docling/docs/examples/minimal_smol_docling.py

97 lines
3.0 KiB
Python

import json
import os
import time
from pathlib import Path
from urllib.parse import urlparse
import yaml
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions, SmolDoclingOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
sources = [
# "https://arxiv.org/pdf/2408.09869",
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/2305.03393v1-pg9.pdf",
]
pipeline_options = PdfPipelineOptions()
pipeline_options.generate_page_images = True
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.artifacts_path = "model_artifacts/SmolDocling_2.7_DT_0.7"
vlm_options = SmolDoclingOptions(
artifacts_path="model_artifacts/SmolDocling_2.7_DT_0.7",
question="Perform Layout Analysis.",
load_in_8bit=True,
llm_int8_threshold=6.0,
quantized=False,
)
pipeline_options.vlm_options = vlm_options
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
for source in sources:
start_time = time.time()
print("================================================")
print("Processing... {}".format(source))
print("================================================")
print("")
res = converter.convert(source)
print("------------------------------------------------")
print("MD:")
print("------------------------------------------------")
print("")
print(res.document.export_to_markdown())
# with (out_path / f"{res.input.file.stem}.html").open("w") as fp:
# fp.write(res.document.export_to_html())
res.document.save_as_html(
filename=Path("{}/{}.html".format(out_path, res.input.file.stem)),
image_mode=ImageRefMode.REFERENCED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
)
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
with (out_path / f"{res.input.file.stem}.yaml").open("w") as fp:
fp.write(yaml.safe_dump(res.document.export_to_dict()))
pg_num = res.document.num_pages()
print("")
inference_time = time.time() - start_time
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("================================================")
print("done!")
print("================================================")