renderer_vulkan: Implement rectlist emulation with tessellation

This commit is contained in:
IndecisiveTurtle 2024-12-22 23:33:55 +02:00
parent 14dc136832
commit 3485a30337
14 changed files with 372 additions and 25 deletions

View File

@ -630,6 +630,8 @@ set(SHADER_RECOMPILER src/shader_recompiler/exception.h
src/shader_recompiler/backend/spirv/emit_spirv_instructions.h
src/shader_recompiler/backend/spirv/emit_spirv_integer.cpp
src/shader_recompiler/backend/spirv/emit_spirv_logical.cpp
src/shader_recompiler/backend/spirv/emit_spirv_quad_rect.cpp
src/shader_recompiler/backend/spirv/emit_spirv_quad_rect.h
src/shader_recompiler/backend/spirv/emit_spirv_select.cpp
src/shader_recompiler/backend/spirv/emit_spirv_shared_memory.cpp
src/shader_recompiler/backend/spirv/emit_spirv_special.cpp

View File

@ -207,7 +207,7 @@ public:
return WriteSpan(string);
}
static size_t WriteBytes(const std::filesystem::path path, std::span<const u8> data) {
static size_t WriteBytes(const std::filesystem::path path, const auto& data) {
IOFile out(path, FileAccessMode::Write);
return out.Write(data);
}

View File

@ -1,5 +1,6 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <span>
#include <type_traits>
#include <utility>

View File

@ -0,0 +1,307 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <sirit/sirit.h>
#include "shader_recompiler/backend/spirv/emit_spirv_quad_rect.h"
namespace Shader::Backend::SPIRV {
using Sirit::Id;
struct QuadRectListEmitter : public Sirit::Module {
explicit QuadRectListEmitter(size_t num_attribs_)
: num_attribs{num_attribs_}, inputs{num_attribs}, outputs{num_attribs} {
void_id = TypeVoid();
bool_id = TypeBool();
float_id = TypeFloat(32);
uint_id = TypeUInt(32U);
int_id = TypeInt(32U, true);
bvec2_id = TypeVector(bool_id, 2);
vec2_id = TypeVector(float_id, 2);
vec3_id = TypeVector(float_id, 3);
vec4_id = TypeVector(float_id, 4);
float_one = Constant(float_id, 1.0f);
float_min_one = Constant(float_id, -1.0f);
int_zero = Constant(int_id, 0);
const Id float_arr{TypeArray(float_id, Constant(uint_id, 1U))};
gl_per_vertex_type = TypeStruct(vec4_id, float_id, float_arr, float_arr);
Decorate(gl_per_vertex_type, spv::Decoration::Block);
MemberDecorate(gl_per_vertex_type, 0U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::Position));
MemberDecorate(gl_per_vertex_type, 1U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::PointSize));
MemberDecorate(gl_per_vertex_type, 2U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::ClipDistance));
MemberDecorate(gl_per_vertex_type, 3U, spv::Decoration::BuiltIn,
static_cast<u32>(spv::BuiltIn::CullDistance));
}
/// Emits tessellation control shader for interpolating the 4th vertex of rectange primitive
void EmitRectListTCS() {
DefineEntry(spv::ExecutionModel::TessellationControl);
// Set passthrough tessellation factors
const Id output_float_id{TypePointer(spv::StorageClass::Output, float_id)};
for (int i = 0; i < 4; i++) {
const Id ptr{OpAccessChain(output_float_id, gl_tess_level_outer, Int(i))};
OpStore(ptr, float_one);
}
for (int i = 0; i < 2; i++) {
const Id ptr{OpAccessChain(output_float_id, gl_tess_level_inner, Int(i))};
OpStore(ptr, float_one);
}
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
// Emit interpolation block of the 4th vertex in rect.
// Load positions
std::array<Id, 3> pos;
for (int i = 0; i < 3; i++) {
pos[i] = OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, Int(i), int_zero));
}
std::array<Id, 3> point_coord_equal;
for (int i = 0; i < 3; i++) {
// point_coord_equal[i] = equal(gl_in[i].gl_Position.xy, gl_in[(i + 1) % 3].gl_Position.xy);
const Id pos_l_xy{OpVectorShuffle(vec2_id, pos[i], pos[i], 0, 1)};
const Id pos_r_xy{OpVectorShuffle(vec2_id, pos[(i + 1) % 3], pos[(i + 1) % 3], 0, 1)};
point_coord_equal[i] = OpFOrdEqual(bvec2_id, pos_l_xy, pos_r_xy);
}
std::array<Id, 3> bary_coord;
std::array<Id, 3> is_edge_vertex;
for (int i = 0; i < 3; i++) {
// bool xy_equal = point_coord_equal[i].x && point_coord_equal[(i + 2) % 3].y;
const Id xy_equal{
OpLogicalAnd(bool_id, OpCompositeExtract(bool_id, point_coord_equal[i], 0),
OpCompositeExtract(bool_id, point_coord_equal[(i + 2) % 3], 1))};
// bool yx_equal = point_coord_equal[i].y && point_coord_equal[(i + 2) % 3].x;
const Id yx_equal{
OpLogicalAnd(bool_id, OpCompositeExtract(bool_id, point_coord_equal[i], 1),
OpCompositeExtract(bool_id, point_coord_equal[(i + 2) % 3], 0))};
// bary_coord[i] = (xy_equal || yx_equal) ? -1.f : 1.f;
is_edge_vertex[i] = OpLogicalOr(bool_id, xy_equal, yx_equal);
bary_coord[i] = OpSelect(float_id, is_edge_vertex[i], float_min_one, float_one);
}
const auto interpolate = [&](Id v0, Id v1, Id v2) {
// return v0 * bary_coord.x + v1 * bary_coord.y + v2 * bary_coord.z;
const Id p0{OpVectorTimesScalar(vec4_id, v0, bary_coord[0])};
const Id p1{OpVectorTimesScalar(vec4_id, v1, bary_coord[1])};
const Id p2{OpVectorTimesScalar(vec4_id, v2, bary_coord[2])};
return OpFAdd(vec4_id, p0, OpFAdd(vec4_id, p1, p2));
};
// int vertex_index_id = is_edge_vertex[1] ? 1 : (is_edge_vertex[2] ? 2 : 0);
Id vertex_index{OpSelect(int_id, is_edge_vertex[2], Int(2), Int(0))};
vertex_index = OpSelect(int_id, is_edge_vertex[1], Int(1), vertex_index);
// int index = (vertex_index_id + gl_InvocationID) % 3;
const Id invocation_id{OpLoad(int_id, gl_invocation_id)};
const Id invocation_3{OpIEqual(bool_id, invocation_id, Int(3))};
const Id index{OpSMod(int_id, OpIAdd(int_id, vertex_index, invocation_id), Int(3))};
// gl_out[gl_InvocationID].gl_Position = gl_InvocationID == 3 ? pos3 : gl_in[index].gl_Position;
const Id pos3{interpolate(pos[0], pos[1], pos[2])};
const Id in_ptr{OpAccessChain(input_vec4, gl_in, index, Int(0))};
const Id position{OpSelect(vec4_id, invocation_3, pos3, OpLoad(vec4_id, in_ptr))};
OpStore(OpAccessChain(output_vec4, gl_out, invocation_id, Int(0)), position);
// Set attributes
for (int i = 0; i < inputs.size(); i++) {
// vec4 in_paramN3 = interpolate(bary_coord, in_paramN[0], in_paramN[1], in_paramN[2]);
const Id v0{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(0)))};
const Id v1{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(1)))};
const Id v2{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], Int(2)))};
const Id in_param3{interpolate(v0, v1, v2)};
// out_paramN[gl_InvocationID] = gl_InvocationID == 3 ? in_paramN3 : in_paramN[index];
const Id in_param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], index))};
const Id out_param{OpSelect(vec4_id, invocation_3, in_param3, in_param)};
OpStore(OpAccessChain(output_vec4, outputs[i], invocation_id), out_param);
}
OpReturn();
OpFunctionEnd();
}
/// Emits a passthrough quad tessellation control shader that outputs 4 control points.
void EmitPassthroughTCS() {
DefineEntry(spv::ExecutionModel::TessellationControl);
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
const Id invocation_id{OpLoad(int_id, gl_invocation_id)};
// gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
const Id in_position{OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, invocation_id, Int(0)))};
OpStore(OpAccessChain(output_vec4, gl_out, invocation_id, Int(0)), in_position);
for (int i = 0; i < num_attribs; i++) {
// out_paramN[gl_InvocationID] = in_paramN[gl_InvocationID];
const Id in_param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], invocation_id))};
OpStore(OpAccessChain(output_vec4, outputs[i], invocation_id), in_param);
}
OpReturn();
OpFunctionEnd();
}
/// Emits a passthrough quad tessellation evaluation shader that outputs 4 control points.
void EmitPassthroughTES() {
DefineEntry(spv::ExecutionModel::TessellationEvaluation);
// const int index = int(gl_TessCoord.y) * 2 + int(gl_TessCoord.x);
const Id input_float{TypePointer(spv::StorageClass::Input, float_id)};
const Id tess_coord_x{OpLoad(float_id, OpAccessChain(input_float, gl_tess_coord, Int(0)))};
const Id tess_coord_y{OpLoad(float_id, OpAccessChain(input_float, gl_tess_coord, Int(1)))};
const Id index{OpIAdd(int_id, OpIMul(int_id, OpConvertFToS(int_id, tess_coord_y), Int(2)),
OpConvertFToS(int_id, tess_coord_x))};
// gl_Position = gl_in[index].gl_Position;
const Id input_vec4{TypePointer(spv::StorageClass::Input, vec4_id)};
const Id output_vec4{TypePointer(spv::StorageClass::Output, vec4_id)};
const Id position{OpLoad(vec4_id, OpAccessChain(input_vec4, gl_in, index, Int(0)))};
OpStore(OpAccessChain(output_vec4, gl_per_vertex, Int(0)), position);
// out_paramN = in_paramN[index];
for (int i = 0; i < num_attribs; i++) {
const Id param{OpLoad(vec4_id, OpAccessChain(input_vec4, inputs[i], index))};
OpStore(outputs[i], param);
}
OpReturn();
OpFunctionEnd();
}
private:
Id Int(s32 value) {
return Constant(int_id, value);
}
Id AddInput(Id type) {
const Id input{AddGlobalVariable(TypePointer(spv::StorageClass::Input, type),
spv::StorageClass::Input)};
interfaces.push_back(input);
return input;
}
Id AddOutput(Id type) {
const Id output{AddGlobalVariable(TypePointer(spv::StorageClass::Output, type),
spv::StorageClass::Output)};
interfaces.push_back(output);
return output;
}
void DefineEntry(spv::ExecutionModel model) {
AddCapability(spv::Capability::Shader);
AddCapability(spv::Capability::Tessellation);
const Id void_function{TypeFunction(void_id)};
main = OpFunction(void_id, spv::FunctionControlMask::MaskNone, void_function);
if (model == spv::ExecutionModel::TessellationControl) {
AddExecutionMode(main, spv::ExecutionMode::OutputVertices, 4U);
} else {
AddExecutionMode(main, spv::ExecutionMode::Quads);
AddExecutionMode(main, spv::ExecutionMode::SpacingEqual);
AddExecutionMode(main, spv::ExecutionMode::VertexOrderCw);
}
DefineInputs(model);
DefineOutputs(model);
AddEntryPoint(model, main, "main", interfaces);
AddLabel(OpLabel());
}
void DefineOutputs(spv::ExecutionModel model) {
if (model == spv::ExecutionModel::TessellationControl) {
const Id gl_per_vertex_array{TypeArray(gl_per_vertex_type, Constant(uint_id, 4U))};
gl_out = AddOutput(gl_per_vertex_array);
const Id arr2_id{TypeArray(float_id, Constant(uint_id, 2U))};
gl_tess_level_inner = AddOutput(arr2_id);
Decorate(gl_tess_level_inner, spv::Decoration::BuiltIn, spv::BuiltIn::TessLevelInner);
Decorate(gl_tess_level_inner, spv::Decoration::Patch);
const Id arr4_id{TypeArray(float_id, Constant(uint_id, 4U))};
gl_tess_level_outer = AddOutput(arr4_id);
Decorate(gl_tess_level_outer, spv::Decoration::BuiltIn, spv::BuiltIn::TessLevelOuter);
Decorate(gl_tess_level_outer, spv::Decoration::Patch);
} else {
gl_per_vertex = AddOutput(gl_per_vertex_type);
}
for (int i = 0; i < num_attribs; i++) {
outputs[i] = AddOutput(model == spv::ExecutionModel::TessellationControl
? TypeArray(vec4_id, Int(4))
: vec4_id);
Decorate(outputs[i], spv::Decoration::Location, i);
}
}
void DefineInputs(spv::ExecutionModel model) {
if (model == spv::ExecutionModel::TessellationEvaluation) {
gl_tess_coord = AddInput(vec3_id);
Decorate(gl_tess_coord, spv::Decoration::BuiltIn, spv::BuiltIn::TessCoord);
} else {
gl_invocation_id = AddInput(int_id);
Decorate(gl_invocation_id, spv::Decoration::BuiltIn, spv::BuiltIn::InvocationId);
}
const Id gl_per_vertex_array{TypeArray(gl_per_vertex_type, Constant(uint_id, 32U))};
gl_in = AddInput(gl_per_vertex_array);
const Id float_arr{TypeArray(vec4_id, Int(32))};
for (int i = 0; i < num_attribs; i++) {
inputs[i] = AddInput(float_arr);
Decorate(inputs[i], spv::Decoration::Location, i);
}
}
private:
size_t num_attribs;
Id main;
Id void_id;
Id bool_id;
Id float_id;
Id uint_id;
Id int_id;
Id bvec2_id;
Id vec2_id;
Id vec3_id;
Id vec4_id;
Id float_one;
Id float_min_one;
Id int_zero;
Id gl_per_vertex_type;
Id gl_in;
union {
Id gl_out;
Id gl_per_vertex;
};
Id gl_tess_level_inner;
Id gl_tess_level_outer;
union {
Id gl_tess_coord;
Id gl_invocation_id;
};
std::vector<Id> inputs;
std::vector<Id> outputs;
std::vector<Id> interfaces;
};
std::vector<u32> EmitAuxilaryTessShader(AuxShaderType type, size_t num_attribs) {
QuadRectListEmitter ctx{num_attribs};
switch (type) {
case AuxShaderType::RectListTCS:
ctx.EmitRectListTCS();
break;
case AuxShaderType::PassthoughTCS:
ctx.EmitPassthroughTCS();
break;
case AuxShaderType::PassthroughTES:
ctx.EmitPassthroughTES();
break;
}
return ctx.Assemble();
}
} // namespace Shader::Backend::SPIRV

View File

@ -0,0 +1,19 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <vector>
#include "common/types.h"
namespace Shader::Backend::SPIRV {
enum class AuxShaderType : u32 {
RectListTCS,
PassthoughTCS,
PassthroughTES,
};
[[nodiscard]] std::vector<u32> EmitAuxilaryTessShader(AuxShaderType type, size_t num_attribs);
} // namespace Shader::Backend::SPIRV

View File

@ -227,7 +227,7 @@ struct RuntimeInfo {
ComputeRuntimeInfo cs_info;
};
RuntimeInfo(Stage stage_) {
void Initialize(Stage stage_) {
memset(this, 0, sizeof(*this));
stage = stage_;
}

View File

@ -121,7 +121,7 @@ vk::PrimitiveTopology PrimitiveType(AmdGpu::PrimitiveType type) {
// Needs to generate index buffer on the fly.
return vk::PrimitiveTopology::eTriangleList;
case AmdGpu::PrimitiveType::RectList:
return vk::PrimitiveTopology::eTriangleStrip;
return vk::PrimitiveTopology::ePatchList;
default:
UNREACHABLE();
return vk::PrimitiveTopology::eTriangleList;

View File

@ -8,22 +8,27 @@
#include "common/assert.h"
#include "common/scope_exit.h"
#include "common/io_file.h"
#include "shader_recompiler/backend/spirv/emit_spirv_quad_rect.h"
#include "shader_recompiler/frontend/fetch_shader.h"
#include "shader_recompiler/runtime_info.h"
#include "video_core/amdgpu/resource.h"
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "shader_recompiler/frontend/fetch_shader.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
#include "video_core/renderer_vulkan/vk_instance.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/texture_cache/texture_cache.h"
namespace Vulkan {
using Shader::Backend::SPIRV::AuxShaderType;
GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& scheduler_,
DescriptorHeap& desc_heap_, const GraphicsPipelineKey& key_,
vk::PipelineCache pipeline_cache,
std::span<const Shader::Info*, MaxShaderStages> infos,
std::span<const Shader::RuntimeInfo, MaxShaderStages> runtime_infos,
std::optional<const Shader::Gcn::FetchShaderData> fetch_shader_,
std::span<const vk::ShaderModule> modules)
: Pipeline{instance_, scheduler_, desc_heap_, pipeline_cache}, key{key_},
@ -88,11 +93,6 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.pVertexAttributeDescriptions = vertex_attributes.data(),
};
if (key.prim_type == AmdGpu::PrimitiveType::RectList && !IsEmbeddedVs()) {
LOG_WARNING(Render_Vulkan,
"Rectangle List primitive type is only supported for embedded VS");
}
auto prim_restart = key.enable_primitive_restart != 0;
if (prim_restart && IsPrimitiveListTopology() && !instance.IsListRestartSupported()) {
LOG_WARNING(Render_Vulkan,
@ -106,9 +106,11 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
ASSERT_MSG(!prim_restart || key.primitive_restart_index == 0xFFFF ||
key.primitive_restart_index == 0xFFFFFFFF,
"Primitive restart index other than -1 is not supported yet");
const bool is_rect_list = key.prim_type == AmdGpu::PrimitiveType::RectList;
const size_t num_fs_inputs =
runtime_infos[u32(Shader::LogicalStage::Fragment)].fs_info.num_inputs;
const vk::PipelineTessellationStateCreateInfo tessellation_state = {
.patchControlPoints = key.patch_control_points,
.patchControlPoints = is_rect_list ? 3U : key.patch_control_points,
};
const vk::PipelineRasterizationStateCreateInfo raster_state = {
@ -232,6 +234,14 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.module = modules[stage],
.pName = "main",
});
} else if (is_rect_list) {
auto tcs = Shader::Backend::SPIRV::EmitAuxilaryTessShader(AuxShaderType::RectListTCS,
num_fs_inputs);
shader_stages.emplace_back(vk::PipelineShaderStageCreateInfo{
.stage = vk::ShaderStageFlagBits::eTessellationControl,
.module = CompileSPV(tcs, instance.GetDevice()),
.pName = "main",
});
}
stage = u32(Shader::LogicalStage::TessellationEval);
if (infos[stage]) {
@ -240,6 +250,13 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.module = modules[stage],
.pName = "main",
});
} else if (is_rect_list) {
auto tes = Shader::Backend::SPIRV::EmitAuxilaryTessShader(AuxShaderType::PassthroughTES, num_fs_inputs);
shader_stages.emplace_back(vk::PipelineShaderStageCreateInfo{
.stage = vk::ShaderStageFlagBits::eTessellationEvaluation,
.module = CompileSPV(tes, instance.GetDevice()),
.pName = "main",
});
}
stage = u32(Shader::LogicalStage::Fragment);
if (infos[stage]) {
@ -322,8 +339,7 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.pStages = shader_stages.data(),
.pVertexInputState = !instance.IsVertexInputDynamicState() ? &vertex_input_info : nullptr,
.pInputAssemblyState = &input_assembly,
.pTessellationState =
stages[u32(Shader::LogicalStage::TessellationControl)] ? &tessellation_state : nullptr,
.pTessellationState = &tessellation_state,
.pViewportState = &viewport_info,
.pRasterizationState = &raster_state,
.pMultisampleState = &multisampling,

View File

@ -64,6 +64,7 @@ public:
GraphicsPipeline(const Instance& instance, Scheduler& scheduler, DescriptorHeap& desc_heap,
const GraphicsPipelineKey& key, vk::PipelineCache pipeline_cache,
std::span<const Shader::Info*, MaxShaderStages> stages,
std::span<const Shader::RuntimeInfo, MaxShaderStages> runtime_infos,
std::optional<const Shader::Gcn::FetchShaderData> fetch_shader,
std::span<const vk::ShaderModule> modules);
~GraphicsPipeline();
@ -72,11 +73,6 @@ public:
return fetch_shader;
}
bool IsEmbeddedVs() const noexcept {
static constexpr size_t EmbeddedVsHash = 0x9b2da5cf47f8c29f;
return key.stage_hashes[u32(Shader::LogicalStage::Vertex)] == EmbeddedVsHash;
}
auto GetWriteMasks() const {
return key.write_masks;
}

View File

@ -80,8 +80,8 @@ void GatherVertexOutputs(Shader::VertexRuntimeInfo& info,
: (ctl.IsCullDistEnabled(7) ? VsOutput::CullDist7 : VsOutput::None));
}
Shader::RuntimeInfo PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_stage) {
auto info = Shader::RuntimeInfo{stage};
const Shader::RuntimeInfo& PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_stage) {
auto& info = runtime_infos[u32(l_stage)];
const auto& regs = liverpool->regs;
const auto BuildCommon = [&](const auto& program) {
info.num_user_data = program.settings.num_user_regs;
@ -90,6 +90,7 @@ Shader::RuntimeInfo PipelineCache::BuildRuntimeInfo(Stage stage, LogicalStage l_
info.fp_denorm_mode32 = program.settings.fp_denorm_mode32;
info.fp_round_mode32 = program.settings.fp_round_mode32;
};
info.Initialize(stage);
switch (stage) {
case Stage::Local: {
BuildCommon(regs.ls_program);
@ -222,7 +223,7 @@ const GraphicsPipeline* PipelineCache::GetGraphicsPipeline() {
if (is_new) {
it.value() =
std::make_unique<GraphicsPipeline>(instance, scheduler, desc_heap, graphics_key,
*pipeline_cache, infos, fetch_shader, modules);
*pipeline_cache, infos, runtime_infos, fetch_shader, modules);
if (Config::collectShadersForDebug()) {
for (auto stage = 0; stage < MaxShaderStages; ++stage) {
if (infos[stage]) {

View File

@ -76,7 +76,7 @@ private:
vk::ShaderModule CompileModule(Shader::Info& info, Shader::RuntimeInfo& runtime_info,
std::span<const u32> code, size_t perm_idx,
Shader::Backend::Bindings& binding);
Shader::RuntimeInfo BuildRuntimeInfo(Shader::Stage stage, Shader::LogicalStage l_stage);
const Shader::RuntimeInfo& BuildRuntimeInfo(Shader::Stage stage, Shader::LogicalStage l_stage);
private:
const Instance& instance;
@ -90,6 +90,7 @@ private:
tsl::robin_map<size_t, std::unique_ptr<Program>> program_cache;
tsl::robin_map<ComputePipelineKey, std::unique_ptr<ComputePipeline>> compute_pipelines;
tsl::robin_map<GraphicsPipelineKey, std::unique_ptr<GraphicsPipeline>> graphics_pipelines;
std::array<Shader::RuntimeInfo, MaxShaderStages> runtime_infos{};
std::array<const Shader::Info*, MaxShaderStages> infos{};
std::array<vk::ShaderModule, MaxShaderStages> modules{};
std::optional<Shader::Gcn::FetchShaderData> fetch_shader{};

View File

@ -1,6 +1,6 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma clang optimize off
// Include the vulkan platform specific header
#if defined(ANDROID)
#define VK_USE_PLATFORM_ANDROID_KHR

View File

@ -238,7 +238,7 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
instance_offset);
} else {
const u32 num_vertices =
regs.primitive_type == AmdGpu::PrimitiveType::RectList ? 4 : regs.num_indices;
regs.primitive_type == AmdGpu::PrimitiveType::RectList ? 3 : regs.num_indices;
cmdbuf.draw(num_vertices, regs.num_instances.NumInstances(), vertex_offset,
instance_offset);
}

View File

@ -126,6 +126,10 @@ EShLanguage ToEshShaderStage(vk::ShaderStageFlagBits stage) {
return EShLanguage::EShLangVertex;
case vk::ShaderStageFlagBits::eGeometry:
return EShLanguage::EShLangGeometry;
case vk::ShaderStageFlagBits::eTessellationControl:
return EShLanguage::EShLangTessControl;
case vk::ShaderStageFlagBits::eTessellationEvaluation:
return EShLanguage::EShLangTessEvaluation;
case vk::ShaderStageFlagBits::eFragment:
return EShLanguage::EShLangFragment;
case vk::ShaderStageFlagBits::eCompute: