Squashed commit of the following:

commit 39328be45ed83d252e491b61da5cb4d767ff100d
Author: Lander Gallastegi <landergallastegi@gmail.com>
Date:   Tue Mar 11 15:40:44 2025 +0100

    Fix trivialy copiable

commit f0633525b343dab7ea75cd7c809c936cb67e572f
Author: Lander Gallastegi <landergallastegi@gmail.com>
Date:   Tue Mar 11 00:29:42 2025 +0100

    Compute value

commit 8c42a014ee925b61c5ea5721423da3211a635eb8
Author: Lander Gallastegi <landergallastegi@gmail.com>
Date:   Tue Mar 11 00:29:31 2025 +0100

    Add missing operations
This commit is contained in:
Lander Gallastegi 2025-03-11 15:43:06 +01:00 committed by Lander Gallastegi
parent c36b6d6adf
commit 676b06db0f
5 changed files with 997 additions and 19 deletions

View File

@ -843,6 +843,8 @@ set(SHADER_RECOMPILER src/shader_recompiler/exception.h
src/shader_recompiler/ir/passes/shared_memory_barrier_pass.cpp src/shader_recompiler/ir/passes/shared_memory_barrier_pass.cpp
src/shader_recompiler/ir/passes/shared_memory_to_storage_pass.cpp src/shader_recompiler/ir/passes/shared_memory_to_storage_pass.cpp
src/shader_recompiler/ir/passes/ssa_rewrite_pass.cpp src/shader_recompiler/ir/passes/ssa_rewrite_pass.cpp
src/shader_recompiler/ir/compute_value/compute.cpp
src/shader_recompiler/ir/compute_value/compute.h
src/shader_recompiler/ir/compute_value/imm_value.cpp src/shader_recompiler/ir/compute_value/imm_value.cpp
src/shader_recompiler/ir/compute_value/imm_value.h src/shader_recompiler/ir/compute_value/imm_value.h
src/shader_recompiler/ir/abstract_syntax_list.cpp src/shader_recompiler/ir/abstract_syntax_list.cpp

View File

@ -0,0 +1,503 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <functional>
#include <tuple>
#include <vector>
#include "shader_recompiler/ir/compute_value/compute.h"
namespace Shader::IR {
template <typename Func, typename OutputIt, size_t N, size_t Level, typename... ArgLists>
static void CartesianInvokeImpl(Func func, OutputIt out_it,
std::tuple<typename ArgLists::const_iterator...>& arglists_its,
const std::tuple<const ArgLists&...>& arglists_tuple) {
if constexpr (Level == N) {
auto get_tuple = [&]<size_t... I>(std::index_sequence<I...>) {
return std::forward_as_tuple(*std::get<I>(arglists_its)...);
};
*out_it++ = std::move(std::apply(func, get_tuple(std::make_index_sequence<N>{})));
return;
} else {
const auto& arglist = std::get<Level>(arglists_tuple);
for (auto it = arglist.begin(); it != arglist.end(); ++it) {
std::get<Level>(arglists_its) = it;
CartesianInvokeImpl<Func, OutputIt, N, Level + 1, ArgLists...>(func, out_it, arglists_its, arglists_tuple);
}
}
}
template <typename Func, typename OutputIt, typename... ArgLists>
static void CartesianInvoke(Func func, OutputIt out_it, const ArgLists&... arg_lists) {
constexpr size_t N = sizeof...(ArgLists);
const std::tuple<const ArgLists&...> arglists_tuple = std::forward_as_tuple(arg_lists...);
std::tuple<typename ArgLists::const_iterator...> arglists_it;
CartesianInvokeImpl<Func, OutputIt, N, 0, ArgLists...>(func, out_it, arglists_it, arglists_tuple);
}
static void SetSigned(ImmValueList& values, bool is_signed) {
for (auto& value : values) {
value.SetSigned(is_signed);
}
}
static void OperationAbs(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.abs();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationAdd(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a + b;
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationSub(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a - b;
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationFma(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1, args2;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
ComputeImmValues(inst->Arg(2), args2, cache);
const auto op = [](const ImmValue& a, const ImmValue& b, const ImmValue& c) {
return ImmValue::fma(a, b, c);
};
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1, args2);
}
static void OperationMin(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1, is_legacy_args;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
if (inst->NumArgs() > 2) {
ComputeImmValues(inst->Arg(2), is_legacy_args, cache);
} else {
is_legacy_args.insert(ImmValue(false));
}
const auto op = [](const ImmValue& a, const ImmValue& b, const ImmValue& is_legacy) {
if (is_legacy.U1()) {
if (a.isnan()) return b;
if (b.isnan()) return a;
}
return std::min(a, b);
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1, is_legacy_args);
}
static void OperationMax(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1, is_legacy_args;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
if (inst->NumArgs() > 2) {
ComputeImmValues(inst->Arg(2), is_legacy_args, cache);
} else {
is_legacy_args.insert(ImmValue(false));
}
const auto op = [](const ImmValue& a, const ImmValue& b, const ImmValue& is_legacy) {
if (is_legacy.U1()) {
if (a.isnan()) return b;
if (b.isnan()) return a;
}
return std::max(a, b);
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1, is_legacy_args);
}
static void OperationMul(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a * b;
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationDiv(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a / b;
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationNeg(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return -a;
};
SetSigned(args, true);
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationRecip(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.recip();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationRecipSqrt(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.rsqrt();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationSqrt(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.sqrt();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationSin(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.sin();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationExp2(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.exp2();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationLdexp(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a.ldexp(b);
};
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationCos(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.cos();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationLog2(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.log2();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationClamp(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1, args2;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
ComputeImmValues(inst->Arg(2), args2, cache);
const auto op = [](const ImmValue& a, const ImmValue& b, const ImmValue& c) {
return a.clamp(b, c);
};
SetSigned(args0, is_signed);
SetSigned(args1, is_signed);
SetSigned(args2, is_signed);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1, args2);
}
static void OperationRound(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.round();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationFloor(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.floor();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationCeil(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.ceil();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationTrunc(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.trunc();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationFract(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return a.fract();
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationShiftLeft(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a << b;
};
SetSigned(args1, false);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationShiftRight(Inst* inst, bool is_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a >> b;
};
SetSigned(args0, is_signed);
SetSigned(args1, false);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationBitwiseNot(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [](const ImmValue& a) {
return ~a;
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationBitwiseAnd(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a & b;
};
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationBitwiseOr(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a | b;
};
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationBitwiseXor(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a ^ b;
};
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void OperationConvert(Inst* inst, bool is_signed, Type new_type, bool new_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [new_type, new_signed](const ImmValue& a) {
return a.Convert(new_type, new_signed);
};
SetSigned(args, is_signed);
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
static void OperationBitCast(Inst* inst, Type new_type, bool new_signed, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args;
ComputeImmValues(inst->Arg(0), args, cache);
const auto op = [new_type, new_signed](const ImmValue& a) {
return a.Bitcast(new_type, new_signed);
};
std::transform(args.begin(), args.end(), std::inserter(inst_values, inst_values.begin()), op);
}
template<size_t N>
static void OperationCompositeConstruct(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
std::array<ImmValueList, N> args;
for (size_t i = 0; i < N; ++i) {
ComputeImmValues(inst->Arg(i), args[i], cache);
}
const auto op = []<typename... Args>(const Args&... args) {
return ImmValue(args...);
};
const auto call_cartesian = [&]<size_t... I>(std::index_sequence<I...>) {
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args[I]...);
};
call_cartesian(std::make_index_sequence<N>{});
}
static void OperationCompositeExtract(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
ImmValueList args0, args1;
ComputeImmValues(inst->Arg(0), args0, cache);
ComputeImmValues(inst->Arg(1), args1, cache);
const auto op = [](const ImmValue& a, const ImmValue& b) {
return a.Extract(b);
};
SetSigned(args1, false);
CartesianInvoke(op, std::inserter(inst_values, inst_values.begin()), args0, args1);
}
static void DoInstructionOperation(Inst* inst, ImmValueList& inst_values, ComputeImmValuesCache& cache) {
switch (inst->GetOpcode()) {
default:
break;
}
}
void ComputeImmValues(const Value& value, ImmValueList& values, ComputeImmValuesCache& cache) {
Value resolved = value.Resolve();
if (ImmValue::IsSupportedValue(resolved)) {
values.insert(ImmValue(resolved));
return;
}
if (resolved.Type() != Type::Opaque) {
return;
}
Inst* inst = resolved.InstRecursive();
auto it = cache.find(inst);
if (it != cache.end()) {
values.insert(it->second.begin(), it->second.end());
return;
}
auto& inst_values = cache.emplace(inst, ImmValueList{}).first->second;
if (inst->GetOpcode() == Opcode::Phi) {
for (size_t i = 0; i < inst->NumArgs(); ++i) {
ComputeImmValues(inst->Arg(i), inst_values, cache);
}
} else {
}
values.insert(inst_values.begin(), inst_values.end());
}
} // namespace Shader::IR

View File

@ -0,0 +1,18 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <boost/container/flat_set.hpp>
#include <boost/container/flat_map.hpp>
#include "shader_recompiler/ir/compute_value/imm_value.h"
#include "shader_recompiler/ir/value.h"
namespace Shader::IR {
using ImmValueList = boost::container::flat_set<ImmValue>;
using ComputeImmValuesCache = boost::container::flat_map<Inst*, ImmValueList>;
void ComputeImmValues(const Value& value, ImmValueList& values, ComputeImmValuesCache& cache);
} // namespace Shader::IR

View File

@ -7,29 +7,28 @@
namespace Shader::IR { namespace Shader::IR {
ImmValue::ImmValue(const IR::Value& value) noexcept { ImmValue::ImmValue(const IR::Value& value) noexcept {
IR::Value resolved = value.Resolve(); type = value.Type();
type = resolved.Type();
switch (type) { switch (type) {
case Type::U1: case Type::U1:
imm_values[0].imm_u1 = resolved.U1(); imm_values[0].imm_u1 = value.U1();
break; break;
case Type::U8: case Type::U8:
imm_values[0].imm_u8 = resolved.U8(); imm_values[0].imm_u8 = value.U8();
break; break;
case Type::U16: case Type::U16:
imm_values[0].imm_u16 = resolved.U16(); imm_values[0].imm_u16 = value.U16();
break; break;
case Type::U32: case Type::U32:
imm_values[0].imm_u32 = resolved.U32(); imm_values[0].imm_u32 = value.U32();
break; break;
case Type::F32: case Type::F32:
imm_values[0].imm_f32 = resolved.F32(); imm_values[0].imm_f32 = value.F32();
break; break;
case Type::U64: case Type::U64:
imm_values[0].imm_u64 = resolved.U64(); imm_values[0].imm_u64 = value.U64();
break; break;
case Type::F64: case Type::F64:
imm_values[0].imm_f64 = resolved.F64(); imm_values[0].imm_f64 = value.F64();
break; break;
default: default:
UNREACHABLE_MSG("Invalid type {}", type); UNREACHABLE_MSG("Invalid type {}", type);
@ -160,6 +159,44 @@ ImmValue::ImmValue(f64 value1, f64 value2, f64 value3, f64 value4) noexcept
imm_values[3].imm_f64 = value4; imm_values[3].imm_f64 = value4;
} }
ImmValue::ImmValue(const ImmValue& value1, const ImmValue& value2) noexcept
: type{value1.type}, is_signed{value1.is_signed} {
ASSERT(value1.type == value2.type && value1.is_signed == value2.is_signed);
switch (value1.Dimensions()) {
case 1:
imm_values[0] = value1.imm_values[0];
imm_values[1] = value2.imm_values[0];
break;
case 2:
imm_values[0] = value1.imm_values[0];
imm_values[1] = value1.imm_values[1];
imm_values[2] = value2.imm_values[0];
imm_values[3] = value2.imm_values[1];
break;
default:
UNREACHABLE_MSG("Invalid dimensions {}", value1.Dimensions());
}
}
ImmValue::ImmValue(const ImmValue& value1, const ImmValue& value2, const ImmValue& value3) noexcept
: type{value1.type}, is_signed{value1.is_signed} {
ASSERT(value1.type == value2.type && value1.type == value3.type && value1.is_signed == value2.is_signed &&
value1.is_signed == value3.is_signed && value1.Dimensions() == 1);
imm_values[0] = value1.imm_values[0];
imm_values[1] = value2.imm_values[0];
imm_values[2] = value3.imm_values[0];
}
ImmValue::ImmValue(const ImmValue& value1, const ImmValue& value2, const ImmValue& value3, const ImmValue& value4) noexcept
: type{value1.type}, is_signed{value1.is_signed} {
ASSERT(value1.type == value2.type && value1.type == value3.type && value1.type == value4.type && value1.is_signed == value2.is_signed &&
value1.is_signed == value3.is_signed && value1.is_signed == value4.is_signed && value1.Dimensions() == 1);
imm_values[0] = value1.imm_values[0];
imm_values[1] = value2.imm_values[0];
imm_values[2] = value3.imm_values[0];
imm_values[3] = value4.imm_values[0];
}
IR::Type ImmValue::BaseType() const noexcept { IR::Type ImmValue::BaseType() const noexcept {
switch (type) { switch (type) {
case Type::U1: case Type::U1:
@ -229,6 +266,102 @@ void ImmValue::SameSignAs(const ImmValue& other) noexcept {
SetSigned(other.IsSigned()); SetSigned(other.IsSigned());
} }
ImmValue ImmValue::Convert(IR::Type new_type, bool new_signed) const noexcept {
switch (new_type) {
case Type::U16: {
switch (type) {
case Type::U32:
return ImmValue(static_cast<u16>(imm_values[0].imm_u32));
default:
break;
}
break;
}
case Type::U32: {
if (new_signed) {
switch (type) {
case Type::F32:
return ImmValue(static_cast<s32>(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(static_cast<s32>(imm_values[0].imm_f64));
default:
break;
}
} else {
switch (type) {
case Type::U16:
return ImmValue(static_cast<u32>(imm_values[0].imm_u16));
case Type::U32:
if (is_signed) {
return ImmValue(static_cast<u32>(imm_values[0].imm_s32));
}
break;
case Type::F32:
return ImmValue(static_cast<u32>(imm_values[0].imm_f32));
default:
break;
}
}
}
case Type::F32: {
switch (type) {
case Type::U16:
return ImmValue(static_cast<f32>(imm_values[0].imm_u16));
case Type::U32:
if (is_signed) {
return ImmValue(static_cast<f32>(imm_values[0].imm_s32));
} else {
return ImmValue(static_cast<f32>(imm_values[0].imm_u32));
}
case Type::F64:
return ImmValue(static_cast<f32>(imm_values[0].imm_f64));
default:
break;
}
break;
}
case Type::F64: {
switch (type) {
case Type::F32:
return ImmValue(static_cast<f64>(imm_values[0].imm_f32));
default:
break;
}
break;
}
default:
break;
}
UNREACHABLE_MSG("Invalid conversion from {} {} to {} {}", is_signed ? "signed" : "unsigned",
type, new_signed ? "signed" : "unsigned", new_type);
}
ImmValue ImmValue::Bitcast(IR::Type new_type, bool new_signed) const noexcept {
ImmValue result;
result.type = new_type;
result.is_signed = new_signed;
result.imm_values = imm_values;
ASSERT(Dimensions() == result.Dimensions());
return result;
}
ImmValue ImmValue::Extract(const ImmValue& index) const noexcept {
ASSERT(index.type == Type::U32 && !index.is_signed && index.imm_values[0].imm_u32 < Dimensions());
ImmValue result;
result.type = BaseType();
result.is_signed = IsSigned();
result.imm_values[0] = imm_values[index.imm_values[0].imm_u32];
return result;
}
ImmValue ImmValue::Insert(const ImmValue& value, const ImmValue& index) const noexcept {
ASSERT(index.type == Type::U32 && !index.is_signed && index.imm_values[0].imm_u32 < Dimensions());
ASSERT(value.type == BaseType() && value.IsSigned() == IsSigned());
ImmValue result = *this;
result.imm_values[index.imm_values[0].imm_u32] = value.imm_values[0];
return result;
}
bool ImmValue::operator==(const ImmValue& other) const noexcept { bool ImmValue::operator==(const ImmValue& other) const noexcept {
if (type != other.type) { if (type != other.type) {
return false; return false;
@ -747,24 +880,24 @@ ImmValue ImmValue::operator^(const ImmValue& other) const noexcept {
} }
ImmValue ImmValue::operator<<(const ImmValue& other) const noexcept { ImmValue ImmValue::operator<<(const ImmValue& other) const noexcept {
ASSERT(type == other.type); ASSERT(other.type == Type::U32 && other.Dimensions() == 1);
switch (type) { switch (type) {
case Type::U1: case Type::U1:
return ImmValue(imm_values[0].imm_u1 << other.imm_values[0].imm_u1); return ImmValue(imm_values[0].imm_u1 << other.imm_values[0].imm_u1);
case Type::U8: case Type::U8:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s8 << other.imm_values[0].imm_s8) ? ImmValue(imm_values[0].imm_s8 << other.imm_values[0].imm_s8)
: ImmValue(imm_values[0].imm_u8 << other.imm_values[0].imm_u8); : ImmValue(imm_values[0].imm_u8 << other.imm_values[0].imm_u8);
case Type::U16: case Type::U16:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s16 << other.imm_values[0].imm_s16) ? ImmValue(imm_values[0].imm_s16 << other.imm_values[0].imm_s16)
: ImmValue(imm_values[0].imm_u16 << other.imm_values[0].imm_u16); : ImmValue(imm_values[0].imm_u16 << other.imm_values[0].imm_u16);
case Type::U32: case Type::U32:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s32 << other.imm_values[0].imm_s32) ? ImmValue(imm_values[0].imm_s32 << other.imm_values[0].imm_s32)
: ImmValue(imm_values[0].imm_u32 << other.imm_values[0].imm_u32); : ImmValue(imm_values[0].imm_u32 << other.imm_values[0].imm_u32);
case Type::U64: case Type::U64:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s64 << other.imm_values[0].imm_s64) ? ImmValue(imm_values[0].imm_s64 << other.imm_values[0].imm_s64)
: ImmValue(imm_values[0].imm_u64 << other.imm_values[0].imm_u64); : ImmValue(imm_values[0].imm_u64 << other.imm_values[0].imm_u64);
default: default:
@ -773,24 +906,24 @@ ImmValue ImmValue::operator<<(const ImmValue& other) const noexcept {
} }
ImmValue ImmValue::operator>>(const ImmValue& other) const noexcept { ImmValue ImmValue::operator>>(const ImmValue& other) const noexcept {
ASSERT(type == other.type); ASSERT(other.type == Type::U32 && other.Dimensions() == 1);
switch (type) { switch (type) {
case Type::U1: case Type::U1:
return ImmValue(imm_values[0].imm_u1 >> other.imm_values[0].imm_u1); return ImmValue(imm_values[0].imm_u1 >> other.imm_values[0].imm_u1);
case Type::U8: case Type::U8:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s8 >> other.imm_values[0].imm_s8) ? ImmValue(imm_values[0].imm_s8 >> other.imm_values[0].imm_s8)
: ImmValue(imm_values[0].imm_u8 >> other.imm_values[0].imm_u8); : ImmValue(imm_values[0].imm_u8 >> other.imm_values[0].imm_u8);
case Type::U16: case Type::U16:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s16 >> other.imm_values[0].imm_s16) ? ImmValue(imm_values[0].imm_s16 >> other.imm_values[0].imm_s16)
: ImmValue(imm_values[0].imm_u16 >> other.imm_values[0].imm_u16); : ImmValue(imm_values[0].imm_u16 >> other.imm_values[0].imm_u16);
case Type::U32: case Type::U32:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s32 >> other.imm_values[0].imm_s32) ? ImmValue(imm_values[0].imm_s32 >> other.imm_values[0].imm_s32)
: ImmValue(imm_values[0].imm_u32 >> other.imm_values[0].imm_u32); : ImmValue(imm_values[0].imm_u32 >> other.imm_values[0].imm_u32);
case Type::U64: case Type::U64:
return is_signed && other.is_signed return is_signed
? ImmValue(imm_values[0].imm_s64 >> other.imm_values[0].imm_s64) ? ImmValue(imm_values[0].imm_s64 >> other.imm_values[0].imm_s64)
: ImmValue(imm_values[0].imm_u64 >> other.imm_values[0].imm_u64); : ImmValue(imm_values[0].imm_u64 >> other.imm_values[0].imm_u64);
default: default:
@ -1049,6 +1182,297 @@ ImmValue& ImmValue::operator>>=(const ImmValue& other) noexcept {
return *this; return *this;
} }
ImmValue ImmValue::abs() const noexcept {
switch (type) {
case Type::U8:
return is_signed ? ImmValue(std::abs(imm_values[0].imm_s8))
: ImmValue(imm_values[0].imm_u8);
case Type::U16:
return is_signed ? ImmValue(std::abs(imm_values[0].imm_s16))
: ImmValue(imm_values[0].imm_u16);
case Type::U32:
return is_signed ? ImmValue(std::abs(imm_values[0].imm_s32))
: ImmValue(imm_values[0].imm_u32);
case Type::U64:
return is_signed ? ImmValue(std::abs(imm_values[0].imm_s64))
: ImmValue(imm_values[0].imm_u64);
case Type::F32:
return ImmValue(std::abs(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::abs(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::recip() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(1.0f / imm_values[0].imm_f32);
case Type::F64:
return ImmValue(1.0 / imm_values[0].imm_f64);
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::sqrt() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::sqrt(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::sqrt(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::rsqrt() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(1.0f / std::sqrt(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(1.0 / std::sqrt(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::sin() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::sin(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::sin(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::cos() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::cos(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::cos(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::exp2() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::exp2(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::exp2(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::ldexp(const ImmValue& exp) const noexcept {
ASSERT(type == exp.type);
switch (type) {
case Type::F32:
return ImmValue(std::ldexp(imm_values[0].imm_f32, exp.imm_values[0].imm_s32));
case Type::F64:
return ImmValue(std::ldexp(imm_values[0].imm_f64, exp.imm_values[0].imm_s32));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::log2() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::log2(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::log2(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::clamp(const ImmValue& min, const ImmValue& max) const noexcept {
ASSERT(type == min.type && min.type == max.type);
switch (type) {
case Type::U8:
return is_signed && min.is_signed && max.is_signed
? ImmValue(std::clamp(imm_values[0].imm_s8, min.imm_values[0].imm_s8,
max.imm_values[0].imm_s8))
: ImmValue(std::clamp(imm_values[0].imm_u8, min.imm_values[0].imm_u8,
max.imm_values[0].imm_u8));
case Type::U16:
return is_signed && min.is_signed && max.is_signed
? ImmValue(std::clamp(imm_values[0].imm_s16, min.imm_values[0].imm_s16,
max.imm_values[0].imm_s16))
: ImmValue(std::clamp(imm_values[0].imm_u16, min.imm_values[0].imm_u16,
max.imm_values[0].imm_u16));
case Type::U32:
return is_signed && min.is_signed && max.is_signed
? ImmValue(std::clamp(imm_values[0].imm_s32, min.imm_values[0].imm_s32,
max.imm_values[0].imm_s32))
: ImmValue(std::clamp(imm_values[0].imm_u32, min.imm_values[0].imm_u32,
max.imm_values[0].imm_u32));
case Type::U64:
return is_signed && min.is_signed && max.is_signed
? ImmValue(std::clamp(imm_values[0].imm_s64, min.imm_values[0].imm_s64,
max.imm_values[0].imm_s64))
: ImmValue(std::clamp(imm_values[0].imm_u64, min.imm_values[0].imm_u64,
max.imm_values[0].imm_u64));
case Type::F32:
return ImmValue(std::clamp(imm_values[0].imm_f32, min.imm_values[0].imm_f32,
max.imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::clamp(imm_values[0].imm_f64, min.imm_values[0].imm_f64,
max.imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::floor() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::floor(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::floor(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::ceil() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::ceil(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::ceil(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::round() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::round(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::round(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::trunc() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(std::trunc(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(std::trunc(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::fract() const noexcept {
switch (type) {
case Type::F32:
return ImmValue(imm_values[0].imm_f32 - std::floor(imm_values[0].imm_f32));
case Type::F64:
return ImmValue(imm_values[0].imm_f64 - std::floor(imm_values[0].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
bool ImmValue::isnan() const noexcept {
switch (type) {
case Type::F32:
return std::isnan(imm_values[0].imm_f32);
case Type::F64:
return std::isnan(imm_values[0].imm_f64);
case Type::F32x2:
return std::isnan(imm_values[0].imm_f32) || std::isnan(imm_values[1].imm_f32);
case Type::F64x2:
return std::isnan(imm_values[0].imm_f64) || std::isnan(imm_values[1].imm_f64);
case Type::F32x3:
return std::isnan(imm_values[0].imm_f32) || std::isnan(imm_values[1].imm_f32) ||
std::isnan(imm_values[2].imm_f32);
case Type::F64x3:
return std::isnan(imm_values[0].imm_f64) || std::isnan(imm_values[1].imm_f64) ||
std::isnan(imm_values[2].imm_f64);
case Type::F32x4:
return std::isnan(imm_values[0].imm_f32) || std::isnan(imm_values[1].imm_f32) ||
std::isnan(imm_values[2].imm_f32) || std::isnan(imm_values[3].imm_f32);
case Type::F64x4:
return std::isnan(imm_values[0].imm_f64) || std::isnan(imm_values[1].imm_f64) ||
std::isnan(imm_values[2].imm_f64) || std::isnan(imm_values[3].imm_f64);
default:
UNREACHABLE_MSG("Invalid type {}", type);
}
}
ImmValue ImmValue::fma(const ImmValue& a, const ImmValue& b, const ImmValue& c) noexcept {
ASSERT(a.type == b.type && b.type == c.type);
switch (a.type) {
case Type::F32:
return ImmValue(
std::fma(a.imm_values[0].imm_f32, b.imm_values[0].imm_f32, c.imm_values[0].imm_f32));
case Type::F64:
return ImmValue(
std::fma(a.imm_values[0].imm_f64, b.imm_values[0].imm_f64, c.imm_values[0].imm_f64));
case Type::F32x2:
return ImmValue(
std::fma(a.imm_values[0].imm_f32, b.imm_values[0].imm_f32, c.imm_values[0].imm_f32),
std::fma(a.imm_values[1].imm_f32, b.imm_values[1].imm_f32, c.imm_values[1].imm_f32));
case Type::F64x2:
return ImmValue(
std::fma(a.imm_values[0].imm_f64, b.imm_values[0].imm_f64, c.imm_values[0].imm_f64),
std::fma(a.imm_values[1].imm_f64, b.imm_values[1].imm_f64, c.imm_values[1].imm_f64));
case Type::F32x3:
return ImmValue(
std::fma(a.imm_values[0].imm_f32, b.imm_values[0].imm_f32, c.imm_values[0].imm_f32),
std::fma(a.imm_values[1].imm_f32, b.imm_values[1].imm_f32, c.imm_values[1].imm_f32),
std::fma(a.imm_values[2].imm_f32, b.imm_values[2].imm_f32, c.imm_values[2].imm_f32));
case Type::F64x3:
return ImmValue(
std::fma(a.imm_values[0].imm_f64, b.imm_values[0].imm_f64, c.imm_values[0].imm_f64),
std::fma(a.imm_values[1].imm_f64, b.imm_values[1].imm_f64, c.imm_values[1].imm_f64),
std::fma(a.imm_values[2].imm_f64, b.imm_values[2].imm_f64, c.imm_values[2].imm_f64));
case Type::F32x4:
return ImmValue(
std::fma(a.imm_values[0].imm_f32, b.imm_values[0].imm_f32, c.imm_values[0].imm_f32),
std::fma(a.imm_values[1].imm_f32, b.imm_values[1].imm_f32, c.imm_values[1].imm_f32),
std::fma(a.imm_values[2].imm_f32, b.imm_values[2].imm_f32, c.imm_values[2].imm_f32),
std::fma(a.imm_values[3].imm_f32, b.imm_values[3].imm_f32, c.imm_values[3].imm_f32));
case Type::F64x4:
return ImmValue(
std::fma(a.imm_values[0].imm_f64, b.imm_values[0].imm_f64, c.imm_values[0].imm_f64),
std::fma(a.imm_values[1].imm_f64, b.imm_values[1].imm_f64, c.imm_values[1].imm_f64),
std::fma(a.imm_values[2].imm_f64, b.imm_values[2].imm_f64, c.imm_values[2].imm_f64),
std::fma(a.imm_values[3].imm_f64, b.imm_values[3].imm_f64, c.imm_values[3].imm_f64));
default:
UNREACHABLE_MSG("Invalid type {}", a.type);
}
}
bool ImmValue::IsSupportedValue(const IR::Value& value) noexcept {
switch (value.Type()) {
case IR::Type::U1:
case IR::Type::U8:
case IR::Type::U16:
case IR::Type::U32:
case IR::Type::U64:
case IR::Type::F32:
case IR::Type::F64:
return true;
default:
return false;
}
}
} // namespace Shader::IR } // namespace Shader::IR
namespace std { namespace std {

View File

@ -19,6 +19,7 @@ namespace Shader::IR {
class ImmValue { class ImmValue {
public: public:
ImmValue() noexcept = default; ImmValue() noexcept = default;
ImmValue(const ImmValue& value) noexcept = default;
explicit ImmValue(const IR::Value& value) noexcept; explicit ImmValue(const IR::Value& value) noexcept;
explicit ImmValue(bool value) noexcept; explicit ImmValue(bool value) noexcept;
explicit ImmValue(u8 value) noexcept; explicit ImmValue(u8 value) noexcept;
@ -43,6 +44,9 @@ public:
ImmValue(f64 value1, f64 value2) noexcept; ImmValue(f64 value1, f64 value2) noexcept;
ImmValue(f64 value1, f64 value2, f64 value3) noexcept; ImmValue(f64 value1, f64 value2, f64 value3) noexcept;
ImmValue(f64 value1, f64 value2, f64 value3, f64 value4) noexcept; ImmValue(f64 value1, f64 value2, f64 value3, f64 value4) noexcept;
ImmValue(const ImmValue& value1, const ImmValue& value2) noexcept;
ImmValue(const ImmValue& value1, const ImmValue& value2, const ImmValue& value3) noexcept;
ImmValue(const ImmValue& value1, const ImmValue& value2, const ImmValue& value3, const ImmValue& value4) noexcept;
[[nodiscard]] bool IsEmpty() const noexcept; [[nodiscard]] bool IsEmpty() const noexcept;
[[nodiscard]] IR::Type Type() const noexcept; [[nodiscard]] IR::Type Type() const noexcept;
@ -53,6 +57,11 @@ public:
void SetSigned(bool signed_) noexcept; void SetSigned(bool signed_) noexcept;
void SameSignAs(const ImmValue& other) noexcept; void SameSignAs(const ImmValue& other) noexcept;
[[nodiscard]] ImmValue Convert(IR::Type new_type, bool new_signed) const noexcept;
[[nodiscard]] ImmValue Bitcast(IR::Type new_type, bool new_signed) const noexcept;
[[nodiscard]] ImmValue Extract(const ImmValue& index) const noexcept;
[[nodiscard]] ImmValue Insert(const ImmValue& value, const ImmValue& index) const noexcept;
[[nodiscard]] bool U1() const; [[nodiscard]] bool U1() const;
[[nodiscard]] u8 U8() const; [[nodiscard]] u8 U8() const;
[[nodiscard]] s8 S8() const; [[nodiscard]] s8 S8() const;
@ -78,6 +87,8 @@ public:
[[nodiscard]] std::tuple<f64, f64, f64> F64x3() const; [[nodiscard]] std::tuple<f64, f64, f64> F64x3() const;
[[nodiscard]] std::tuple<f64, f64, f64, f64> F64x4() const; [[nodiscard]] std::tuple<f64, f64, f64, f64> F64x4() const;
ImmValue& operator=(const ImmValue& value) noexcept = default;
[[nodiscard]] bool operator==(const ImmValue& other) const noexcept; [[nodiscard]] bool operator==(const ImmValue& other) const noexcept;
[[nodiscard]] bool operator!=(const ImmValue& other) const noexcept; [[nodiscard]] bool operator!=(const ImmValue& other) const noexcept;
[[nodiscard]] bool operator<(const ImmValue& other) const noexcept; [[nodiscard]] bool operator<(const ImmValue& other) const noexcept;
@ -117,6 +128,26 @@ public:
ImmValue& operator<<=(const ImmValue& other) noexcept; ImmValue& operator<<=(const ImmValue& other) noexcept;
ImmValue& operator>>=(const ImmValue& other) noexcept; ImmValue& operator>>=(const ImmValue& other) noexcept;
[[nodiscard]] ImmValue abs() const noexcept;
[[nodiscard]] ImmValue recip() const noexcept;
[[nodiscard]] ImmValue sqrt() const noexcept;
[[nodiscard]] ImmValue rsqrt() const noexcept;
[[nodiscard]] ImmValue sin() const noexcept;
[[nodiscard]] ImmValue cos() const noexcept;
[[nodiscard]] ImmValue exp2() const noexcept;
[[nodiscard]] ImmValue ldexp(const ImmValue& exp) const noexcept;
[[nodiscard]] ImmValue log2() const noexcept;
[[nodiscard]] ImmValue clamp(const ImmValue& min, const ImmValue& max) const noexcept;
[[nodiscard]] ImmValue floor() const noexcept;
[[nodiscard]] ImmValue ceil() const noexcept;
[[nodiscard]] ImmValue round() const noexcept;
[[nodiscard]] ImmValue trunc() const noexcept;
[[nodiscard]] ImmValue fract() const noexcept;
[[nodiscard]] bool isnan() const noexcept;
[[nodiscard]] static ImmValue fma(const ImmValue& a, const ImmValue& b, const ImmValue& c) noexcept;
static bool IsSupportedValue(const IR::Value& value) noexcept;
private: private:
union Value { union Value {
bool imm_u1; bool imm_u1;