Files
docling/docs/examples/run_with_accelerator.py
Mingxuan Zhao ff351fd40c docs: Describe examples (#2262)
* Update .py examples with clearer guidance,
update out of date imports and calls

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

* Fix minimal.py string error, fix ruff format error

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

* fix more CI issues

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>

---------

Signed-off-by: Mingxuan Zhao <43148277+mingxzhao@users.noreply.github.com>
2025-09-16 16:00:38 +02:00

83 lines
2.7 KiB
Python
Vendored

# %% [markdown]
# Run conversion with an explicit accelerator configuration (CPU/MPS/CUDA).
#
# What this example does
# - Shows how to select the accelerator device and thread count.
# - Enables OCR and table structure to exercise compute paths, and prints timings.
#
# How to run
# - From the repo root: `python docs/examples/run_with_accelerator.py`.
# - Toggle the commented `AcceleratorOptions` examples to try AUTO/MPS/CUDA.
#
# Notes
# - EasyOCR does not support `cuda:N` device selection (defaults to `cuda:0`).
# - `settings.debug.profile_pipeline_timings = True` prints profiling details.
# - `AcceleratorDevice.MPS` is macOS-only; `CUDA` requires a compatible GPU and
# CUDA-enabled PyTorch build. CPU mode works everywhere.
# %%
from pathlib import Path
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
)
from docling.datamodel.settings import settings
from docling.document_converter import DocumentConverter, PdfFormatOption
def main():
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
# Explicitly set the accelerator
# accelerator_options = AcceleratorOptions(
# num_threads=8, device=AcceleratorDevice.AUTO
# )
accelerator_options = AcceleratorOptions(
num_threads=8, device=AcceleratorDevice.CPU
)
# accelerator_options = AcceleratorOptions(
# num_threads=8, device=AcceleratorDevice.MPS
# )
# accelerator_options = AcceleratorOptions(
# num_threads=8, device=AcceleratorDevice.CUDA
# )
# easyocr doesnt support cuda:N allocation, defaults to cuda:0
# accelerator_options = AcceleratorOptions(num_threads=8, device="cuda:1")
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
# Enable the profiling to measure the time spent
settings.debug.profile_pipeline_timings = True
# Convert the document
conversion_result = converter.convert(input_doc_path)
doc = conversion_result.document
# List with total time per document
doc_conversion_secs = conversion_result.timings["pipeline_total"].times
md = doc.export_to_markdown()
print(md)
print(f"Conversion secs: {doc_conversion_secs}")
if __name__ == "__main__":
main()