mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-08 12:48:28 +00:00
* add more results and improve the example docs Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * 5070 windows timing Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add reference for cpu-only Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
124 lines
3.9 KiB
Python
Vendored
124 lines
3.9 KiB
Python
Vendored
# %% [markdown]
|
|
#
|
|
# What this example does
|
|
# - Run a conversion using the best setup for GPU using VLM models
|
|
#
|
|
# Requirements
|
|
# - Python 3.10+
|
|
# - Install Docling: `pip install docling`
|
|
# - Install vLLM: `pip install vllm`
|
|
#
|
|
# How to run
|
|
# - `python docs/examples/gpu_vlm_pipeline.py`
|
|
#
|
|
# This example is part of a set of GPU optimization strategies. Read more about it in [GPU support](../../usage/gpu/)
|
|
#
|
|
# ### Start models with vllm
|
|
#
|
|
# ```console
|
|
# vllm serve ibm-granite/granite-docling-258M \
|
|
# --host 127.0.0.1 --port 8000 \
|
|
# --max-num-seqs 512 \
|
|
# --max-num-batched-tokens 8192 \
|
|
# --enable-chunked-prefill \
|
|
# --gpu-memory-utilization 0.9
|
|
# ```
|
|
#
|
|
# ## Example code
|
|
# %%
|
|
|
|
import datetime
|
|
import logging
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
from pydantic import TypeAdapter
|
|
|
|
from docling.datamodel import vlm_model_specs
|
|
from docling.datamodel.base_models import ConversionStatus, InputFormat
|
|
from docling.datamodel.pipeline_options import (
|
|
VlmPipelineOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
|
|
from docling.datamodel.settings import settings
|
|
from docling.document_converter import DocumentConverter, PdfFormatOption
|
|
from docling.pipeline.vlm_pipeline import VlmPipeline
|
|
from docling.utils.profiling import ProfilingItem
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
logging.getLogger("docling").setLevel(logging.WARNING)
|
|
_log.setLevel(logging.INFO)
|
|
|
|
BATCH_SIZE = 64
|
|
|
|
settings.perf.page_batch_size = BATCH_SIZE
|
|
settings.debug.profile_pipeline_timings = True
|
|
|
|
data_folder = Path(__file__).parent / "../../tests/data"
|
|
# input_doc_path = data_folder / "pdf" / "2305.03393v1.pdf" # 14 pages
|
|
input_doc_path = data_folder / "pdf" / "redp5110_sampled.pdf" # 18 pages
|
|
|
|
vlm_options = ApiVlmOptions(
|
|
url="http://localhost:8000/v1/chat/completions", # LM studio defaults to port 1234, VLLM to 8000
|
|
params=dict(
|
|
model=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.repo_id,
|
|
max_tokens=4096,
|
|
skip_special_tokens=True,
|
|
),
|
|
prompt=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.prompt,
|
|
timeout=90,
|
|
scale=2.0,
|
|
temperature=0.0,
|
|
concurrency=BATCH_SIZE,
|
|
stop_strings=["</doctag>", "<|end_of_text|>"],
|
|
response_format=ResponseFormat.DOCTAGS,
|
|
)
|
|
|
|
pipeline_options = VlmPipelineOptions(
|
|
vlm_options=vlm_options,
|
|
enable_remote_services=True, # required when using a remote inference service.
|
|
)
|
|
|
|
doc_converter = DocumentConverter(
|
|
format_options={
|
|
InputFormat.PDF: PdfFormatOption(
|
|
pipeline_cls=VlmPipeline,
|
|
pipeline_options=pipeline_options,
|
|
),
|
|
}
|
|
)
|
|
|
|
start_time = time.time()
|
|
doc_converter.initialize_pipeline(InputFormat.PDF)
|
|
end_time = time.time() - start_time
|
|
_log.info(f"Pipeline initialized in {end_time:.2f} seconds.")
|
|
|
|
now = datetime.datetime.now()
|
|
conv_result = doc_converter.convert(input_doc_path)
|
|
assert conv_result.status == ConversionStatus.SUCCESS
|
|
|
|
num_pages = len(conv_result.pages)
|
|
pipeline_runtime = conv_result.timings["pipeline_total"].times[0]
|
|
_log.info(f"Document converted in {pipeline_runtime:.2f} seconds.")
|
|
_log.info(f" [efficiency]: {num_pages / pipeline_runtime:.2f} pages/second.")
|
|
for stage in ("page_init", "vlm"):
|
|
values = np.array(conv_result.timings[stage].times)
|
|
_log.info(
|
|
f" [{stage}]: {np.min(values):.2f} / {np.median(values):.2f} / {np.max(values):.2f} seconds/page"
|
|
)
|
|
|
|
TimingsT = TypeAdapter(dict[str, ProfilingItem])
|
|
timings_file = Path(f"result-timings-gpu-vlm-{now:%Y-%m-%d_%H-%M-%S}.json")
|
|
with timings_file.open("wb") as fp:
|
|
r = TimingsT.dump_json(conv_result.timings, indent=2)
|
|
fp.write(r)
|
|
_log.info(f"Profile details in {timings_file}.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|