mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 12:34:22 +00:00
Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
500 lines
17 KiB
Python
500 lines
17 KiB
Python
import bisect
|
|
import logging
|
|
import sys
|
|
from collections import defaultdict
|
|
from typing import Dict, List, Set, Tuple
|
|
|
|
from docling_core.types.doc import DocItemLabel
|
|
from rtree import index
|
|
|
|
from docling.datamodel.base_models import BoundingBox, Cell, Cluster
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class UnionFind:
|
|
"""Efficient Union-Find data structure for grouping elements."""
|
|
|
|
def __init__(self, elements):
|
|
self.parent = {elem: elem for elem in elements}
|
|
self.rank = {elem: 0 for elem in elements}
|
|
|
|
def find(self, x):
|
|
if self.parent[x] != x:
|
|
self.parent[x] = self.find(self.parent[x]) # Path compression
|
|
return self.parent[x]
|
|
|
|
def union(self, x, y):
|
|
root_x, root_y = self.find(x), self.find(y)
|
|
if root_x == root_y:
|
|
return
|
|
|
|
if self.rank[root_x] > self.rank[root_y]:
|
|
self.parent[root_y] = root_x
|
|
elif self.rank[root_x] < self.rank[root_y]:
|
|
self.parent[root_x] = root_y
|
|
else:
|
|
self.parent[root_y] = root_x
|
|
self.rank[root_x] += 1
|
|
|
|
def get_groups(self) -> Dict[int, List[int]]:
|
|
"""Returns groups as {root: [elements]}."""
|
|
groups = defaultdict(list)
|
|
for elem in self.parent:
|
|
groups[self.find(elem)].append(elem)
|
|
return groups
|
|
|
|
|
|
class SpatialClusterIndex:
|
|
"""Efficient spatial indexing for clusters using R-tree and interval trees."""
|
|
|
|
def __init__(self, clusters: List[Cluster]):
|
|
p = index.Property()
|
|
p.dimension = 2
|
|
self.spatial_index = index.Index(properties=p)
|
|
self.x_intervals = IntervalTree()
|
|
self.y_intervals = IntervalTree()
|
|
self.clusters_by_id: Dict[int, Cluster] = {}
|
|
|
|
for cluster in clusters:
|
|
self.add_cluster(cluster)
|
|
|
|
def add_cluster(self, cluster: Cluster):
|
|
bbox = cluster.bbox
|
|
self.spatial_index.insert(cluster.id, bbox.as_tuple())
|
|
self.x_intervals.insert(bbox.l, bbox.r, cluster.id)
|
|
self.y_intervals.insert(bbox.t, bbox.b, cluster.id)
|
|
self.clusters_by_id[cluster.id] = cluster
|
|
|
|
def remove_cluster(self, cluster: Cluster):
|
|
self.spatial_index.delete(cluster.id, cluster.bbox.as_tuple())
|
|
del self.clusters_by_id[cluster.id]
|
|
|
|
def find_candidates(self, bbox: BoundingBox) -> Set[int]:
|
|
"""Find potential overlapping cluster IDs using all indexes."""
|
|
spatial = set(self.spatial_index.intersection(bbox.as_tuple()))
|
|
x_candidates = self.x_intervals.find_containing(
|
|
bbox.l
|
|
) | self.x_intervals.find_containing(bbox.r)
|
|
y_candidates = self.y_intervals.find_containing(
|
|
bbox.t
|
|
) | self.y_intervals.find_containing(bbox.b)
|
|
return spatial | x_candidates | y_candidates
|
|
|
|
def check_overlap(
|
|
self,
|
|
bbox1: BoundingBox,
|
|
bbox2: BoundingBox,
|
|
overlap_threshold: float,
|
|
containment_threshold: float,
|
|
) -> bool:
|
|
"""Check if two bboxes overlap sufficiently."""
|
|
area1, area2 = bbox1.area(), bbox2.area()
|
|
if area1 <= 0 or area2 <= 0:
|
|
return False
|
|
|
|
overlap_area = bbox1.intersection_area_with(bbox2)
|
|
if overlap_area <= 0:
|
|
return False
|
|
|
|
iou = overlap_area / (area1 + area2 - overlap_area)
|
|
containment1 = overlap_area / area1
|
|
containment2 = overlap_area / area2
|
|
|
|
return (
|
|
iou > overlap_threshold
|
|
or containment1 > containment_threshold
|
|
or containment2 > containment_threshold
|
|
)
|
|
|
|
|
|
class IntervalTree:
|
|
"""Memory-efficient interval tree for 1D overlap queries."""
|
|
|
|
def __init__(self):
|
|
self.intervals: List[Tuple[float, float, int]] = (
|
|
[]
|
|
) # (min, max, id) sorted by min
|
|
|
|
def insert(self, min_val: float, max_val: float, id: int):
|
|
bisect.insort(self.intervals, (min_val, max_val, id), key=lambda x: x[0])
|
|
|
|
def find_containing(self, point: float) -> Set[int]:
|
|
"""Find all intervals containing the point."""
|
|
pos = bisect.bisect_left(self.intervals, (point, float("-inf"), -1))
|
|
result = set()
|
|
|
|
# Check intervals starting before point
|
|
for min_val, max_val, id in reversed(self.intervals[:pos]):
|
|
if min_val <= point <= max_val:
|
|
result.add(id)
|
|
else:
|
|
break
|
|
|
|
# Check intervals starting at/after point
|
|
for min_val, max_val, id in self.intervals[pos:]:
|
|
if point <= max_val:
|
|
if min_val <= point:
|
|
result.add(id)
|
|
else:
|
|
break
|
|
|
|
return result
|
|
|
|
|
|
class LayoutPostprocessor:
|
|
"""Postprocesses layout predictions by cleaning up clusters and mapping cells."""
|
|
|
|
# Cluster type-specific parameters for overlap resolution
|
|
OVERLAP_PARAMS = {
|
|
"regular": {"area_threshold": 1.3, "conf_threshold": 0.05},
|
|
"picture": {"area_threshold": 2.0, "conf_threshold": 0.3},
|
|
"wrapper": {"area_threshold": 2.0, "conf_threshold": 0.2},
|
|
}
|
|
|
|
WRAPPER_TYPES = {DocItemLabel.FORM, DocItemLabel.KEY_VALUE_REGION}
|
|
SPECIAL_TYPES = WRAPPER_TYPES | {DocItemLabel.PICTURE}
|
|
|
|
CONFIDENCE_THRESHOLDS = {
|
|
DocItemLabel.CAPTION: 0.35,
|
|
DocItemLabel.FOOTNOTE: 0.35,
|
|
DocItemLabel.FORMULA: 0.35,
|
|
DocItemLabel.LIST_ITEM: 0.35,
|
|
DocItemLabel.PAGE_FOOTER: 0.35,
|
|
DocItemLabel.PAGE_HEADER: 0.35,
|
|
DocItemLabel.PICTURE: 0.1,
|
|
DocItemLabel.SECTION_HEADER: 0.45,
|
|
DocItemLabel.TABLE: 0.35,
|
|
DocItemLabel.TEXT: 0.45,
|
|
DocItemLabel.TITLE: 0.45,
|
|
DocItemLabel.CODE: 0.45,
|
|
DocItemLabel.CHECKBOX_SELECTED: 0.45,
|
|
DocItemLabel.CHECKBOX_UNSELECTED: 0.45,
|
|
DocItemLabel.FORM: 0.45,
|
|
DocItemLabel.KEY_VALUE_REGION: 0.45,
|
|
DocItemLabel.DOCUMENT_INDEX: 0.45,
|
|
}
|
|
|
|
LABEL_REMAPPING = {
|
|
DocItemLabel.DOCUMENT_INDEX: DocItemLabel.TABLE,
|
|
DocItemLabel.TITLE: DocItemLabel.SECTION_HEADER,
|
|
}
|
|
|
|
def __init__(self, cells: List[Cell], clusters: List[Cluster]):
|
|
"""Initialize processor with cells and clusters."""
|
|
"""Initialize processor with cells and spatial indices."""
|
|
self.cells = cells
|
|
self.regular_clusters = [
|
|
c for c in clusters if c.label not in self.SPECIAL_TYPES
|
|
]
|
|
self.special_clusters = [c for c in clusters if c.label in self.SPECIAL_TYPES]
|
|
|
|
# Build spatial indices once
|
|
self.regular_index = SpatialClusterIndex(self.regular_clusters)
|
|
self.picture_index = SpatialClusterIndex(
|
|
[c for c in self.special_clusters if c.label == DocItemLabel.PICTURE]
|
|
)
|
|
self.wrapper_index = SpatialClusterIndex(
|
|
[c for c in self.special_clusters if c.label in self.WRAPPER_TYPES]
|
|
)
|
|
|
|
def postprocess(self) -> Tuple[List[Cluster], List[Cell]]:
|
|
"""Main processing pipeline."""
|
|
self.regular_clusters = self._process_regular_clusters()
|
|
self.special_clusters = self._process_special_clusters()
|
|
|
|
# Remove regular clusters that are included in wrappers
|
|
contained_ids = {
|
|
child.id
|
|
for wrapper in self.special_clusters
|
|
if wrapper.label in self.SPECIAL_TYPES
|
|
for child in wrapper.children
|
|
}
|
|
self.regular_clusters = [
|
|
c for c in self.regular_clusters if c.id not in contained_ids
|
|
]
|
|
|
|
# Combine and sort final clusters
|
|
final_clusters = self._sort_clusters(
|
|
self.regular_clusters + self.special_clusters
|
|
)
|
|
return final_clusters, self.cells
|
|
|
|
def _process_regular_clusters(self) -> List[Cluster]:
|
|
"""Process regular clusters with iterative refinement."""
|
|
clusters = [
|
|
c
|
|
for c in self.regular_clusters
|
|
if c.confidence >= self.CONFIDENCE_THRESHOLDS[c.label]
|
|
]
|
|
|
|
# Apply label remapping
|
|
for cluster in clusters:
|
|
if cluster.label in self.LABEL_REMAPPING:
|
|
cluster.label = self.LABEL_REMAPPING[cluster.label]
|
|
|
|
# Initial cell assignment
|
|
clusters = self._assign_cells_to_clusters(clusters)
|
|
|
|
# Remove clusters with no cells
|
|
clusters = [cluster for cluster in clusters if cluster.cells]
|
|
|
|
# Handle orphaned cells
|
|
unassigned = self._find_unassigned_cells(clusters)
|
|
if unassigned:
|
|
next_id = max((c.id for c in clusters), default=0) + 1
|
|
orphan_clusters = [
|
|
Cluster(
|
|
id=next_id + i,
|
|
label=DocItemLabel.TEXT,
|
|
bbox=cell.bbox,
|
|
confidence=0.0,
|
|
cells=[cell],
|
|
)
|
|
for i, cell in enumerate(unassigned)
|
|
]
|
|
clusters.extend(orphan_clusters)
|
|
|
|
# Iterative refinement
|
|
prev_count = len(clusters) + 1
|
|
for _ in range(3): # Maximum 3 iterations
|
|
if prev_count == len(clusters):
|
|
break
|
|
prev_count = len(clusters)
|
|
clusters = self._adjust_cluster_bboxes(clusters)
|
|
clusters = self._remove_overlapping_clusters(clusters, "regular")
|
|
|
|
return clusters
|
|
|
|
def _process_special_clusters(self) -> List[Cluster]:
|
|
special_clusters = [
|
|
c
|
|
for c in self.special_clusters
|
|
if c.confidence >= self.CONFIDENCE_THRESHOLDS[c.label]
|
|
]
|
|
|
|
for special in special_clusters:
|
|
contained = []
|
|
for cluster in self.regular_clusters:
|
|
overlap = cluster.bbox.intersection_area_with(special.bbox)
|
|
if overlap > 0:
|
|
containment = overlap / cluster.bbox.area()
|
|
if containment > 0.8:
|
|
contained.append(cluster)
|
|
|
|
if contained:
|
|
# Sort contained clusters by minimum cell ID
|
|
contained.sort(
|
|
key=lambda cluster: (
|
|
min(cell.id for cell in cluster.cells)
|
|
if cluster.cells
|
|
else sys.maxsize
|
|
)
|
|
)
|
|
special.children = contained
|
|
|
|
# Adjust bbox only for wrapper types
|
|
if special.label in self.WRAPPER_TYPES:
|
|
special.bbox = BoundingBox(
|
|
l=min(c.bbox.l for c in contained),
|
|
t=min(c.bbox.t for c in contained),
|
|
r=max(c.bbox.r for c in contained),
|
|
b=max(c.bbox.b for c in contained),
|
|
)
|
|
|
|
picture_clusters = [
|
|
c for c in special_clusters if c.label == DocItemLabel.PICTURE
|
|
]
|
|
picture_clusters = self._remove_overlapping_clusters(
|
|
picture_clusters, "picture"
|
|
)
|
|
|
|
wrapper_clusters = [
|
|
c for c in special_clusters if c.label in self.WRAPPER_TYPES
|
|
]
|
|
wrapper_clusters = self._remove_overlapping_clusters(
|
|
wrapper_clusters, "wrapper"
|
|
)
|
|
|
|
return picture_clusters + wrapper_clusters
|
|
|
|
def _remove_overlapping_clusters(
|
|
self,
|
|
clusters: List[Cluster],
|
|
cluster_type: str,
|
|
overlap_threshold: float = 0.8,
|
|
containment_threshold: float = 0.8,
|
|
) -> List[Cluster]:
|
|
if not clusters:
|
|
return []
|
|
|
|
spatial_index = (
|
|
self.regular_index
|
|
if cluster_type == "regular"
|
|
else self.picture_index if cluster_type == "picture" else self.wrapper_index
|
|
)
|
|
|
|
# Map of currently valid clusters
|
|
valid_clusters = {c.id: c for c in clusters}
|
|
uf = UnionFind(valid_clusters.keys())
|
|
params = self.OVERLAP_PARAMS[cluster_type]
|
|
|
|
for cluster in clusters:
|
|
candidates = spatial_index.find_candidates(cluster.bbox)
|
|
candidates &= valid_clusters.keys() # Only keep existing candidates
|
|
candidates.discard(cluster.id)
|
|
|
|
for other_id in candidates:
|
|
if spatial_index.check_overlap(
|
|
cluster.bbox,
|
|
valid_clusters[other_id].bbox,
|
|
overlap_threshold,
|
|
containment_threshold,
|
|
):
|
|
uf.union(cluster.id, other_id)
|
|
|
|
result = []
|
|
for group in uf.get_groups().values():
|
|
if len(group) == 1:
|
|
result.append(valid_clusters[group[0]])
|
|
continue
|
|
|
|
group_clusters = [valid_clusters[cid] for cid in group]
|
|
current_best = None
|
|
|
|
for candidate in group_clusters:
|
|
should_select = True
|
|
for other in group_clusters:
|
|
if other == candidate:
|
|
continue
|
|
|
|
area_ratio = candidate.bbox.area() / other.bbox.area()
|
|
conf_diff = other.confidence - candidate.confidence
|
|
|
|
if (
|
|
area_ratio <= params["area_threshold"]
|
|
and conf_diff > params["conf_threshold"]
|
|
):
|
|
should_select = False
|
|
break
|
|
|
|
if should_select:
|
|
if current_best is None or (
|
|
candidate.bbox.area() > current_best.bbox.area()
|
|
and current_best.confidence - candidate.confidence
|
|
<= params["conf_threshold"]
|
|
):
|
|
current_best = candidate
|
|
|
|
best = current_best if current_best else group_clusters[0]
|
|
for cluster in group_clusters:
|
|
if cluster != best:
|
|
best.cells.extend(cluster.cells)
|
|
result.append(best)
|
|
|
|
return result
|
|
|
|
def _select_best_cluster(
|
|
self,
|
|
clusters: List[Cluster],
|
|
area_threshold: float,
|
|
conf_threshold: float,
|
|
) -> Cluster:
|
|
"""Iteratively select best cluster based on area and confidence thresholds."""
|
|
current_best = None
|
|
for candidate in clusters:
|
|
should_select = True
|
|
for other in clusters:
|
|
if other == candidate:
|
|
continue
|
|
|
|
area_ratio = candidate.bbox.area() / other.bbox.area()
|
|
conf_diff = other.confidence - candidate.confidence
|
|
|
|
if area_ratio <= area_threshold and conf_diff > conf_threshold:
|
|
should_select = False
|
|
break
|
|
|
|
if should_select:
|
|
if current_best is None or (
|
|
candidate.bbox.area() > current_best.bbox.area()
|
|
and current_best.confidence - candidate.confidence <= conf_threshold
|
|
):
|
|
current_best = candidate
|
|
|
|
return current_best if current_best else clusters[0]
|
|
|
|
def _assign_cells_to_clusters(
|
|
self, clusters: List[Cluster], min_overlap: float = 0.2
|
|
) -> List[Cluster]:
|
|
"""Assign cells to best overlapping cluster."""
|
|
for cluster in clusters:
|
|
cluster.cells = []
|
|
|
|
for cell in self.cells:
|
|
if not cell.text.strip():
|
|
continue
|
|
|
|
best_overlap = min_overlap
|
|
best_cluster = None
|
|
|
|
for cluster in clusters:
|
|
if cell.bbox.area() <= 0:
|
|
continue
|
|
|
|
overlap = cell.bbox.intersection_area_with(cluster.bbox)
|
|
overlap_ratio = overlap / cell.bbox.area()
|
|
|
|
if overlap_ratio > best_overlap:
|
|
best_overlap = overlap_ratio
|
|
best_cluster = cluster
|
|
|
|
if best_cluster is not None:
|
|
best_cluster.cells.append(cell)
|
|
|
|
return clusters
|
|
|
|
def _find_unassigned_cells(self, clusters: List[Cluster]) -> List[Cell]:
|
|
"""Find cells not assigned to any cluster."""
|
|
assigned = {cell.id for cluster in clusters for cell in cluster.cells}
|
|
return [
|
|
cell for cell in self.cells if cell.id not in assigned and cell.text.strip()
|
|
]
|
|
|
|
def _adjust_cluster_bboxes(self, clusters: List[Cluster]) -> List[Cluster]:
|
|
"""Adjust cluster bounding boxes to contain their cells."""
|
|
for cluster in clusters:
|
|
if not cluster.cells:
|
|
continue
|
|
|
|
cells_bbox = BoundingBox(
|
|
l=min(cell.bbox.l for cell in cluster.cells),
|
|
t=min(cell.bbox.t for cell in cluster.cells),
|
|
r=max(cell.bbox.r for cell in cluster.cells),
|
|
b=max(cell.bbox.b for cell in cluster.cells),
|
|
)
|
|
|
|
if cluster.label == DocItemLabel.TABLE:
|
|
# For tables, take union of current bbox and cells bbox
|
|
cluster.bbox = BoundingBox(
|
|
l=min(cluster.bbox.l, cells_bbox.l),
|
|
t=min(cluster.bbox.t, cells_bbox.t),
|
|
r=max(cluster.bbox.r, cells_bbox.r),
|
|
b=max(cluster.bbox.b, cells_bbox.b),
|
|
)
|
|
else:
|
|
cluster.bbox = cells_bbox
|
|
|
|
return clusters
|
|
|
|
def _sort_clusters(self, clusters: List[Cluster]) -> List[Cluster]:
|
|
"""Sort clusters in reading order (top-to-bottom, left-to-right)."""
|
|
|
|
def reading_order_key(cluster: Cluster) -> Tuple[float, float]:
|
|
if cluster.cells and cluster.label != DocItemLabel.PICTURE:
|
|
first_cell = min(cluster.cells, key=lambda c: (c.bbox.t, c.bbox.l))
|
|
return (first_cell.bbox.t, first_cell.bbox.l)
|
|
return (cluster.bbox.t, cluster.bbox.l)
|
|
|
|
return sorted(clusters, key=reading_order_key)
|