Files
docling/docs/examples/gpu_standard_pipeline.py
Michele Dolfi b75c6461f4 docs: More GPU results and improvements in the example docs (#2674)
* add more results and improve the example docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* 5070 windows timing

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add reference for cpu-only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-11-24 15:26:08 +01:00

82 lines
2.4 KiB
Python
Vendored

# %% [markdown]
#
# What this example does
# - Run a conversion using the best setup for GPU for the standard pipeline
#
# Requirements
# - Python 3.9+
# - Install Docling: `pip install docling`
#
# How to run
# - `python docs/examples/gpu_standard_pipeline.py`
#
# This example is part of a set of GPU optimization strategies. Read more about it in [GPU support](../../usage/gpu/)
#
# ## Example code
# %%
import datetime
import logging
import time
from pathlib import Path
import numpy as np
from pydantic import TypeAdapter
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.pipeline_options import (
ThreadedPdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.threaded_standard_pdf_pipeline import ThreadedStandardPdfPipeline
from docling.utils.profiling import ProfilingItem
_log = logging.getLogger(__name__)
def main():
logging.getLogger("docling").setLevel(logging.WARNING)
_log.setLevel(logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
# input_doc_path = data_folder / "pdf" / "2305.03393v1.pdf" # 14 pages
input_doc_path = data_folder / "pdf" / "redp5110_sampled.pdf" # 18 pages
pipeline_options = ThreadedPdfPipelineOptions(
accelerator_options=AcceleratorOptions(
device=AcceleratorDevice.CUDA,
),
ocr_batch_size=4,
layout_batch_size=64,
table_batch_size=4,
)
pipeline_options.do_ocr = False
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=ThreadedStandardPdfPipeline,
pipeline_options=pipeline_options,
)
}
)
start_time = time.time()
doc_converter.initialize_pipeline(InputFormat.PDF)
init_runtime = time.time() - start_time
_log.info(f"Pipeline initialized in {init_runtime:.2f} seconds.")
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
pipeline_runtime = time.time() - start_time
assert conv_result.status == ConversionStatus.SUCCESS
num_pages = len(conv_result.pages)
_log.info(f"Document converted in {pipeline_runtime:.2f} seconds.")
_log.info(f" {num_pages / pipeline_runtime:.2f} pages/second.")
if __name__ == "__main__":
main()