docling/docling/models/rapid_ocr_model.py
swayam-singhal 9bb2e58e59 adding rapidocr engine for ocr in docling
Signed-off-by: swayam-singhal <swayam.singhal@inito.com>
2024-11-22 12:45:06 +05:30

104 lines
4.2 KiB
Python

import logging
from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import RapidOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_ocr_model import BaseOcrModel
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class RapidOcrModel(BaseOcrModel):
def __init__(self, enabled: bool, options: RapidOcrOptions):
super().__init__(enabled=enabled, options=options)
self.options: RapidOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
try:
from rapidocr_onnxruntime import RapidOCR
except ImportError:
raise ImportError(
"RapidOCR is not installed. Please install it via `pip install rapidocr_onnxruntime` to use this OCR engine. "
"Alternatively, Docling has support for other OCR engines. See the documentation."
)
self.reader = RapidOCR(
text_score = self.options.text_score,
cls_use_cuda = self.options.cls_use_cuda,
rec_use_cuda = self.options.rec_use_cuda,
det_use_cuda = self.options.det_use_cuda,
det_use_dml = self.options.det_use_dml,
cls_use_dml = self.options.cls_use_dml,
rec_use_dml = self.options.rec_use_dml,
print_verbose = self.options.print_verbose,
det_model_path = self.options.det_model_path,
cls_model_path = self.options.cls_model_path,
rec_model_path = self.options.rec_model_path,
)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result, _ = self.reader(im, use_det=self.options.use_det, use_cls=self.options.use_cls, use_rec=self.options.use_rec)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
# Post-process the cells
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
# DEBUG code:
if settings.debug.visualize_ocr:
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
yield page