docling/docs/examples/minimal_smol_docling.py
Maksym Lysak e0929781f4 Added tokens/sec measurement, improved example
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
2025-02-24 12:56:57 +01:00

86 lines
2.7 KiB
Python

import json
import os
import time
from pathlib import Path
from urllib.parse import urlparse
import yaml
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
# source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
# source = "tests/data/2305.03393v1-pg9-img.png"
# source = "tests/data/2305.03393v1-pg9.pdf"
# source = "demo_data/page.png"
# source = "demo_data/original_tables.pdf"
sources = [
"tests/data/2305.03393v1-pg9-img.png",
# "tests/data/2305.03393v1-pg9.pdf",
# "demo_data/page.png",
# "demo_data/original_tables.pdf",
]
pipeline_options = PdfPipelineOptions()
pipeline_options.generate_page_images = True
pipeline_options.artifacts_path = "model_artifacts"
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
for source in sources:
start_time = time.time()
print("================================================")
print("Processing... {}".format(source))
print("================================================")
print("")
res = converter.convert(source)
print("------------------------------------------------")
print("MD:")
print("------------------------------------------------")
print("")
print(res.document.export_to_markdown())
with (out_path / f"{res.input.file.stem}.html").open("w") as fp:
fp.write(res.document.export_to_html())
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
with (out_path / f"{res.input.file.stem}.yaml").open("w") as fp:
fp.write(yaml.safe_dump(res.document.export_to_dict()))
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("================================================")
print("done!")
print("================================================")