Files
docling/docs/examples/gpu_vlm_pipeline.py
Michele Dolfi b75c6461f4 docs: More GPU results and improvements in the example docs (#2674)
* add more results and improve the example docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* 5070 windows timing

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add reference for cpu-only

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-11-24 15:26:08 +01:00

124 lines
3.9 KiB
Python
Vendored

# %% [markdown]
#
# What this example does
# - Run a conversion using the best setup for GPU using VLM models
#
# Requirements
# - Python 3.10+
# - Install Docling: `pip install docling`
# - Install vLLM: `pip install vllm`
#
# How to run
# - `python docs/examples/gpu_vlm_pipeline.py`
#
# This example is part of a set of GPU optimization strategies. Read more about it in [GPU support](../../usage/gpu/)
#
# ### Start models with vllm
#
# ```console
# vllm serve ibm-granite/granite-docling-258M \
# --host 127.0.0.1 --port 8000 \
# --max-num-seqs 512 \
# --max-num-batched-tokens 8192 \
# --enable-chunked-prefill \
# --gpu-memory-utilization 0.9
# ```
#
# ## Example code
# %%
import datetime
import logging
import time
from pathlib import Path
import numpy as np
from pydantic import TypeAdapter
from docling.datamodel import vlm_model_specs
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat
from docling.datamodel.settings import settings
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling.utils.profiling import ProfilingItem
_log = logging.getLogger(__name__)
def main():
logging.getLogger("docling").setLevel(logging.WARNING)
_log.setLevel(logging.INFO)
BATCH_SIZE = 64
settings.perf.page_batch_size = BATCH_SIZE
settings.debug.profile_pipeline_timings = True
data_folder = Path(__file__).parent / "../../tests/data"
# input_doc_path = data_folder / "pdf" / "2305.03393v1.pdf" # 14 pages
input_doc_path = data_folder / "pdf" / "redp5110_sampled.pdf" # 18 pages
vlm_options = ApiVlmOptions(
url="http://localhost:8000/v1/chat/completions", # LM studio defaults to port 1234, VLLM to 8000
params=dict(
model=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.repo_id,
max_tokens=4096,
skip_special_tokens=True,
),
prompt=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.prompt,
timeout=90,
scale=2.0,
temperature=0.0,
concurrency=BATCH_SIZE,
stop_strings=["</doctag>", "<|end_of_text|>"],
response_format=ResponseFormat.DOCTAGS,
)
pipeline_options = VlmPipelineOptions(
vlm_options=vlm_options,
enable_remote_services=True, # required when using a remote inference service.
)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
start_time = time.time()
doc_converter.initialize_pipeline(InputFormat.PDF)
end_time = time.time() - start_time
_log.info(f"Pipeline initialized in {end_time:.2f} seconds.")
now = datetime.datetime.now()
conv_result = doc_converter.convert(input_doc_path)
assert conv_result.status == ConversionStatus.SUCCESS
num_pages = len(conv_result.pages)
pipeline_runtime = conv_result.timings["pipeline_total"].times[0]
_log.info(f"Document converted in {pipeline_runtime:.2f} seconds.")
_log.info(f" [efficiency]: {num_pages / pipeline_runtime:.2f} pages/second.")
for stage in ("page_init", "vlm"):
values = np.array(conv_result.timings[stage].times)
_log.info(
f" [{stage}]: {np.min(values):.2f} / {np.median(values):.2f} / {np.max(values):.2f} seconds/page"
)
TimingsT = TypeAdapter(dict[str, ProfilingItem])
timings_file = Path(f"result-timings-gpu-vlm-{now:%Y-%m-%d_%H-%M-%S}.json")
with timings_file.open("wb") as fp:
r = TimingsT.dump_json(conv_result.timings, indent=2)
fp.write(r)
_log.info(f"Profile details in {timings_file}.")
if __name__ == "__main__":
main()