mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 12:04:31 +00:00
417 lines
14 KiB
Python
417 lines
14 KiB
Python
import logging
|
|
import os
|
|
import re
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
from typing import List, Optional, Union, cast
|
|
|
|
import librosa # type: ignore
|
|
import numpy as np
|
|
import soundfile as sf # type: ignore
|
|
from docling_core.types.doc.labels import DocItemLabel
|
|
from pydantic import BaseModel, Field, validator
|
|
from pydub import AudioSegment # type: ignore
|
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor, pipeline
|
|
|
|
from docling.backend.abstract_backend import AbstractDocumentBackend
|
|
from docling.backend.audio_backend import AudioBackend
|
|
from docling.datamodel.base_models import (
|
|
ConversionStatus,
|
|
)
|
|
from docling.datamodel.document import ConversionResult, InputDocument
|
|
from docling.datamodel.pipeline_options import (
|
|
AsrPipelineOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_asr_model import (
|
|
AsrResponseFormat,
|
|
InlineAsrOptions,
|
|
)
|
|
from docling.datamodel.pipeline_options_vlm_model import (
|
|
InferenceFramework,
|
|
)
|
|
from docling.datamodel.settings import settings
|
|
from docling.pipeline.base_pipeline import BasePipeline
|
|
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class _ConversationItem(BaseModel):
|
|
text: str
|
|
start_time: Optional[float] = Field(
|
|
None, description="Start time in seconds from video start"
|
|
)
|
|
end_time: Optional[float] = Field(
|
|
None, ge=0, description="End time in seconds from video start"
|
|
)
|
|
speaker_id: Optional[int] = Field(None, description="Numeric speaker identifier")
|
|
speaker: Optional[str] = Field(
|
|
None, description="Speaker name, defaults to speaker-{speaker_id}"
|
|
)
|
|
|
|
def __lt__(self, other):
|
|
if not isinstance(other, _ConversationItem):
|
|
return NotImplemented
|
|
return self.start_time < other.start_time
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _ConversationItem):
|
|
return NotImplemented
|
|
return self.start_time == other.start_time
|
|
|
|
def to_string(self) -> str:
|
|
"""Format the conversation entry as a string"""
|
|
result = ""
|
|
if (self.start_time is not None) and (self.end_time is not None):
|
|
result += f"[time: {self.start_time}-{self.end_time}] "
|
|
|
|
if self.speaker is not None:
|
|
result += f"[speaker:{self.speaker}] "
|
|
|
|
result += self.text
|
|
return result
|
|
|
|
|
|
class _WhisperASR:
|
|
def __init__(self, model_name: str = "openai/whisper-small"):
|
|
"""
|
|
Transcriber using Hugging Face Transformers Whisper + energy-based VAD.
|
|
"""
|
|
print(f"Loading Whisper model: {model_name}")
|
|
|
|
self.device = "cpu"
|
|
|
|
self.transcriber = pipeline(
|
|
"automatic-speech-recognition",
|
|
model=model_name,
|
|
return_timestamps=True,
|
|
device=self.device,
|
|
)
|
|
|
|
def _energy_vad(
|
|
self,
|
|
y: np.ndarray,
|
|
sr: int,
|
|
frame_length=2048,
|
|
hop_length=512,
|
|
threshold_percentile=85,
|
|
):
|
|
"""
|
|
Simple energy-based VAD.
|
|
Returns list of (start_time, end_time) tuples for speech segments.
|
|
"""
|
|
_log.debug(f"_energy_vad {sr}: ", y.shape)
|
|
energy = np.array(
|
|
[
|
|
np.sum(np.abs(y[i : i + frame_length] ** 2))
|
|
for i in range(0, len(y), hop_length)
|
|
]
|
|
)
|
|
_log.debug(f"energy: {energy}")
|
|
|
|
threshold = np.percentile(energy, threshold_percentile) * 0.3
|
|
_log.debug(f"threshold: {threshold}")
|
|
|
|
speech_frames = energy > threshold
|
|
_log.debug(f"speech_frames: {speech_frames}")
|
|
|
|
frame_times = librosa.frames_to_time(
|
|
np.arange(len(energy)), sr=sr, hop_length=hop_length
|
|
)
|
|
|
|
segments = []
|
|
start_time = None
|
|
|
|
for i, is_speech in enumerate(speech_frames):
|
|
t = frame_times[i]
|
|
if is_speech and start_time is None:
|
|
start_time = t
|
|
elif not is_speech and start_time is not None:
|
|
segments.append((start_time, t))
|
|
start_time = None
|
|
|
|
if start_time is not None:
|
|
segments.append((start_time, frame_times[-1]))
|
|
|
|
return segments
|
|
|
|
def _merge_vad_segments(self, segments, min_duration=5.0, max_gap=0.5):
|
|
"""
|
|
Merge short/adjacent speech segments to improve transcription quality.
|
|
"""
|
|
if not segments:
|
|
return []
|
|
|
|
merged = []
|
|
current_start, current_end = segments[0]
|
|
|
|
for start, end in segments[1:]:
|
|
gap = start - current_end
|
|
if gap <= max_gap or (current_end - current_start) < min_duration:
|
|
current_end = end # merge
|
|
else:
|
|
if current_end - current_start >= 1.0: # skip ultra-short
|
|
merged.append((current_start, current_end))
|
|
current_start, current_end = start, end
|
|
|
|
if current_end - current_start >= 1.0:
|
|
merged.append((current_start, current_end))
|
|
|
|
return merged
|
|
|
|
def run(self, conv_res: ConversionResult) -> ConversionResult:
|
|
"""
|
|
Transcribe audio using custom VAD and Whisper, returning timestamped segments.
|
|
Returns list of {"start", "end", "text"} dictionaries.
|
|
"""
|
|
audio_path = conv_res.input.file
|
|
|
|
_log.info(f"Loading audio and resampling: {audio_path}")
|
|
y, sr = librosa.load(audio_path, sr=16000)
|
|
|
|
speech_segments = self._energy_vad(y=y, sr=int(sr))
|
|
speech_segments = self._merge_vad_segments(speech_segments)
|
|
_log.info("#-speech: ", len(speech_segments))
|
|
|
|
_log.info("Preparing AudioSegment for chunk slicing...")
|
|
pcm = (y * 32767).astype(np.int16).tobytes()
|
|
audio_seg = AudioSegment(data=pcm, sample_width=2, frame_rate=16000, channels=1)
|
|
|
|
result = self._create_conversation_entries_v2(speech_segments, audio_seg)
|
|
result.sort()
|
|
|
|
for _ in result:
|
|
conv_res.document.add_text(label=DocItemLabel.TEXT, text=_.to_string())
|
|
|
|
conv_res.status = ConversionStatus.SUCCESS
|
|
return conv_res
|
|
|
|
def _create_conversation_entries_v1(
|
|
self, speech_segments, audio_seg
|
|
) -> list[_ConversationItem]:
|
|
"""
|
|
Chunk audio based on speech_segments, transcribe with Whisper,
|
|
and return structured _ConversationItem items.
|
|
"""
|
|
results = []
|
|
chunk_id = 0
|
|
|
|
for start, end in speech_segments:
|
|
duration = end - start
|
|
while duration > 0:
|
|
sub_end = min(start + 30.0, end)
|
|
chunk = audio_seg[start * 1000 : sub_end * 1000]
|
|
samples = (
|
|
np.array(chunk.get_array_of_samples()).astype(np.float32) / 32768.0
|
|
)
|
|
|
|
try:
|
|
_log.debug(
|
|
f"Transcribing chunk {chunk_id}: {start:.2f}s - {sub_end:.2f}s [{sub_end - start:.2f}]"
|
|
)
|
|
result = self.transcriber(samples, return_timestamps=True)
|
|
|
|
# Adjust timestamps globally
|
|
for seg in result["chunks"]:
|
|
t0, t1 = seg["timestamp"]
|
|
if t0 is None or t1 is None or t1 <= t0:
|
|
_log.warning(f"skipping bad segment: {seg}")
|
|
continue
|
|
|
|
item = _ConversationItem(
|
|
text=seg["text"].strip(),
|
|
start_time=start + t0,
|
|
end_time=start + t1,
|
|
)
|
|
results.append(item)
|
|
|
|
start = sub_end
|
|
duration = end - start
|
|
chunk_id += 1
|
|
except Exception as exc:
|
|
_log.error(f"Exception: {exc}")
|
|
|
|
return results
|
|
|
|
def _create_conversation_entries_v2(
|
|
self, speech_segments, audio_seg
|
|
) -> list[_ConversationItem]:
|
|
"""
|
|
Chunk audio based on speech_segments, transcribe with Whisper,
|
|
and return structured _ConversationItem items.
|
|
"""
|
|
results = []
|
|
chunk_id = 0
|
|
|
|
if len(speech_segments) == 0:
|
|
return []
|
|
|
|
any_valid = False
|
|
last_valid_offset: float = speech_segments[0][0]
|
|
|
|
for start, end in speech_segments:
|
|
if any_valid:
|
|
last_valid_offset = min(start, last_valid_offset)
|
|
else:
|
|
last_valid_offset = start
|
|
|
|
duration = end - last_valid_offset
|
|
|
|
if duration > 0.2:
|
|
sub_end = min(last_valid_offset + 30.0, end)
|
|
|
|
chunk_i0 = int(last_valid_offset * 1000)
|
|
chunk_i1 = int(sub_end * 1000)
|
|
|
|
chunk = audio_seg[chunk_i0:chunk_i1]
|
|
samples = (
|
|
np.array(chunk.get_array_of_samples()).astype(np.float32) / 32768.0
|
|
)
|
|
chunk_id += 1
|
|
|
|
try:
|
|
result = self.transcriber(samples, return_timestamps=True)
|
|
|
|
any_valid = False
|
|
|
|
last_valid_offset_ = last_valid_offset
|
|
|
|
for seg in result["chunks"]:
|
|
t0, t1 = seg["timestamp"]
|
|
if t0 is None or t1 is None or t1 <= t0:
|
|
_log.warning(f" => skipping bad segment: {seg}")
|
|
continue
|
|
|
|
global_start = round(last_valid_offset_ + t0, 2)
|
|
global_end = round(last_valid_offset_ + t1, 2)
|
|
text = seg["text"].strip()
|
|
|
|
results.append(
|
|
_ConversationItem(
|
|
start_time=global_start, end_time=global_end, text=text
|
|
)
|
|
)
|
|
last_valid_offset = max(global_end, last_valid_offset)
|
|
any_valid = True
|
|
|
|
if not any_valid:
|
|
_log.warning(
|
|
"No valid transcription in chunk, nudging forward 1s."
|
|
)
|
|
last_valid_offset += 1.0
|
|
|
|
except Exception as e:
|
|
_log.error(f"Whisper failed: {e}")
|
|
last_valid_offset += 1.0
|
|
|
|
duration = end - last_valid_offset
|
|
else:
|
|
any_valid = False
|
|
|
|
return results
|
|
|
|
|
|
class _WhisperModel:
|
|
def __init__(self):
|
|
_log.info("initialisation `_WhisperModel`")
|
|
|
|
self.device = "cpu"
|
|
self.chunk_length = 30
|
|
|
|
self.batch_size = 8
|
|
|
|
# self.model_repo = "openai/whisper-tiny"
|
|
# self.model_repo = "openai/whisper-small"
|
|
self.model_repo = "openai/whisper-medium"
|
|
# self.model_repo = "openai/whisper-large"
|
|
|
|
self.processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
|
self.model = WhisperForConditionalGeneration.from_pretrained(
|
|
"openai/whisper-tiny"
|
|
)
|
|
|
|
# FIXME
|
|
self.max_new_tokens = 256
|
|
|
|
_log.info(f"model is loaded: {self.model_repo}")
|
|
|
|
self.pipe = pipeline(
|
|
"automatic-speech-recognition",
|
|
model=self.model_repo,
|
|
chunk_length_s=self.chunk_length,
|
|
device=self.device,
|
|
)
|
|
|
|
def run(self, conv_res: ConversionResult) -> ConversionResult:
|
|
return self._run_pipeline(conv_res=conv_res)
|
|
|
|
def _run_pipeline(self, conv_res: ConversionResult) -> ConversionResult:
|
|
try:
|
|
fpath = conv_res.input.file
|
|
|
|
array, sampling_rate = librosa.load(fpath, sr=16000)
|
|
|
|
prediction = self.pipe(
|
|
inputs=array, batch_size=self.batch_size, return_timestamps=True
|
|
) # ["chunks"]
|
|
|
|
for _ in prediction["chunks"]:
|
|
item = _ConversationItem(
|
|
text=_["text"],
|
|
start_time=_["timestamp"][0],
|
|
end_time=_["timestamp"][1],
|
|
)
|
|
conv_res.document.add_text(
|
|
label=DocItemLabel.TEXT, text=item.to_string()
|
|
)
|
|
|
|
conv_res.status = ConversionStatus.SUCCESS
|
|
except Exception as exc:
|
|
conv_res.status = ConversionStatus.FAILURE
|
|
_log.error(f"Failed to convert with {self.model_repo}: {exc}")
|
|
|
|
return conv_res
|
|
|
|
|
|
class AsrPipeline(BasePipeline):
|
|
def __init__(self, pipeline_options: AsrPipelineOptions):
|
|
super().__init__(pipeline_options)
|
|
self.keep_backend = True
|
|
|
|
self.pipeline_options: AsrPipelineOptions
|
|
|
|
artifacts_path: Optional[Path] = None
|
|
if pipeline_options.artifacts_path is not None:
|
|
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
|
|
elif settings.artifacts_path is not None:
|
|
artifacts_path = Path(settings.artifacts_path).expanduser()
|
|
|
|
if artifacts_path is not None and not artifacts_path.is_dir():
|
|
raise RuntimeError(
|
|
f"The value of {artifacts_path=} is not valid. "
|
|
"When defined, it must point to a folder containing all models required by the pipeline."
|
|
)
|
|
|
|
# self._model = _WhisperModel()
|
|
self._model = _WhisperASR()
|
|
|
|
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
|
|
status = ConversionStatus.SUCCESS
|
|
return status
|
|
|
|
@classmethod
|
|
def get_default_options(cls) -> AsrPipelineOptions:
|
|
return AsrPipelineOptions()
|
|
|
|
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
|
|
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
|
|
_log.info(f"do something: {conv_res.input.file}")
|
|
self._model.run(conv_res=conv_res)
|
|
_log.info(f"finished doing something: {conv_res.input.file}")
|
|
|
|
return conv_res
|
|
|
|
@classmethod
|
|
def is_backend_supported(cls, backend: AbstractDocumentBackend):
|
|
return isinstance(backend, AudioBackend)
|