian randomization assessment provide substantiation for a reciprocal causative association between migraine and VTE within the European population.
</p><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-1055-a-2313-0311-i23060235-toc.jpg"/></abstract><kwd-group><title>Keyword</title><kwd>Mendelian randomization</kwd><kwd>migraine</kwd><kwd>venous thromboembolism</kwd><kwd>bidirectional</kwd><kwd>causality</kwd></kwd-group></article-meta></front><body><sec><title>Introduction</title><p>
Venous thromboembolism (VTE) encompasses both deep vein thrombosis and pulmonary embolism,
<xref rid="JR23060235-1" ref-type="bibr">1</xref>
ranking third globally as a prevalent vascular disorder associated with mortality.
<xref rid="JR23060235-2" ref-type="bibr">2</xref>
This increases the mortality risk for patients and compounds the financial burden on health care services. Hence, the ongoing evaluation and assessment of VTE risk in clinical settings are crucial.
</p><p>
Migraine, characterized by recurrent episodes of severe unilateral headaches accompanied by pulsating sensations and autonomic symptoms, affects approximately one billion individuals worldwide.
<xref rid="JR23060235-3" ref-type="bibr">3</xref>
Several research studies indicate an increase in VTE incidence among migraine sufferers.
<xref rid="JR23060235-4" ref-type="bibr">4</xref>
<xref rid="JR23060235-5" ref-type="bibr">5</xref>
<xref rid="JR23060235-6" ref-type="bibr">6</xref>
<xref rid="JR23060235-7" ref-type="bibr">7</xref>
<xref rid="JR23060235-8" ref-type="bibr">8</xref>
Hence, there is a significant need for further investigation to elucidate the causal relationship between VTE and migraines.
</p><p>
Mendelian randomization (MR) is a methodology that utilizes genetic variants as instrumental variables (IVs) to explore the causal association between a modifiable exposure and a disease outcome.
<xref rid="JR23060235-9" ref-type="bibr">9</xref>
By leveraging the random allocation and fixed nature of an individual's alleles at conception, this approach helps alleviate concerns regarding reverse causality and environmental confounders commonly encountered in traditional epidemiological methods.
</p><p>In order to mitigate confounding factors and ensure robust outcomes, this investigation adopts a pioneering approach by utilizing MR to explore the genetic-level causal correlation between migraine and VTE. To the best of our knowledge, no previous study has employed this method to examine the association between these two pathological conditions, thereby lending an innovative and cutting-edge aspect to this research.</p></sec><sec><title>Materials and Methods</title><sec><title>Research Methodology</title><p>
A rigorous bidirectional two-sample MR examination was implemented to probe the causal link between migraine and VTE risk, subsequent to a meticulous screening mechanism. For achieving credible estimations of MR causality, efficacious genetic variances serving as IVs must meet three central postulates: (I) relevance assumption, asserting that variations must demonstrate intimate association with the exposure element; (II) independence/exchangeability assumption, demanding no correlations be exhibited with any measured, unmeasured, or inconspicuous confounding elements germane to the researched correlation of interest; and (III) exclusion restriction assumption, maintaining that the variation affects the outcome exclusively through the exposure, devoid of alternative routes.
<xref rid="JR23060235-10" ref-type="bibr">10</xref>
<xref rid="JR23060235-11" ref-type="bibr">11</xref>
A single nucleotide polymorphism (SNP) refers to a genomic variant where a single nucleotide undergoes alteration at a specific locus within the DNA sequence. SNPs were employed as IVs in this study for estimating causal effects. The study's design is graphically portrayed in
<xref rid="FI23060235-1" ref-type="fig">Fig. 1</xref>
, emphasizing the three fundamental postulates of MR. These postulates are of the utmost importance in affirming the validity of the MR examination and ensuring the reliability of the resultant causal inferences.
<xref rid="JR23060235-12" ref-type="bibr">12</xref>
</p><fig id="FI23060235-1"><label>Fig. 1</label><caption><p>
This figure illustrates the research methodology for the bidirectional Mendelian randomization analysis concerning migraine and VTE. Assumption I: relevance assumption; Assumption II: independence/exchangeability assumption; Assumption III: exclusion restriction assumption.
</p></caption><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-1055-a-2313-0311-i23060235-1"/></fig></sec><sec><title>Data Sources</title><p>
Our SNPs are obtained from large-scale genome-wide association studies (GWAS) public databases. The exposure variable for this study was obtained from the largest migraine GWAS meta-analysis conducted by the IEU Open GWAS project, which can be accessed at
<uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://gwas.mrcieu.ac.uk/datasets">https://gwas.mrcieu.ac.uk/datasets</uri>
.
<xref rid="JR23060235-13" ref-type="bibr">13</xref>
<xref rid="JR23060235-14" ref-type="bibr">14</xref>
The outcome variable was derived from the largest VTE GWAS conducted by FinnGen, available at
<uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.finngen.fi">https://www.finngen.fi</uri>
.
<xref rid="JR23060235-15" ref-type="bibr">15</xref>
A comprehensive overview of the data sources used in our study can be found in
<xref rid="TB23060235-1" ref-type="table">Table 1</xref>
.
</p><table-wrap id="TB23060235-1"><label>Table 1</label><caption><title>Description of GWAS used for each phenotype</title></caption><table rules="all"><colgroup align="left" span="6"><col align="left" width="12.86%"/><col align="left" width="15.08%"/><col align="left" width="19.62%"/><col align="left" width="15.22%"/><col align="left" width="27.7%"/><col align="left" width="9.54%"/></colgroup><thead><tr><th align="left" valign="bottom">Variable</th><th align="left" valign="bottom">Sample size</th><th align="left" valign="bottom">ID</th><th align="left" valign="bottom">Population</th><th align="left" valign="bottom">Database</th><th align="left" valign="bottom">Year</th></tr></thead><tbody><tr><td align="left" valign="top">Migraine</td><td align="left" valign="top">337159</td><td align="left" valign="top">ukb-a-87</td><td align="left" valign="top">European</td><td align="left" valign="top">IEU Open GWAS project</td><td align="left" valign="top">2017</td></tr><tr><td align="left" valign="top">VTE</td><td align="left" valign="top">218792</td><td align="left" valign="top">finn-b-I9_VTE</td><td align="left" valign="top">European</td><td align="left" valign="top">FinnGen</td><td align="left" valign="top">2021</td></tr></tbody></table><table-wrap-foot><fn id="FN23060235-2"><p>Abbreviations: GWAS, genome-wide association studies; VTE, venous thromboembolism.</p></fn><fn id="FN23060235-3"><p>Note: Basic information of GWAS for migraine and VTE is displayed in this table.</p></fn></table-wrap-foot></table-wrap><p>
The variances in genetic variations and exposure distributions across diverse ethnicities could potentially result in spurious correlations between genetic variants and exposures.
<xref rid="JR23060235-16" ref-type="bibr">16</xref>
Consequently, the migraine and VTE GWAS for this study were sourced from a homogeneous European populace to circumvent such inaccurate associations. It is crucial to highlight that the data harvested from public databases were current up to March 31, 2023. Given the public nature of all data utilized in our study, there was no necessity for further ethical approval.
</p></sec><sec><title>Filtering Criteria of IVs</title><p>
To select appropriate SNPs as IVs, we followed standard assumptions of MR. First, we performed a screening process using the migraine GWAS summary data, applying a significance threshold of
<italic>p</italic>
&#x02009;&#x0003c;&#x02009;5&#x02009;&#x000d7;&#x02009;10
<sup>&#x02212;8</sup>
(Assumption I). To ensure the independence of SNPs and mitigate the effects of linkage disequilibrium, we set the linkage disequilibrium coefficient (
<italic>r</italic>
<sup>2</sup>
) to 0.001 and restricted the width of the linkage disequilibrium region to 10,000&#x02009;kb. PhenoScanner (
<uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.phenoscanner.medschl.cam.ac.uk/">http://www.phenoscanner.medschl.cam.ac.uk/</uri>
) serves as a versatile tool, enabling users to explore genetic variants, genes, and traits linked to a wide spectrum of phenotypes.
<xref rid="JR23060235-17" ref-type="bibr">17</xref>
<xref rid="JR23060235-18" ref-type="bibr">18</xref>
Utilizing PhenoScanner v2, we ruled out SNPs linked with potential confounding constituents and outcomes, thereby addressing assumptions II and III. Subsequently, we extracted the relevant SNPs from the VTE GWAS summary data, ensuring a minimum
<italic>r</italic>
<sup>2</sup>
&#x02009;&#x0003e;&#x02009;0.8 and replacing missing SNPs with highly linked SNPs. We excluded SNPs without replacement sites and palindromic SNPs and combined the information from both datasets. Finally, we excluded SNPs directly associated with VTE at a significance level of
<italic>p</italic>
&#x02009;&#x0003c;&#x02009;5&#x02009;&#x000d7;&#x02009;10
<sup>&#x02212;8</sup>
and prioritized IVs with an F-statistic [F-statistic&#x02009;=&#x02009;(&#x003b2;/SE)2]&#x02009;&#x0003e;&#x02009;10 to minimize weak instrument bias.
<xref rid="BR23060235-19" ref-type="bibr">19</xref>
</p></sec><sec><title>Statistical Analysis</title><p>For our analysis, we employed the inverse-variance weighted (IVW) random-effects regression model to assess the causal relationship between migraine and VTE, utilizing SNPs as IVs. This approach allowed us to directly calculate the causal effect using summary data, eliminating the need for individual-level data. To assess SNP heterogeneity, we conducted Cochran's Q test and, in the presence of heterogeneity, relied on the results of the IVW model. To examine the presence of pleiotropy, we utilized the MR-Egger method and conducted leave-one-out analysis. All statistical analyses were performed using the TwoSampleMR package in R 4.2.2 software, with a significance level set at &#x003b1;&#x02009;=&#x02009;0.05.</p></sec></sec><sec><title>Results</title><p>
In the present investigation, we capitalized on a bidirectional two-sample MR analysis in individuals of European descent to scrutinize the potential causative correlation between migraines and VTE risk. Our investigation implies a potential bidirectional pathogenic relationship between migraines and the risk of VTE, as supported by the specific analysis results detailed in
<xref rid="TB23060235-2" ref-type="table">Table 2</xref>
.
</p><table-wrap id="TB23060235-2"><label>Table 2</label><caption><title>Mendelian randomization regression causal association results</title></caption><table rules="all"><colgroup align="left" span="7"><col align="left" width="13.04%"/><col align="left" width="13.04%"/><col align="left" width="15.94%"/><col align="left" width="8.7%"/><col align="left" width="8.7%"/><col align="left" width="28.98%"/><col align="left" width="11.6%"/></colgroup><thead><tr><th align="left" valign="bottom">Exposures</th><th align="left" valign="bottom">SNPs (no.)</th><th align="left" valign="bottom">Methods</th><th align="left" valign="bottom">&#x003b2;</th><th align="left" valign="bottom">SE</th><th align="left" valign="bottom">OR (95% CI)</th><th align="left" valign="bottom">
<italic>p</italic>
</th></tr></thead><tbody><tr><td align="left" valign="top">Migraine</td><td align="left" valign="top">11</td><td align="left" valign="top">IVW</td><td align="left" valign="top">4.566</td><td align="left" valign="top">1.580</td><td align="left" valign="top">96.155 (4.342&#x02013;2129.458)</td><td align="left" valign="top">0.004</td></tr><tr><td align="left" rowspan="2" valign="top">VTE</td><td align="left" rowspan="2" valign="top">12</td><td align="left" valign="top">IVW</td><td align="left" valign="top">0.002</td><td align="left" valign="top">0.001</td><td align="left" valign="top">1.002 (1.000&#x02013;1.004);</td><td align="left" valign="top">0.016</td></tr><tr><td align="left" valign="top">Simple mode</td><td align="left" valign="top">0.003</td><td align="left" valign="top">0.001</td><td align="left" valign="top">1.003 (1.000&#x02013;1.006)</td><td align="left" valign="top">0.047</td></tr></tbody></table><table-wrap-foot><fn id="FN23060235-4"><p>Abbreviations: CI: confidence interval; IVW, inverse variance weighting; OR, odds ratio; SE, standard error; SNPs, single nucleotide polymorphisms; VTE, venous thromboembolism.</p></fn><fn id="FN23060235-5"><p>Note: This table displays the causal relationship between migraine leading to VTE and VTE leading to migraine.</p></fn></table-wrap-foot></table-wrap><sec><title>Mendelian Randomization Analysis</title><p>
During the IV screening process, it was identified that SNP r10908505 was associated with body mass index (BMI) in VTE. Considering the established association between BMI and VTE,
<xref rid="JR23060235-1" ref-type="bibr">1</xref>
<xref rid="JR23060235-15" ref-type="bibr">15</xref>
this violated Assumption III and the SNP was subsequently excluded. The VTE dataset ultimately consisted of 11 SNPs, with individual SNP F-statistics ranging from 29.76 to 96.77 (all &#x0003e;10), indicating a minimal potential for causal associations to be confounded by weak IV bias (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S1</xref>
, available in the online version). The IVW model revealed that migraine was a statistically significant risk factor for the onset of VTE (odds ratio [OR]&#x02009;=&#x02009;96.155, 95% confidence interval [CI]: 4.3422&#x02013;129.458,
<italic>p</italic>
&#x02009;=&#x02009;0.004) (
<xref rid="TB23060235-2" ref-type="table">Table 2</xref>
,
<xref rid="FI23060235-2" ref-type="fig">Fig. 2A</xref>
). The scatter plot (
<xref rid="FI23060235-2" ref-type="fig">Fig. 2B</xref>
) and funnel plot (
<xref rid="FI23060235-2" ref-type="fig">Fig. 2C</xref>
) of migraine demonstrated a symmetrical distribution of all included SNPs, suggesting a limited possibility of bias affecting the causal association. The Cochran's Q test, conducted on the MR-Egger regression and the IVW method, yielded statistics of 5.610 and 5.973 (
<italic>p</italic>
&#x02009;&#x0003e;&#x02009;0.05), indicating the absence of heterogeneity among the SNPs (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S2</xref>
, available in the online version). These findings suggest a positive correlation between the strength of association between the IVs and migraine, satisfying the assumptions of IV analysis. The MR-Egger regression analysis showed no statistically significant difference from zero for the intercept term (
<italic>p</italic>
&#x02009;=&#x02009;0.5617), indicating the absence of genetic pleiotropy among the SNPs (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S3</xref>
, available in the online version). Additionally, the leave-one-out analysis revealed that the inclusion or exclusion of individual SNPs did not substantially impact the estimated causal effects, demonstrating the robustness of the MR results obtained in our investigation (
<xref rid="FI23060235-2" ref-type="fig">Fig. 2D</xref>
).
</p><fig id="FI23060235-2"><label>Fig. 2</label><caption><p>
This figure explores the correlation between migraine risk and VTE, validating the presence of heterogeneity and pleiotropy. (
<bold>A</bold>
) The forest plot displays individual IVs, with each point flanked by lines that depict the 95% confidence interval. The effect of SNPs on the exposure (migraine) is shown along the
<italic>x</italic>
-axis, whereas their impact on the outcome (VTE) is presented on the
<italic>y</italic>
-axis. A fitted line reflects the Mendelian randomization analysis results. (
<bold>B</bold>
) A scatter plot visualizes each IV, with the SNP effects on both exposure and outcome similar to that of the forest plot. Again, a fitted line represents the Mendelian randomization results. (
<bold>C</bold>
) The funnel plot positions the coefficient &#x003b2;
<sub>IV</sub>
from the instrumental variable regression on the
<italic>x</italic>
-axis to demonstrate the association's strength, while the inverse of its standard error (1/SE
<sub>IV</sub>
<sup>&#x02020;</sup>
) on the
<italic>y</italic>
-axis indicates the precision of this estimate. (
<bold>D</bold>
) A leave-one-out sensitivity analysis is shown on the
<italic>x</italic>
-axis, charting the estimated effects from the Mendelian randomization analysis. With each SNP associated with migraine successively excluded, the analysis recalculates the Mendelian randomization effect estimates, culminating with the &#x0201c;all&#x0201d; category that encompasses all considered SNPs. IV, instrumental variable; SNP, single nucleotide polymorphisms; VTE, venous thromboembolism; SE, standard error.
<sup>&#x02020;</sup>
SE is the standard error of &#x003b2;.
</p></caption><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-1055-a-2313-0311-i23060235-2"/></fig></sec><sec><title>Reverse Mendelian Randomization Analysis</title><p>
Upon screening for IVs in migraine patients, SNP rs6060308 was excluded due to its association with education
<xref rid="JR23060235-20" ref-type="bibr">20</xref>
<xref rid="JR23060235-21" ref-type="bibr">21</xref>
and violation of Assumption III. The final migraine dataset comprised 13 SNPs, with individual SNP F-statistics ranging from 30.60 to 354.34, all surpassing the threshold of 10 (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S4</xref>
, available in the online version). Both the IVW and simple models supported VTE as a risk factor for migraine. The IVW analysis yielded an OR of 1.002 (95% CI: 1.000&#x02013;1.004,
<italic>p</italic>
&#x02009;=&#x02009;0.016), while the simple model yielded an OR of 1.003 (95% CI: 1.000&#x02013;1.006,
<italic>p</italic>
&#x02009;=&#x02009;0.047) (
<xref rid="TB23060235-2" ref-type="table">Table 2</xref>
,
<xref rid="FI23060235-3" ref-type="fig">Fig. 3A</xref>
). The scatter plot (
<xref rid="FI23060235-3" ref-type="fig">Fig. 3B</xref>
) and funnel plot (
<xref rid="FI23060235-3" ref-type="fig">Fig. 3C</xref>
) exhibited symmetrical distributions across all included SNPs, indicating minimal potential for biases affecting the causal association. Heterogeneity among SNPs was observed through the Cochran's Q test of the IVW method and MR-Egger regression, with Q statistics of 18.697 and 20.377, respectively, both with
<italic>p</italic>
&#x02009;&#x0003c;&#x02009;0.05 (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S2</xref>
, available in the online version). Therefore, careful consideration is necessary for the results obtained from the random-effects IVW method. MR-Egger regression analysis revealed a nonsignificant difference between the intercept term and zero (
<italic>p</italic>
&#x02009;=&#x02009;0.3655), suggesting the absence of genetic pleiotropy among the SNPs (
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S3</xref>
, available in the online version). Additionally, the leave-one-out analysis demonstrated that the inclusion or exclusion of individual SNPs had no substantial impact on the estimated causal effect (
<xref rid="FI23060235-3" ref-type="fig">Fig. 3D</xref>
).
</p><fig id="FI23060235-3"><label>Fig. 3</label><caption><p>
(
<bold>A&#x02013;D</bold>
) This figure presents the relationship between VTE risk and migraine, also verifying heterogeneity and pleiotropy through similar graphic representations as detailed for
<xref rid="FI23060235-2" ref-type="fig">Fig. 2</xref>
, but with the exposure and outcome reversed&#x02014;SNPs' effect on VTE and outcome on migraine. SNP, single nucleotide polymorphisms; VTE, venous thromboembolism.
</p></caption><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-1055-a-2313-0311-i23060235-3"/></fig></sec></sec><sec><title>Discussion</title><p>
VTE constitutes a grave health hazard to patients, necessitating rigorous clinical surveillance. Distinct from common VTE risk factors such as cancer,
<xref rid="JR23060235-22" ref-type="bibr">22</xref>
diabetes,
<xref rid="JR23060235-23" ref-type="bibr">23</xref>
lupus,
<xref rid="JR23060235-24" ref-type="bibr">24</xref>
and antiphospholipid syndrome,
<xref rid="JR23060235-25" ref-type="bibr">25</xref>
migraines remain absent from prevalent VTE guidelines or advisories. The MR findings from our research provide first-of-its-kind evidence of a causal nexus between migraines and VTE in individuals of European descent, signaling that migraines potently predispose individuals to VTE (IVW OR&#x02009;=&#x02009;96.155, 95% CI: 4.342&#x02013;2129.458), while VTE presents a weak risk factor for migraines (IVW OR&#x02009;=&#x02009;1.002, 95% CI: 1.000&#x02013;1.004). Given the robustness of the IVW analysis, the MR analysis is considered reliable.
</p><p>
Our MR analysis discloses a potential causal association between individuals suffering from migraines and VTE incidence, with a risk rate 96.155 times higher in comparison to nonmigraine sufferers. Previous observational endeavors investigating VTE risk amidst migraine patients have been scant and have yielded discordant outcomes, complicating the provision of clinical directives.
<xref rid="JR23060235-26" ref-type="bibr">26</xref>
<xref rid="JR23060235-27" ref-type="bibr">27</xref>
In a longitudinal inquiry with a 19-year follow-up, Adelborg et al discerned a heightened VTE risk in individuals afflicted with migraines.
<xref rid="JR23060235-4" ref-type="bibr">4</xref>
Peng et al's prospective clinical study unveiled a more than double VTE risk increase in migraine patients during a 4-year follow-up.
<xref rid="JR23060235-5" ref-type="bibr">5</xref>
Schwaiger et al's cohort study, incorporating 574 patients aged 55 to 94, observed a significant escalation in VTE risk among elderly individuals with migraines.
<xref rid="JR23060235-6" ref-type="bibr">6</xref>
<xref rid="JR23060235-28" ref-type="bibr">28</xref>
Bushnell et al uncovered a tripled VTE risk during pregnancy in migraine-affected women.
<xref rid="JR23060235-29" ref-type="bibr">29</xref>
Although these studies validate a potential correlation between migraines and VTE, their persuasiveness is restricted due to other prominent VTE risk factors (such as advanced age and pregnancy) and contradicting findings in existing observational studies. For instance, Folsom et al observed no significant correlation between migraines and VTE risk in elderly individuals, contradicting Schwaiger's conclusion.
<xref rid="JR23060235-7" ref-type="bibr">7</xref>
However, he clarified that the cohort incorporated in his study did not undergo rigorous neurological migraine diagnosis, possibly leading to confounding biases and generating findings that contradict other scholarly endeavors.
<xref rid="JR23060235-7" ref-type="bibr">7</xref>
These contradictions originate from observational studies examining associations rather than causal relationships, invariably involving a confluence of various confounding factors. MR, leveraging SNPs as IVs to ascertain the causal link between migraines and VTE risk, can eliminate other confounding elements resulting in more reliable outcomes. Based on this finding, monitoring VTE risk among migraine patients in clinical practice is recommended.
</p><p>The reverse MR analysis reveals that compared to non-VTE patients, those with VTE among individuals of European ancestry exhibit a marginally heightened susceptibility to migraines, with a relative risk of 1.02 (as per the IVW method). This discovery concurs with the existing void in research on migraines among VTE patients. Thus, even with slightly increased risks of migraines in VTE patients, we do not advocate for heightened concern regarding the emergence of migraines among this patient group.</p><p>
Our endeavor seeks to offer a preliminary examination of the potential mechanisms underlying the interplay between migraines and VTE. The incidence of VTE habitually involves Virchow's triad, encompassing endothelial damage, venous stasis, and hypercoagulability.
<xref rid="JR23060235-30" ref-type="bibr">30</xref>
On the genetic association front, the SNPs rs9349379 and rs11172113, acting as IVs for migraines, display relevance to the mechanisms underpinning VTE. Prior research earmarks the gene corresponding to rs9349379,
<italic>PHACTR1</italic>
(
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S1</xref>
, available in the online version), as a catalyst for the upregulation of
<italic>EDN1</italic>
.
<xref rid="JR23060235-31" ref-type="bibr">31</xref>
Elevated
<italic>EDN1</italic>
expression is associated with increased VTE susceptibility,
<xref rid="JR23060235-32" ref-type="bibr">32</xref>
and
<italic>EDN1</italic>
inhibition can diminish VTE incidence,
<xref rid="JR23060235-33" ref-type="bibr">33</xref>
potentially through Endothelin 1-mediated vascular endothelial inflammation leading to thrombus formation.
<xref rid="JR23060235-34" ref-type="bibr">34</xref>
The SNP rs11172113 corresponds to the gene
<italic>LRP1</italic>
(
<xref rid="SM23060235-1" ref-type="supplementary-material">Supplementary Table S1</xref>
, available in the online version).
<xref rid="JR23060235-35" ref-type="bibr">35</xref>
<italic>LRP1</italic>
can facilitate the upregulation of
<italic>FVIII</italic>
, culminating in an increase in plasma coagulation factor VIII,
<xref rid="JR23060235-36" ref-type="bibr">36</xref>
thereby leading to heightened blood coagulability and an associated elevated VTE risk.
<xref rid="JR23060235-37" ref-type="bibr">37</xref>
While various studies propose divergent mechanisms, they collectively signal that migraines can instigate a hypercoagulable state, thereby promoting the onset of VTE. The SNPs serving as IVs for VTE did not unveil any association with the onset of migraines. This corroborates our MR analysis outcomes, indicating that VTE is merely a weak risk factor for migraines.
</p><sec><title>Strengths and Limitations</title><p>This study possesses several notable strengths. First, it fulfills all three assumptions of MR, minimizing the influence of confounding factors and addressing the limitations inherent in observational studies, thus yielding more robust findings. We carefully excluded two SNPs (rs10908505 and rs6060308) that could potentially impact the results. In addition, we employed PhenoScanner v2 to comprehensively probe confounding variables related to VTE, as described earlier, and factors associated with migraines, such as acute migraine medication overuse, obesity, depression, stress, and alcohol, leading to the subsequent exclusion of relevant SNPs. This ensured that the selected SNPs specifically captured the causal effects and eliminated potential confounding effects from polygenic associations with disease susceptibility. Second, the study sample was restricted to individuals of European descent, minimizing the potential bias introduced by population heterogeneity and enhancing the internal validity of the findings. Third, the use of strongly correlated SNPs (F &#x0003e;&#x0003e; 10) in both migraine &#x02192; VTE and VTE &#x02192; migraine analyses enhances the validity of the IVs. Finally, this study pioneers the hypothesis of a plausible causal association between VTE and an elevated susceptibility to migraines, offering novel insights into their potential relationship.</p><p>
Nonetheless, it is essential to acknowledge the presence of several limitations in this study that warrant consideration. First, the study participants were predominantly of European ancestry, which, although it avoids the influence of ethnicity on the results, limits the generalizability of the findings to other ethnic groups. Second, our study solely establishes the causal relationship between migraine and VTE risk without elucidating the underlying mechanisms. Third, we only selected SNPs that met the stringent genome-wide significance level (
<italic>p</italic>
&#x02009;&#x0003c;&#x02009;5&#x02009;&#x000d7;&#x02009;10
<sup>&#x02212;8</sup>
), potentially excluding truly relevant variations that did not reach this threshold. Lastly, as our MR analysis relies on publicly available summary statistics data, the lack of detailed clinical information hinders subgroup analysis.
</p></sec></sec><sec><title>Conclusion</title><p>In essence, the bidirectional Mendelian randomization analysis, conducted within the European populace, indicates the presence of a relatively strong causal correlation between migraines and VTE, while the causative relationship between VTE and migraines appears exceedingly faint. These deductions imply the need for rigorous monitoring of VTE in individuals of European descent suffering from migraines, thus requiring synergistic effort between general physicians and neurologists. Nevertheless, VTE patients should refrain from undue worries concerning the incidence of migraines. Further, we stress the importance of harnessing information gleaned from a wide array of observational studies and controlled experiments to strengthen the credibility of drawn causal inferences. This is pivotal in establishing a mutual corroboration with the results obtained through MR analysis. Hence, the exigency for additional stringent observational studies and comprehensive laboratory research prevails to corroborate the conclusions made in this study.</p></sec></body><back><sec><boxed-text content-type="backinfo"><p>
<bold>What is known about this topic?</bold>
</p><list list-type="bullet"><list-item><p>Previous research has not definitively established whether migraine is a risk factor for VTE, and observational studies have contradictory findings.</p></list-item><list-item><p>Previous studies do not provide evidence for the prevention of VTE occurrence in patients with migraines.</p></list-item></list><p>
<bold>What does this paper add?</bold>
</p><list list-type="bullet"><list-item><p>Migraine has been identified as a strong-risk factor for VTE.</p></list-item><list-item><p>VTE has been identified as a weak-risk factor for migraine.</p></list-item><list-item><p>For the first time, genetic evidence has been presented to emphasize the importance of preventing VTE occurrence in individuals with migraines.</p></list-item></list></boxed-text></sec><fn-group><fn fn-type="COI-statement" id="d35e118"><p><bold>Conflict of Interest</bold> None declared.</p></fn></fn-group><sec sec-type="supplementary-material"><title>Supplementary Material</title><supplementary-material id="SM23060235-1"><media xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-1055-a-2313-0311-s23060235.pdf"><caption><p>Supplementary Material</p></caption><caption><p>Supplementary Material</p></caption></media></supplementary-material></sec><ref-list><title>References</title><ref id="JR23060235-1"><label>1</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Khan</surname><given-names>F</given-names></name><name><surname>Tritschler</surname><given-names>T</given-names></name><name><surname>Kahn</surname><given-names>S R</given-names></name><name><surname>Rodger</surname><given-names>M A</given-names></name></person-group><article-title>Venous thromboembolism</article-title><source>Lancet</source><year>2021</year><volume>398</volume>(10294):<fpage>64</fpage><lpage>77</lpage><pub-id pub-id-type="pmid">33984268</pub-id>
</mixed-citation></ref><ref id="JR23060235-2"><label>2</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Heit</surname><given-names>J A</given-names></name></person-group><article-title>Epidemiology of venous thromboembolism</article-title><source>Nat Rev Cardiol</source><year>2015</year><volume>12</volume><issue>08</issue><fpage>464</fpage><lpage>474</lpage><pub-id pub-id-type="pmid">26076949</pub-id>
</mixed-citation></ref><ref id="JR23060235-3"><label>3</label><mixed-citation publication-type="journal"><collab>Headache Classification Committee of the International Headache Society (IHS) </collab><article-title>Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition</article-title><source>Cephalalgia</source><year>2018</year><volume>38</volume><issue>01</issue><fpage>1</fpage><lpage>211</lpage></mixed-citation></ref><ref id="JR23060235-4"><label>4</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Adelborg</surname><given-names>K</given-names></name><name><surname>Sz&#x000e9;pligeti</surname><given-names>S K</given-names></name><name><surname>Holland-Bill</surname><given-names>L</given-names></name></person-group><etal/><article-title>Migraine and risk of cardiovascular diseases: Danish population based matched cohort study</article-title><source>BMJ</source><year>2018</year><volume>360</volume><fpage>k96</fpage><pub-id pub-id-type="pmid">29386181</pub-id>
</mixed-citation></ref><ref id="JR23060235-5"><label>5</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Peng</surname><given-names>K P</given-names></name><name><surname>Chen</surname><given-names>Y T</given-names></name><name><surname>Fuh</surname><given-names>J L</given-names></name><name><surname>Tang</surname><given-names>C H</given-names></name><name><surname>Wang</surname><given-names>S J</given-names></name></person-group><article-title>Association between migraine and risk of venous thromboembolism: a nationwide cohort study</article-title><source>Headache</source><year>2016</year><volume>56</volume><issue>08</issue><fpage>1290</fpage><lpage>1299</lpage><pub-id pub-id-type="pmid">27411732</pub-id>
</mixed-citation></ref><ref id="JR23060235-6"><label>6</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sacco</surname><given-names>S</given-names></name><name><surname>Carolei</surname><given-names>A</given-names></name></person-group><article-title>Burden of atherosclerosis and risk of venous thromboembolism in patients with migraine</article-title><source>Neurology</source><year>2009</year><volume>72</volume><issue>23</issue><fpage>2056</fpage><lpage>2057</lpage>, author reply 2057</mixed-citation></ref><ref id="JR23060235-7"><label>7</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Folsom</surname><given-names>A R</given-names></name><name><surname>Lutsey</surname><given-names>P L</given-names></name><name><surname>Misialek</surname><given-names>J R</given-names></name><name><surname>Cushman</surname><given-names>M</given-names></name></person-group><article-title>A prospective study of migraine history and venous thromboembolism in older adults</article-title><source>Res Pract Thromb Haemost</source><year>2019</year><volume>3</volume><issue>03</issue><fpage>357</fpage><lpage>363</lpage><pub-id pub-id-type="pmid">31294322</pub-id>
</mixed-citation></ref><ref id="JR23060235-8"><label>8</label><mixed-citation publication-type="journal"><collab>
American College of Cardiology Cardiovascular Disease in Women Committee
<sup>&#x02020;</sup>
</collab><collab>
American College of Cardiology Cardiovascular Disease in Women Committee
<sup>&#x02020;</sup>
</collab><person-group person-group-type="author"><name><surname>Elgendy</surname><given-names>I Y</given-names></name><name><surname>Nadeau</surname><given-names>S E</given-names></name><name><surname>Bairey Merz</surname><given-names>C N</given-names></name><name><surname>Pepine</surname><given-names>C J</given-names></name></person-group><article-title>Migraine headache: an under-appreciated risk factor for cardiovascular disease in women</article-title><source>J Am Heart Assoc</source><year>2019</year><volume>8</volume><issue>22</issue><fpage>e014546</fpage><pub-id pub-id-type="pmid">31707945</pub-id>
</mixed-citation></ref><ref id="JR23060235-9"><label>9</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Emdin</surname><given-names>C A</given-names></name><name><surname>Khera</surname><given-names>A V</given-names></name><name><surname>Kathiresan</surname><given-names>S</given-names></name></person-group><article-title>Mendelian randomization</article-title><source>JAMA</source><year>2017</year><volume>318</volume><issue>19</issue><fpage>1925</fpage><lpage>1926</lpage><pub-id pub-id-type="pmid">29164242</pub-id>
</mixed-citation></ref><ref id="JR23060235-10"><label>10</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Karlsson</surname><given-names>T</given-names></name><name><surname>Hadizadeh</surname><given-names>F</given-names></name><name><surname>Rask-Andersen</surname><given-names>M</given-names></name><name><surname>Johansson</surname><given-names>&#x000c5;</given-names></name><name><surname>Ek</surname><given-names>W E</given-names></name></person-group><article-title>Body mass index and the risk of rheumatic disease: linear and nonlinear Mendelian randomization analyses</article-title><source>Arthritis Rheumatol</source><year>2023</year><volume>75</volume><issue>11</issue><fpage>2027</fpage><lpage>2035</lpage><pub-id pub-id-type="pmid">37219954</pub-id>
</mixed-citation></ref><ref id="JR23060235-11"><label>11</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lawler</surname><given-names>T</given-names></name><name><surname>Warren Andersen</surname><given-names>S</given-names></name></person-group><article-title>Serum 25-hydroxyvitamin D and cancer risk: a systematic review of mendelian randomization studies</article-title><source>Nutrients</source><year>2023</year><volume>15</volume><issue>02</issue><fpage>422</fpage><pub-id pub-id-type="pmid">36678292</pub-id>
</mixed-citation></ref><ref id="JR23060235-12"><label>12</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Burgess</surname><given-names>S</given-names></name><name><surname>Butterworth</surname><given-names>A S</given-names></name><name><surname>Thompson</surname><given-names>J R</given-names></name></person-group><article-title>Beyond Mendelian randomization: how to interpret evidence of shared genetic predictors</article-title><source>J Clin Epidemiol</source><year>2016</year><volume>69</volume><fpage>208</fpage><lpage>216</lpage><pub-id pub-id-type="pmid">26291580</pub-id>
</mixed-citation></ref><ref id="JR23060235-13"><label>13</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sudlow</surname><given-names>C</given-names></name><name><surname>Gallacher</surname><given-names>J</given-names></name><name><surname>Allen</surname><given-names>N</given-names></name></person-group><etal/><article-title>UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age</article-title><source>PLoS Med</source><year>2015</year><volume>12</volume><issue>03</issue><fpage>e1001779</fpage><pub-id pub-id-type="pmid">25826379</pub-id>
</mixed-citation></ref><ref id="JR23060235-14"><label>14</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Lyon</surname><given-names>M S</given-names></name><name><surname>Andrews</surname><given-names>S J</given-names></name><name><surname>Elsworth</surname><given-names>B</given-names></name><name><surname>Gaunt</surname><given-names>T R</given-names></name><name><surname>Hemani</surname><given-names>G</given-names></name><name><surname>Marcora</surname><given-names>E</given-names></name></person-group><article-title>The variant call format provides efficient and robust storage of GWAS summary statistics</article-title><source>Genome Biol</source><year>2021</year><volume>22</volume><issue>01</issue><fpage>32</fpage><pub-id pub-id-type="pmid">33441155</pub-id>
</mixed-citation></ref><ref id="JR23060235-15"><label>15</label><mixed-citation publication-type="journal"><collab>FinnGen </collab><person-group person-group-type="author"><name><surname>Kurki</surname><given-names>M I</given-names></name><name><surname>Karjalainen</surname><given-names>J</given-names></name><name><surname>Palta</surname><given-names>P</given-names></name></person-group><etal/><article-title>FinnGen provides genetic insights from a well-phenotyped isolated population</article-title><source>Nature</source><year>2023</year><volume>613</volume><issue>7944</issue><fpage>508</fpage><lpage>518</lpage><pub-id pub-id-type="pmid">36653562</pub-id>
</mixed-citation></ref><ref id="JR23060235-16"><label>16</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Sanderson</surname><given-names>E</given-names></name><name><surname>Glymour</surname><given-names>M M</given-names></name><name><surname>Holmes</surname><given-names>M V</given-names></name></person-group><etal/><article-title>Mendelian randomization</article-title><source>Nat Rev Methods Primers</source><year>2022</year><volume>2</volume><fpage>6</fpage><pub-id pub-id-type="pmid">37325194</pub-id>
</mixed-citation></ref><ref id="JR23060235-17"><label>17</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Staley</surname><given-names>J R</given-names></name><name><surname>Blackshaw</surname><given-names>J</given-names></name><name><surname>Kamat</surname><given-names>M A</given-names></name></person-group><etal/><article-title>PhenoScanner: a database of human genotype-phenotype associations</article-title><source>Bioinformatics</source><year>2016</year><volume>32</volume><issue>20</issue><fpage>3207</fpage><lpage>3209</lpage><pub-id pub-id-type="pmid">27318201</pub-id>
</mixed-citation></ref><ref id="JR23060235-18"><label>18</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kamat</surname><given-names>M A</given-names></name><name><surname>Blackshaw</surname><given-names>J A</given-names></name><name><surname>Young</surname><given-names>R</given-names></name></person-group><etal/><article-title>PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations</article-title><source>Bioinformatics</source><year>2019</year><volume>35</volume><issue>22</issue><fpage>4851</fpage><lpage>4853</lpage><pub-id pub-id-type="pmid">31233103</pub-id>
</mixed-citation></ref><ref id="BR23060235-19"><label>19</label><mixed-citation publication-type="book"><person-group person-group-type="author"><name><surname>Burgess</surname><given-names>S</given-names></name><name><surname>Thompson</surname><given-names>S G</given-names></name></person-group><article-title>Mendelian Randomization: Methods for Causal Inference Using Genetic Variants</article-title><publisher-loc>New York, NY</publisher-loc><publisher-name>CRC Press</publisher-name><year>2021</year></mixed-citation></ref><ref id="JR23060235-20"><label>20</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>May</surname><given-names>A</given-names></name><name><surname>Schulte</surname><given-names>L H</given-names></name></person-group><article-title>Chronic migraine: risk factors, mechanisms and treatment</article-title><source>Nat Rev Neurol</source><year>2016</year><volume>12</volume><issue>08</issue><fpage>455</fpage><lpage>464</lpage><pub-id pub-id-type="pmid">27389092</pub-id>
</mixed-citation></ref><ref id="JR23060235-21"><label>21</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Dodick</surname><given-names>D W</given-names></name></person-group><article-title>Migraine</article-title><source>Lancet</source><year>2018</year><volume>391</volume>(10127):<fpage>1315</fpage><lpage>1330</lpage><pub-id pub-id-type="pmid">29523342</pub-id>
</mixed-citation></ref><ref id="JR23060235-22"><label>22</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Khorana</surname><given-names>A A</given-names></name><name><surname>Mackman</surname><given-names>N</given-names></name><name><surname>Falanga</surname><given-names>A</given-names></name></person-group><etal/><article-title>Cancer-associated venous thromboembolism</article-title><source>Nat Rev Dis Primers</source><year>2022</year><volume>8</volume><issue>01</issue><fpage>11</fpage><pub-id pub-id-type="pmid">35177631</pub-id>
</mixed-citation></ref><ref id="JR23060235-23"><label>23</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bell</surname><given-names>E J</given-names></name><name><surname>Folsom</surname><given-names>A R</given-names></name><name><surname>Lutsey</surname><given-names>P L</given-names></name></person-group><etal/><article-title>Diabetes mellitus and venous thromboembolism: a systematic review and meta-analysis</article-title><source>Diabetes Res Clin Pract</source><year>2016</year><volume>111</volume><fpage>10</fpage><lpage>18</lpage><pub-id pub-id-type="pmid">26612139</pub-id>
</mixed-citation></ref><ref id="JR23060235-24"><label>24</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bhoelan</surname><given-names>S</given-names></name><name><surname>Borjas Howard</surname><given-names>J</given-names></name><name><surname>Tichelaar</surname><given-names>V</given-names></name></person-group><etal/><article-title>Recurrence risk of venous thromboembolism associated with systemic lupus erythematosus: a retrospective cohort study</article-title><source>Res Pract Thromb Haemost</source><year>2022</year><volume>6</volume><issue>08</issue><fpage>e12839</fpage><pub-id pub-id-type="pmid">36397932</pub-id>
</mixed-citation></ref><ref id="JR23060235-25"><label>25</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Pengo</surname><given-names>V</given-names></name><name><surname>Denas</surname><given-names>G</given-names></name></person-group><article-title>Antiphospholipid syndrome in patients with venous thromboembolism</article-title><source>Semin Thromb Hemost</source><year>2023</year><volume>49</volume><issue>08</issue><fpage>833</fpage><lpage>839</lpage><pub-id pub-id-type="pmid">35728601</pub-id>
</mixed-citation></ref><ref id="JR23060235-26"><label>26</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Maitrot-Mantelet</surname><given-names>L</given-names></name><name><surname>Horellou</surname><given-names>M H</given-names></name><name><surname>Massiou</surname><given-names>H</given-names></name><name><surname>Conard</surname><given-names>J</given-names></name><name><surname>Gompel</surname><given-names>A</given-names></name><name><surname>Plu-Bureau</surname><given-names>G</given-names></name></person-group><article-title>Should women suffering from migraine with aura be screened for biological thrombophilia?: results from a cross-sectional French study</article-title><source>Thromb Res</source><year>2014</year><volume>133</volume><issue>05</issue><fpage>714</fpage><lpage>718</lpage><pub-id pub-id-type="pmid">24530211</pub-id>
</mixed-citation></ref><ref id="JR23060235-27"><label>27</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Tietjen</surname><given-names>G E</given-names></name><name><surname>Collins</surname><given-names>S A</given-names></name></person-group><article-title>Hypercoagulability and migraine</article-title><source>Headache</source><year>2018</year><volume>58</volume><issue>01</issue><fpage>173</fpage><lpage>183</lpage><pub-id pub-id-type="pmid">28181217</pub-id>
</mixed-citation></ref><ref id="JR23060235-28"><label>28</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Schwaiger</surname><given-names>J</given-names></name><name><surname>Kiechl</surname><given-names>S</given-names></name><name><surname>Stockner</surname><given-names>H</given-names></name></person-group><etal/><article-title>Burden of atherosclerosis and risk of venous thromboembolism in patients with migraine</article-title><source>Neurology</source><year>2008</year><volume>71</volume><issue>12</issue><fpage>937</fpage><lpage>943</lpage><pub-id pub-id-type="pmid">18794497</pub-id>
</mixed-citation></ref><ref id="JR23060235-29"><label>29</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Bushnell</surname><given-names>C D</given-names></name><name><surname>Jamison</surname><given-names>M</given-names></name><name><surname>James</surname><given-names>A H</given-names></name></person-group><article-title>Migraines during pregnancy linked to stroke and vascular diseases: US population based case-control study</article-title><source>BMJ</source><year>2009</year><volume>338</volume><fpage>b664</fpage><pub-id pub-id-type="pmid">19278973</pub-id>
</mixed-citation></ref><ref id="JR23060235-30"><label>30</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Ding</surname><given-names>W Y</given-names></name><name><surname>Protty</surname><given-names>M B</given-names></name><name><surname>Davies</surname><given-names>I G</given-names></name><name><surname>Lip</surname><given-names>G YH</given-names></name></person-group><article-title>Relationship between lipoproteins, thrombosis, and atrial fibrillation</article-title><source>Cardiovasc Res</source><year>2022</year><volume>118</volume><issue>03</issue><fpage>716</fpage><lpage>731</lpage><pub-id pub-id-type="pmid">33483737</pub-id>
</mixed-citation></ref><ref id="JR23060235-31"><label>31</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Gupta</surname><given-names>R M</given-names></name><name><surname>Hadaya</surname><given-names>J</given-names></name><name><surname>Trehan</surname><given-names>A</given-names></name></person-group><etal/><article-title>A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression</article-title><source>Cell</source><year>2017</year><volume>170</volume><issue>03</issue><fpage>522</fpage><lpage>5.33E17</lpage><pub-id pub-id-type="pmid">28753427</pub-id>
</mixed-citation></ref><ref id="JR23060235-32"><label>32</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Kumari</surname><given-names>B</given-names></name><name><surname>Prabhakar</surname><given-names>A</given-names></name><name><surname>Sahu</surname><given-names>A</given-names></name></person-group><etal/><article-title>Endothelin-1 gene polymorphism and its level predict the risk of venous thromboembolism in male indian population</article-title><source>Clin Appl Thromb Hemost</source><year>2017</year><volume>23</volume><issue>05</issue><fpage>429</fpage><lpage>437</lpage><pub-id pub-id-type="pmid">27481876</pub-id>
</mixed-citation></ref><ref id="JR23060235-33"><label>33</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Zhang</surname><given-names>Y</given-names></name><name><surname>Liu</surname><given-names>J</given-names></name><name><surname>Jia</surname><given-names>W</given-names></name></person-group><etal/><article-title>AGEs/RAGE blockade downregulates Endothenin-1 (ET-1), mitigating Human Umbilical Vein Endothelial Cells (HUVEC) injury in deep vein thrombosis (DVT)</article-title><source>Bioengineered</source><year>2021</year><volume>12</volume><issue>01</issue><fpage>1360</fpage><lpage>1368</lpage><pub-id pub-id-type="pmid">33896376</pub-id>
</mixed-citation></ref><ref id="JR23060235-34"><label>34</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Padilla</surname><given-names>J</given-names></name><name><surname>Carpenter</surname><given-names>A J</given-names></name><name><surname>Das</surname><given-names>N A</given-names></name></person-group><etal/><article-title>TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells</article-title><source>Am J Physiol Heart Circ Physiol</source><year>2018</year><volume>314</volume><issue>01</issue><fpage>H52</fpage><lpage>H64</lpage><pub-id pub-id-type="pmid">28971844</pub-id>
</mixed-citation></ref><ref id="JR23060235-35"><label>35</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Liu</surname><given-names>L</given-names></name><name><surname>Jouve</surname><given-names>C</given-names></name><name><surname>Sebastien Hulot</surname><given-names>J</given-names></name><name><surname>Georges</surname><given-names>A</given-names></name><name><surname>Bouatia-Naji</surname><given-names>N</given-names></name></person-group><article-title>Epigenetic regulation at LRP1 risk locus for cardiovascular diseases and assessment of cellular function in hiPSC derived smooth muscle cells</article-title><source>Cardiovasc Res</source><year>2022</year><volume>118</volume><issue>01</issue><fpage>cvac066.193</fpage></mixed-citation></ref><ref id="JR23060235-36"><label>36</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Vormittag</surname><given-names>R</given-names></name><name><surname>Bencur</surname><given-names>P</given-names></name><name><surname>Ay</surname><given-names>C</given-names></name></person-group><etal/><article-title>Low-density lipoprotein receptor-related protein 1 polymorphism 663&#x02009;C &#x0003e; T affects clotting factor VIII activity and increases the risk of venous thromboembolism</article-title><source>J Thromb Haemost</source><year>2007</year><volume>5</volume><issue>03</issue><fpage>497</fpage><lpage>502</lpage><pub-id pub-id-type="pmid">17155964</pub-id>
</mixed-citation></ref><ref id="JR23060235-37"><label>37</label><mixed-citation publication-type="journal"><person-group person-group-type="author"><name><surname>Chun</surname><given-names>H</given-names></name><name><surname>Kurasawa</surname><given-names>J H</given-names></name><name><surname>Olivares</surname><given-names>P</given-names></name></person-group><etal/><article-title>Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts</article-title><source>J Thromb Haemost</source><year>2022</year><volume>20</volume><issue>10</issue><fpage>2255</fpage><lpage>2269</lpage><pub-id pub-id-type="pmid">35810466</pub-id>
</mixed-citation></ref></ref-list></back></article>