Merge branch 'shadps4-emu:main' into Cheats_Patches

This commit is contained in:
DanielSvoboda
2024-08-28 15:47:28 -03:00
committed by GitHub
55 changed files with 1354 additions and 927 deletions

View File

@@ -17,9 +17,12 @@ static s32 gpuId = -1; // Vulkan physical device index. Set to negative for auto
static std::string logFilter;
static std::string logType = "async";
static std::string userName = "shadPS4";
static bool useSpecialPad = false;
static int specialPadClass = 1;
static bool isDebugDump = false;
static bool isShowSplash = false;
static bool isNullGpu = false;
static bool shouldCopyGPUBuffers = false;
static bool shouldDumpShaders = false;
static bool shouldDumpPM4 = false;
static u32 vblankDivider = 1;
@@ -81,6 +84,14 @@ std::string getUserName() {
return userName;
}
bool getUseSpecialPad() {
return useSpecialPad;
}
int getSpecialPadClass() {
return specialPadClass;
}
bool debugDump() {
return isDebugDump;
}
@@ -93,6 +104,10 @@ bool nullGpu() {
return isNullGpu;
}
bool copyGPUCmdBuffers() {
return shouldCopyGPUBuffers;
}
bool dumpShaders() {
return shouldDumpShaders;
}
@@ -149,6 +164,10 @@ void setNullGpu(bool enable) {
isNullGpu = enable;
}
void setCopyGPUCmdBuffers(bool enable) {
shouldCopyGPUBuffers = enable;
}
void setDumpShaders(bool enable) {
shouldDumpShaders = enable;
}
@@ -197,6 +216,14 @@ void setUserName(const std::string& type) {
userName = type;
}
void setUseSpecialPad(bool use) {
useSpecialPad = use;
}
void setSpecialPadClass(int type) {
specialPadClass = type;
}
void setMainWindowGeometry(u32 x, u32 y, u32 w, u32 h) {
main_window_geometry_x = x;
main_window_geometry_y = y;
@@ -330,12 +357,20 @@ void load(const std::filesystem::path& path) {
isShowSplash = toml::find_or<bool>(general, "showSplash", true);
}
if (data.contains("Input")) {
const toml::value& input = data.at("Input");
useSpecialPad = toml::find_or<bool>(input, "useSpecialPad", false);
specialPadClass = toml::find_or<int>(input, "specialPadClass", 1);
}
if (data.contains("GPU")) {
const toml::value& gpu = data.at("GPU");
screenWidth = toml::find_or<int>(gpu, "screenWidth", screenWidth);
screenHeight = toml::find_or<int>(gpu, "screenHeight", screenHeight);
isNullGpu = toml::find_or<bool>(gpu, "nullGpu", false);
shouldCopyGPUBuffers = toml::find_or<bool>(gpu, "copyGPUBuffers", false);
shouldDumpShaders = toml::find_or<bool>(gpu, "dumpShaders", false);
shouldDumpPM4 = toml::find_or<bool>(gpu, "dumpPM4", false);
vblankDivider = toml::find_or<int>(gpu, "vblankDivider", 1);
@@ -411,9 +446,12 @@ void save(const std::filesystem::path& path) {
data["General"]["logType"] = logType;
data["General"]["userName"] = userName;
data["General"]["showSplash"] = isShowSplash;
data["Input"]["useSpecialPad"] = useSpecialPad;
data["Input"]["specialPadClass"] = specialPadClass;
data["GPU"]["screenWidth"] = screenWidth;
data["GPU"]["screenHeight"] = screenHeight;
data["GPU"]["nullGpu"] = isNullGpu;
data["GPU"]["copyGPUBuffers"] = shouldCopyGPUBuffers;
data["GPU"]["dumpShaders"] = shouldDumpShaders;
data["GPU"]["dumpPM4"] = shouldDumpPM4;
data["GPU"]["vblankDivider"] = vblankDivider;
@@ -457,6 +495,8 @@ void setDefaultValues() {
logFilter = "";
logType = "async";
userName = "shadPS4";
useSpecialPad = false;
specialPadClass = 1;
isDebugDump = false;
isShowSplash = false;
isNullGpu = false;

View File

@@ -17,6 +17,9 @@ std::string getLogFilter();
std::string getLogType();
std::string getUserName();
bool getUseSpecialPad();
int getSpecialPadClass();
u32 getScreenWidth();
u32 getScreenHeight();
s32 getGpuId();
@@ -24,6 +27,7 @@ s32 getGpuId();
bool debugDump();
bool showSplash();
bool nullGpu();
bool copyGPUCmdBuffers();
bool dumpShaders();
bool dumpPM4();
bool isRdocEnabled();
@@ -33,6 +37,7 @@ u32 vblankDiv();
void setDebugDump(bool enable);
void setShowSplash(bool enable);
void setNullGpu(bool enable);
void setCopyGPUCmdBuffers(bool enable);
void setDumpShaders(bool enable);
void setDumpPM4(bool enable);
void setVblankDiv(u32 value);
@@ -44,6 +49,9 @@ void setLanguage(u32 language);
void setNeoMode(bool enable);
void setUserName(const std::string& type);
void setUseSpecialPad(bool use);
void setSpecialPadClass(int type);
void setLogType(const std::string& type);
void setLogFilter(const std::string& type);

View File

@@ -6,18 +6,18 @@
CryptoPP::RSA::PrivateKey Crypto::key_pkg_derived_key3_keyset_init() {
CryptoPP::InvertibleRSAFunction params;
params.SetPrime1(CryptoPP::Integer(pkg_derived_key3_keyset.Prime1, 0x80));
params.SetPrime2(CryptoPP::Integer(pkg_derived_key3_keyset.Prime2, 0x80));
params.SetPrime1(CryptoPP::Integer(PkgDerivedKey3Keyset::Prime1, 0x80));
params.SetPrime2(CryptoPP::Integer(PkgDerivedKey3Keyset::Prime2, 0x80));
params.SetPublicExponent(CryptoPP::Integer(pkg_derived_key3_keyset.PublicExponent, 4));
params.SetPrivateExponent(CryptoPP::Integer(pkg_derived_key3_keyset.PrivateExponent, 0x100));
params.SetPublicExponent(CryptoPP::Integer(PkgDerivedKey3Keyset::PublicExponent, 4));
params.SetPrivateExponent(CryptoPP::Integer(PkgDerivedKey3Keyset::PrivateExponent, 0x100));
params.SetModPrime1PrivateExponent(CryptoPP::Integer(pkg_derived_key3_keyset.Exponent1, 0x80));
params.SetModPrime2PrivateExponent(CryptoPP::Integer(pkg_derived_key3_keyset.Exponent2, 0x80));
params.SetModPrime1PrivateExponent(CryptoPP::Integer(PkgDerivedKey3Keyset::Exponent1, 0x80));
params.SetModPrime2PrivateExponent(CryptoPP::Integer(PkgDerivedKey3Keyset::Exponent2, 0x80));
params.SetModulus(CryptoPP::Integer(pkg_derived_key3_keyset.Modulus, 0x100));
params.SetModulus(CryptoPP::Integer(PkgDerivedKey3Keyset::Modulus, 0x100));
params.SetMultiplicativeInverseOfPrime2ModPrime1(
CryptoPP::Integer(pkg_derived_key3_keyset.Coefficient, 0x80));
CryptoPP::Integer(PkgDerivedKey3Keyset::Coefficient, 0x80));
CryptoPP::RSA::PrivateKey privateKey(params);
@@ -26,18 +26,18 @@ CryptoPP::RSA::PrivateKey Crypto::key_pkg_derived_key3_keyset_init() {
CryptoPP::RSA::PrivateKey Crypto::FakeKeyset_keyset_init() {
CryptoPP::InvertibleRSAFunction params;
params.SetPrime1(CryptoPP::Integer(FakeKeyset_keyset.Prime1, 0x80));
params.SetPrime2(CryptoPP::Integer(FakeKeyset_keyset.Prime2, 0x80));
params.SetPrime1(CryptoPP::Integer(FakeKeyset::Prime1, 0x80));
params.SetPrime2(CryptoPP::Integer(FakeKeyset::Prime2, 0x80));
params.SetPublicExponent(CryptoPP::Integer(FakeKeyset_keyset.PublicExponent, 4));
params.SetPrivateExponent(CryptoPP::Integer(FakeKeyset_keyset.PrivateExponent, 0x100));
params.SetPublicExponent(CryptoPP::Integer(FakeKeyset::PublicExponent, 4));
params.SetPrivateExponent(CryptoPP::Integer(FakeKeyset::PrivateExponent, 0x100));
params.SetModPrime1PrivateExponent(CryptoPP::Integer(FakeKeyset_keyset.Exponent1, 0x80));
params.SetModPrime2PrivateExponent(CryptoPP::Integer(FakeKeyset_keyset.Exponent2, 0x80));
params.SetModPrime1PrivateExponent(CryptoPP::Integer(FakeKeyset::Exponent1, 0x80));
params.SetModPrime2PrivateExponent(CryptoPP::Integer(FakeKeyset::Exponent2, 0x80));
params.SetModulus(CryptoPP::Integer(FakeKeyset_keyset.Modulus, 0x100));
params.SetModulus(CryptoPP::Integer(FakeKeyset::Modulus, 0x100));
params.SetMultiplicativeInverseOfPrime2ModPrime1(
CryptoPP::Integer(FakeKeyset_keyset.Coefficient, 0x80));
CryptoPP::Integer(FakeKeyset::Coefficient, 0x80));
CryptoPP::RSA::PrivateKey privateKey(params);
@@ -46,25 +46,22 @@ CryptoPP::RSA::PrivateKey Crypto::FakeKeyset_keyset_init() {
CryptoPP::RSA::PrivateKey Crypto::DebugRifKeyset_init() {
CryptoPP::InvertibleRSAFunction params;
params.SetPrime1(
CryptoPP::Integer(DebugRifKeyset_keyset.Prime1, sizeof(DebugRifKeyset_keyset.Prime1)));
params.SetPrime2(
CryptoPP::Integer(DebugRifKeyset_keyset.Prime2, sizeof(DebugRifKeyset_keyset.Prime2)));
params.SetPrime1(CryptoPP::Integer(DebugRifKeyset::Prime1, sizeof(DebugRifKeyset::Prime1)));
params.SetPrime2(CryptoPP::Integer(DebugRifKeyset::Prime2, sizeof(DebugRifKeyset::Prime2)));
params.SetPublicExponent(CryptoPP::Integer(DebugRifKeyset_keyset.PublicExponent,
sizeof(DebugRifKeyset_keyset.PublicExponent)));
params.SetPrivateExponent(CryptoPP::Integer(DebugRifKeyset_keyset.PrivateExponent,
sizeof(DebugRifKeyset_keyset.PrivateExponent)));
params.SetPublicExponent(
CryptoPP::Integer(DebugRifKeyset::PublicExponent, sizeof(DebugRifKeyset::PublicExponent)));
params.SetPrivateExponent(CryptoPP::Integer(DebugRifKeyset::PrivateExponent,
sizeof(DebugRifKeyset::PrivateExponent)));
params.SetModPrime1PrivateExponent(CryptoPP::Integer(DebugRifKeyset_keyset.Exponent1,
sizeof(DebugRifKeyset_keyset.Exponent1)));
params.SetModPrime2PrivateExponent(CryptoPP::Integer(DebugRifKeyset_keyset.Exponent2,
sizeof(DebugRifKeyset_keyset.Exponent2)));
params.SetModPrime1PrivateExponent(
CryptoPP::Integer(DebugRifKeyset::Exponent1, sizeof(DebugRifKeyset::Exponent1)));
params.SetModPrime2PrivateExponent(
CryptoPP::Integer(DebugRifKeyset::Exponent2, sizeof(DebugRifKeyset::Exponent2)));
params.SetModulus(
CryptoPP::Integer(DebugRifKeyset_keyset.Modulus, sizeof(DebugRifKeyset_keyset.Modulus)));
params.SetMultiplicativeInverseOfPrime2ModPrime1(CryptoPP::Integer(
DebugRifKeyset_keyset.Coefficient, sizeof(DebugRifKeyset_keyset.Coefficient)));
params.SetModulus(CryptoPP::Integer(DebugRifKeyset::Modulus, sizeof(DebugRifKeyset::Modulus)));
params.SetMultiplicativeInverseOfPrime2ModPrime1(
CryptoPP::Integer(DebugRifKeyset::Coefficient, sizeof(DebugRifKeyset::Coefficient)));
CryptoPP::RSA::PrivateKey privateKey(params);

View File

@@ -17,10 +17,6 @@
class Crypto {
public:
PkgDerivedKey3Keyset pkg_derived_key3_keyset;
FakeKeyset FakeKeyset_keyset;
DebugRifKeyset DebugRifKeyset_keyset;
CryptoPP::RSA::PrivateKey key_pkg_derived_key3_keyset_init();
CryptoPP::RSA::PrivateKey FakeKeyset_keyset_init();
CryptoPP::RSA::PrivateKey DebugRifKeyset_init();

View File

@@ -7,384 +7,299 @@
class FakeKeyset {
public:
// Constructor
const CryptoPP::byte* Exponent1;
static constexpr CryptoPP::byte Exponent1[] = {
0x6D, 0x48, 0xE0, 0x54, 0x40, 0x25, 0xC8, 0x41, 0x29, 0x52, 0x42, 0x27, 0xEB, 0xD2, 0xC7,
0xAB, 0x6B, 0x9C, 0x27, 0x0A, 0xB4, 0x1F, 0x94, 0x4E, 0xFA, 0x42, 0x1D, 0xB7, 0xBC, 0xB9,
0xAE, 0xBC, 0x04, 0x6F, 0x75, 0x8F, 0x10, 0x5F, 0x89, 0xAC, 0xAB, 0x9C, 0xD2, 0xFA, 0xE6,
0xA4, 0x13, 0x83, 0x68, 0xD4, 0x56, 0x38, 0xFE, 0xE5, 0x2B, 0x78, 0x44, 0x9C, 0x34, 0xE6,
0x5A, 0xA0, 0xBE, 0x05, 0x70, 0xAD, 0x15, 0xC3, 0x2D, 0x31, 0xAC, 0x97, 0x5D, 0x88, 0xFC,
0xC1, 0x62, 0x3D, 0xE2, 0xED, 0x11, 0xDB, 0xB6, 0x9E, 0xFC, 0x5A, 0x5A, 0x03, 0xF6, 0xCF,
0x08, 0xD4, 0x5D, 0x90, 0xC9, 0x2A, 0xB9, 0x9B, 0xCF, 0xC8, 0x1A, 0x65, 0xF3, 0x5B, 0xE8,
0x7F, 0xCF, 0xA5, 0xA6, 0x4C, 0x5C, 0x2A, 0x12, 0x0F, 0x92, 0xA5, 0xE3, 0xF0, 0x17, 0x1E,
0x9A, 0x97, 0x45, 0x86, 0xFD, 0xDB, 0x54, 0x25};
// exponent2 = d mod (q - 1)
const CryptoPP::byte* Exponent2;
static constexpr CryptoPP::byte Exponent2[] = {
0x2A, 0x51, 0xCE, 0x02, 0x44, 0x28, 0x50, 0xE8, 0x30, 0x20, 0x7C, 0x9C, 0x55, 0xBF, 0x60,
0x39, 0xBC, 0xD1, 0xF0, 0xE7, 0x68, 0xF8, 0x08, 0x5B, 0x61, 0x1F, 0xA7, 0xBF, 0xD0, 0xE8,
0x8B, 0xB5, 0xB1, 0xD5, 0xD9, 0x16, 0xAC, 0x75, 0x0C, 0x6D, 0xF2, 0xE0, 0xB5, 0x97, 0x75,
0xD2, 0x68, 0x16, 0x1F, 0x00, 0x7D, 0x8B, 0x17, 0xE8, 0x78, 0x48, 0x41, 0x71, 0x2B, 0x18,
0x96, 0x80, 0x11, 0xDB, 0x68, 0x39, 0x9C, 0xD6, 0xE0, 0x72, 0x42, 0x86, 0xF0, 0x1B, 0x16,
0x0D, 0x3E, 0x12, 0x94, 0x3D, 0x25, 0xA8, 0xA9, 0x30, 0x9E, 0x54, 0x5A, 0xD6, 0x36, 0x6C,
0xD6, 0x8C, 0x20, 0x62, 0x8F, 0xA1, 0x6B, 0x1F, 0x7C, 0x6D, 0xB2, 0xB1, 0xC1, 0x2E, 0xAD,
0x36, 0x02, 0x9C, 0x3A, 0xCA, 0x2F, 0x09, 0xD2, 0x45, 0x9E, 0xEB, 0xF2, 0xBC, 0x6C, 0xAA,
0x3B, 0x3E, 0x90, 0xBC, 0x38, 0x67, 0x35, 0x4D};
// e
const CryptoPP::byte* PublicExponent;
static constexpr CryptoPP::byte PublicExponent[] = {0, 1, 0, 1};
// (InverseQ)(q) = 1 mod p
const CryptoPP::byte* Coefficient;
static constexpr CryptoPP::byte Coefficient[] = {
0x0B, 0x67, 0x1C, 0x0D, 0x6C, 0x57, 0xD3, 0xE7, 0x05, 0x65, 0x94, 0x31, 0x56, 0x55, 0xFD,
0x28, 0x08, 0xFA, 0x05, 0x8A, 0xCC, 0x55, 0x39, 0x61, 0x97, 0x63, 0xA0, 0x16, 0x27, 0x3D,
0xED, 0xC1, 0x16, 0x40, 0x2A, 0x12, 0xEA, 0x6F, 0xD9, 0xD8, 0x58, 0x56, 0xA8, 0x56, 0x8B,
0x0D, 0x38, 0x5E, 0x1E, 0x80, 0x3B, 0x5F, 0x40, 0x80, 0x6F, 0x62, 0x4F, 0x28, 0xA2, 0x69,
0xF3, 0xD3, 0xF7, 0xFD, 0xB2, 0xC3, 0x52, 0x43, 0x20, 0x92, 0x9D, 0x97, 0x8D, 0xA0, 0x15,
0x07, 0x15, 0x6E, 0xA4, 0x0D, 0x56, 0xD3, 0x37, 0x1A, 0xC4, 0x9E, 0xDF, 0x02, 0x49, 0xB8,
0x0A, 0x84, 0x62, 0xF5, 0xFA, 0xB9, 0x3F, 0xA4, 0x09, 0x76, 0xCC, 0xAA, 0xB9, 0x9B, 0xA6,
0x4F, 0xC1, 0x6A, 0x64, 0xCE, 0xD8, 0x77, 0xAB, 0x4B, 0xF9, 0xA0, 0xAE, 0xDA, 0xF1, 0x67,
0x87, 0x7C, 0x98, 0x5C, 0x7E, 0xB8, 0x73, 0xF5};
// n = p * q
const CryptoPP::byte* Modulus;
static constexpr CryptoPP::byte Modulus[] = {
0xC6, 0xCF, 0x71, 0xE7, 0xE5, 0x9A, 0xF0, 0xD1, 0x2A, 0x2C, 0x45, 0x8B, 0xF9, 0x2A, 0x0E,
0xC1, 0x43, 0x05, 0x8B, 0xC3, 0x71, 0x17, 0x80, 0x1D, 0xCD, 0x49, 0x7D, 0xDE, 0x35, 0x9D,
0x25, 0x9B, 0xA0, 0xD7, 0xA0, 0xF2, 0x7D, 0x6C, 0x08, 0x7E, 0xAA, 0x55, 0x02, 0x68, 0x2B,
0x23, 0xC6, 0x44, 0xB8, 0x44, 0x18, 0xEB, 0x56, 0xCF, 0x16, 0xA2, 0x48, 0x03, 0xC9, 0xE7,
0x4F, 0x87, 0xEB, 0x3D, 0x30, 0xC3, 0x15, 0x88, 0xBF, 0x20, 0xE7, 0x9D, 0xFF, 0x77, 0x0C,
0xDE, 0x1D, 0x24, 0x1E, 0x63, 0xA9, 0x4F, 0x8A, 0xBF, 0x5B, 0xBE, 0x60, 0x19, 0x68, 0x33,
0x3B, 0xFC, 0xED, 0x9F, 0x47, 0x4E, 0x5F, 0xF8, 0xEA, 0xCB, 0x3D, 0x00, 0xBD, 0x67, 0x01,
0xF9, 0x2C, 0x6D, 0xC6, 0xAC, 0x13, 0x64, 0xE7, 0x67, 0x14, 0xF3, 0xDC, 0x52, 0x69, 0x6A,
0xB9, 0x83, 0x2C, 0x42, 0x30, 0x13, 0x1B, 0xB2, 0xD8, 0xA5, 0x02, 0x0D, 0x79, 0xED, 0x96,
0xB1, 0x0D, 0xF8, 0xCC, 0x0C, 0xDF, 0x81, 0x95, 0x4F, 0x03, 0x58, 0x09, 0x57, 0x0E, 0x80,
0x69, 0x2E, 0xFE, 0xFF, 0x52, 0x77, 0xEA, 0x75, 0x28, 0xA8, 0xFB, 0xC9, 0xBE, 0xBF, 0x9F,
0xBB, 0xB7, 0x79, 0x8E, 0x18, 0x05, 0xE1, 0x80, 0xBD, 0x50, 0x34, 0x94, 0x81, 0xD3, 0x53,
0xC2, 0x69, 0xA2, 0xD2, 0x4C, 0xCF, 0x6C, 0xF4, 0x57, 0x2C, 0x10, 0x4A, 0x3F, 0xFB, 0x22,
0xFD, 0x8B, 0x97, 0xE2, 0xC9, 0x5B, 0xA6, 0x2B, 0xCD, 0xD6, 0x1B, 0x6B, 0xDB, 0x68, 0x7F,
0x4B, 0xC2, 0xA0, 0x50, 0x34, 0xC0, 0x05, 0xE5, 0x8D, 0xEF, 0x24, 0x67, 0xFF, 0x93, 0x40,
0xCF, 0x2D, 0x62, 0xA2, 0xA0, 0x50, 0xB1, 0xF1, 0x3A, 0xA8, 0x3D, 0xFD, 0x80, 0xD1, 0xF9,
0xB8, 0x05, 0x22, 0xAF, 0xC8, 0x35, 0x45, 0x90, 0x58, 0x8E, 0xE3, 0x3A, 0x7C, 0xBD, 0x3E,
0x27};
// p
const CryptoPP::byte* Prime1;
static constexpr CryptoPP::byte Prime1[] = {
0xFE, 0xF6, 0xBF, 0x1D, 0x69, 0xAB, 0x16, 0x25, 0x08, 0x47, 0x55, 0x6B, 0x86, 0xE4, 0x35,
0x88, 0x72, 0x2A, 0xB1, 0x3D, 0xF8, 0xB6, 0x44, 0xCA, 0xB3, 0xAB, 0x19, 0xD1, 0x04, 0x24,
0x28, 0x0A, 0x74, 0x55, 0xB8, 0x15, 0x45, 0x09, 0xCC, 0x13, 0x1C, 0xF2, 0xBA, 0x37, 0xA9,
0x03, 0x90, 0x8F, 0x02, 0x10, 0xFF, 0x25, 0x79, 0x86, 0xCC, 0x18, 0x50, 0x9A, 0x10, 0x5F,
0x5B, 0x4C, 0x1C, 0x4E, 0xB0, 0xA7, 0xE3, 0x59, 0xB1, 0x2D, 0xA0, 0xC6, 0xB0, 0x20, 0x2C,
0x21, 0x33, 0x12, 0xB3, 0xAF, 0x72, 0x34, 0x83, 0xCD, 0x52, 0x2F, 0xAF, 0x0F, 0x20, 0x5A,
0x1B, 0xC0, 0xE2, 0xA3, 0x76, 0x34, 0x0F, 0xD7, 0xFC, 0xC1, 0x41, 0xC9, 0xF9, 0x79, 0x40,
0x17, 0x42, 0x21, 0x3E, 0x9D, 0xFD, 0xC7, 0xC1, 0x50, 0xDE, 0x44, 0x5A, 0xC9, 0x31, 0x89,
0x6A, 0x78, 0x05, 0xBE, 0x65, 0xB4, 0xE8, 0x2D};
// q
const CryptoPP::byte* Prime2;
const CryptoPP::byte* PrivateExponent;
// Constructor
FakeKeyset() {
// Initialize PrivateExponent
PrivateExponent = new CryptoPP::byte[0x100]{
0x7F, 0x76, 0xCD, 0x0E, 0xE2, 0xD4, 0xDE, 0x05, 0x1C, 0xC6, 0xD9, 0xA8, 0x0E, 0x8D,
0xFA, 0x7B, 0xCA, 0x1E, 0xAA, 0x27, 0x1A, 0x40, 0xF8, 0xF1, 0x22, 0x87, 0x35, 0xDD,
0xDB, 0xFD, 0xEE, 0xF8, 0xC2, 0xBC, 0xBD, 0x01, 0xFB, 0x8B, 0xE2, 0x3E, 0x63, 0xB2,
0xB1, 0x22, 0x5C, 0x56, 0x49, 0x6E, 0x11, 0xBE, 0x07, 0x44, 0x0B, 0x9A, 0x26, 0x66,
0xD1, 0x49, 0x2C, 0x8F, 0xD3, 0x1B, 0xCF, 0xA4, 0xA1, 0xB8, 0xD1, 0xFB, 0xA4, 0x9E,
0xD2, 0x21, 0x28, 0x83, 0x09, 0x8A, 0xF6, 0xA0, 0x0B, 0xA3, 0xD6, 0x0F, 0x9B, 0x63,
0x68, 0xCC, 0xBC, 0x0C, 0x4E, 0x14, 0x5B, 0x27, 0xA4, 0xA9, 0xF4, 0x2B, 0xB9, 0xB8,
0x7B, 0xC0, 0xE6, 0x51, 0xAD, 0x1D, 0x77, 0xD4, 0x6B, 0xB9, 0xCE, 0x20, 0xD1, 0x26,
0x66, 0x7E, 0x5E, 0x9E, 0xA2, 0xE9, 0x6B, 0x90, 0xF3, 0x73, 0xB8, 0x52, 0x8F, 0x44,
0x11, 0x03, 0x0C, 0x13, 0x97, 0x39, 0x3D, 0x13, 0x22, 0x58, 0xD5, 0x43, 0x82, 0x49,
0xDA, 0x6E, 0x7C, 0xA1, 0xC5, 0x8C, 0xA5, 0xB0, 0x09, 0xE0, 0xCE, 0x3D, 0xDF, 0xF4,
0x9D, 0x3C, 0x97, 0x15, 0xE2, 0x6A, 0xC7, 0x2B, 0x3C, 0x50, 0x93, 0x23, 0xDB, 0xBA,
0x4A, 0x22, 0x66, 0x44, 0xAC, 0x78, 0xBB, 0x0E, 0x1A, 0x27, 0x43, 0xB5, 0x71, 0x67,
0xAF, 0xF4, 0xAB, 0x48, 0x46, 0x93, 0x73, 0xD0, 0x42, 0xAB, 0x93, 0x63, 0xE5, 0x6C,
0x9A, 0xDE, 0x50, 0x24, 0xC0, 0x23, 0x7D, 0x99, 0x79, 0x3F, 0x22, 0x07, 0xE0, 0xC1,
0x48, 0x56, 0x1B, 0xDF, 0x83, 0x09, 0x12, 0xB4, 0x2D, 0x45, 0x6B, 0xC9, 0xC0, 0x68,
0x85, 0x99, 0x90, 0x79, 0x96, 0x1A, 0xD7, 0xF5, 0x4D, 0x1F, 0x37, 0x83, 0x40, 0x4A,
0xEC, 0x39, 0x37, 0xA6, 0x80, 0x92, 0x7D, 0xC5, 0x80, 0xC7, 0xD6, 0x6F, 0xFE, 0x8A,
0x79, 0x89, 0xC6, 0xB1};
// Initialize Exponent1
Exponent1 = new CryptoPP::byte[0x80]{
0x6D, 0x48, 0xE0, 0x54, 0x40, 0x25, 0xC8, 0x41, 0x29, 0x52, 0x42, 0x27, 0xEB,
0xD2, 0xC7, 0xAB, 0x6B, 0x9C, 0x27, 0x0A, 0xB4, 0x1F, 0x94, 0x4E, 0xFA, 0x42,
0x1D, 0xB7, 0xBC, 0xB9, 0xAE, 0xBC, 0x04, 0x6F, 0x75, 0x8F, 0x10, 0x5F, 0x89,
0xAC, 0xAB, 0x9C, 0xD2, 0xFA, 0xE6, 0xA4, 0x13, 0x83, 0x68, 0xD4, 0x56, 0x38,
0xFE, 0xE5, 0x2B, 0x78, 0x44, 0x9C, 0x34, 0xE6, 0x5A, 0xA0, 0xBE, 0x05, 0x70,
0xAD, 0x15, 0xC3, 0x2D, 0x31, 0xAC, 0x97, 0x5D, 0x88, 0xFC, 0xC1, 0x62, 0x3D,
0xE2, 0xED, 0x11, 0xDB, 0xB6, 0x9E, 0xFC, 0x5A, 0x5A, 0x03, 0xF6, 0xCF, 0x08,
0xD4, 0x5D, 0x90, 0xC9, 0x2A, 0xB9, 0x9B, 0xCF, 0xC8, 0x1A, 0x65, 0xF3, 0x5B,
0xE8, 0x7F, 0xCF, 0xA5, 0xA6, 0x4C, 0x5C, 0x2A, 0x12, 0x0F, 0x92, 0xA5, 0xE3,
0xF0, 0x17, 0x1E, 0x9A, 0x97, 0x45, 0x86, 0xFD, 0xDB, 0x54, 0x25
};
Exponent2 = new CryptoPP::byte[0x80]{
0x2A, 0x51, 0xCE, 0x02, 0x44, 0x28, 0x50, 0xE8, 0x30, 0x20, 0x7C, 0x9C, 0x55,
0xBF, 0x60, 0x39, 0xBC, 0xD1, 0xF0, 0xE7, 0x68, 0xF8, 0x08, 0x5B, 0x61, 0x1F,
0xA7, 0xBF, 0xD0, 0xE8, 0x8B, 0xB5, 0xB1, 0xD5, 0xD9, 0x16, 0xAC, 0x75, 0x0C,
0x6D, 0xF2, 0xE0, 0xB5, 0x97, 0x75, 0xD2, 0x68, 0x16, 0x1F, 0x00, 0x7D, 0x8B,
0x17, 0xE8, 0x78, 0x48, 0x41, 0x71, 0x2B, 0x18, 0x96, 0x80, 0x11, 0xDB, 0x68,
0x39, 0x9C, 0xD6, 0xE0, 0x72, 0x42, 0x86, 0xF0, 0x1B, 0x16, 0x0D, 0x3E, 0x12,
0x94, 0x3D, 0x25, 0xA8, 0xA9, 0x30, 0x9E, 0x54, 0x5A, 0xD6, 0x36, 0x6C, 0xD6,
0x8C, 0x20, 0x62, 0x8F, 0xA1, 0x6B, 0x1F, 0x7C, 0x6D, 0xB2, 0xB1, 0xC1, 0x2E,
0xAD, 0x36, 0x02, 0x9C, 0x3A, 0xCA, 0x2F, 0x09, 0xD2, 0x45, 0x9E, 0xEB, 0xF2,
0xBC, 0x6C, 0xAA, 0x3B, 0x3E, 0x90, 0xBC, 0x38, 0x67, 0x35, 0x4D};
PublicExponent = new CryptoPP::byte[4]{0, 1, 0, 1};
Coefficient = new CryptoPP::byte[0x80]{
0x0B, 0x67, 0x1C, 0x0D, 0x6C, 0x57, 0xD3, 0xE7, 0x05, 0x65, 0x94, 0x31, 0x56,
0x55, 0xFD, 0x28, 0x08, 0xFA, 0x05, 0x8A, 0xCC, 0x55, 0x39, 0x61, 0x97, 0x63,
0xA0, 0x16, 0x27, 0x3D, 0xED, 0xC1, 0x16, 0x40, 0x2A, 0x12, 0xEA, 0x6F, 0xD9,
0xD8, 0x58, 0x56, 0xA8, 0x56, 0x8B, 0x0D, 0x38, 0x5E, 0x1E, 0x80, 0x3B, 0x5F,
0x40, 0x80, 0x6F, 0x62, 0x4F, 0x28, 0xA2, 0x69, 0xF3, 0xD3, 0xF7, 0xFD, 0xB2,
0xC3, 0x52, 0x43, 0x20, 0x92, 0x9D, 0x97, 0x8D, 0xA0, 0x15, 0x07, 0x15, 0x6E,
0xA4, 0x0D, 0x56, 0xD3, 0x37, 0x1A, 0xC4, 0x9E, 0xDF, 0x02, 0x49, 0xB8, 0x0A,
0x84, 0x62, 0xF5, 0xFA, 0xB9, 0x3F, 0xA4, 0x09, 0x76, 0xCC, 0xAA, 0xB9, 0x9B,
0xA6, 0x4F, 0xC1, 0x6A, 0x64, 0xCE, 0xD8, 0x77, 0xAB, 0x4B, 0xF9, 0xA0, 0xAE,
0xDA, 0xF1, 0x67, 0x87, 0x7C, 0x98, 0x5C, 0x7E, 0xB8, 0x73, 0xF5};
Modulus = new CryptoPP::byte[0x100]{
0xC6, 0xCF, 0x71, 0xE7, 0xE5, 0x9A, 0xF0, 0xD1, 0x2A, 0x2C, 0x45, 0x8B, 0xF9, 0x2A,
0x0E, 0xC1, 0x43, 0x05, 0x8B, 0xC3, 0x71, 0x17, 0x80, 0x1D, 0xCD, 0x49, 0x7D, 0xDE,
0x35, 0x9D, 0x25, 0x9B, 0xA0, 0xD7, 0xA0, 0xF2, 0x7D, 0x6C, 0x08, 0x7E, 0xAA, 0x55,
0x02, 0x68, 0x2B, 0x23, 0xC6, 0x44, 0xB8, 0x44, 0x18, 0xEB, 0x56, 0xCF, 0x16, 0xA2,
0x48, 0x03, 0xC9, 0xE7, 0x4F, 0x87, 0xEB, 0x3D, 0x30, 0xC3, 0x15, 0x88, 0xBF, 0x20,
0xE7, 0x9D, 0xFF, 0x77, 0x0C, 0xDE, 0x1D, 0x24, 0x1E, 0x63, 0xA9, 0x4F, 0x8A, 0xBF,
0x5B, 0xBE, 0x60, 0x19, 0x68, 0x33, 0x3B, 0xFC, 0xED, 0x9F, 0x47, 0x4E, 0x5F, 0xF8,
0xEA, 0xCB, 0x3D, 0x00, 0xBD, 0x67, 0x01, 0xF9, 0x2C, 0x6D, 0xC6, 0xAC, 0x13, 0x64,
0xE7, 0x67, 0x14, 0xF3, 0xDC, 0x52, 0x69, 0x6A, 0xB9, 0x83, 0x2C, 0x42, 0x30, 0x13,
0x1B, 0xB2, 0xD8, 0xA5, 0x02, 0x0D, 0x79, 0xED, 0x96, 0xB1, 0x0D, 0xF8, 0xCC, 0x0C,
0xDF, 0x81, 0x95, 0x4F, 0x03, 0x58, 0x09, 0x57, 0x0E, 0x80, 0x69, 0x2E, 0xFE, 0xFF,
0x52, 0x77, 0xEA, 0x75, 0x28, 0xA8, 0xFB, 0xC9, 0xBE, 0xBF, 0x9F, 0xBB, 0xB7, 0x79,
0x8E, 0x18, 0x05, 0xE1, 0x80, 0xBD, 0x50, 0x34, 0x94, 0x81, 0xD3, 0x53, 0xC2, 0x69,
0xA2, 0xD2, 0x4C, 0xCF, 0x6C, 0xF4, 0x57, 0x2C, 0x10, 0x4A, 0x3F, 0xFB, 0x22, 0xFD,
0x8B, 0x97, 0xE2, 0xC9, 0x5B, 0xA6, 0x2B, 0xCD, 0xD6, 0x1B, 0x6B, 0xDB, 0x68, 0x7F,
0x4B, 0xC2, 0xA0, 0x50, 0x34, 0xC0, 0x05, 0xE5, 0x8D, 0xEF, 0x24, 0x67, 0xFF, 0x93,
0x40, 0xCF, 0x2D, 0x62, 0xA2, 0xA0, 0x50, 0xB1, 0xF1, 0x3A, 0xA8, 0x3D, 0xFD, 0x80,
0xD1, 0xF9, 0xB8, 0x05, 0x22, 0xAF, 0xC8, 0x35, 0x45, 0x90, 0x58, 0x8E, 0xE3, 0x3A,
0x7C, 0xBD, 0x3E, 0x27};
Prime1 = new CryptoPP::byte[0x80]{
0xFE, 0xF6, 0xBF, 0x1D, 0x69, 0xAB, 0x16, 0x25, 0x08, 0x47, 0x55, 0x6B, 0x86,
0xE4, 0x35, 0x88, 0x72, 0x2A, 0xB1, 0x3D, 0xF8, 0xB6, 0x44, 0xCA, 0xB3, 0xAB,
0x19, 0xD1, 0x04, 0x24, 0x28, 0x0A, 0x74, 0x55, 0xB8, 0x15, 0x45, 0x09, 0xCC,
0x13, 0x1C, 0xF2, 0xBA, 0x37, 0xA9, 0x03, 0x90, 0x8F, 0x02, 0x10, 0xFF, 0x25,
0x79, 0x86, 0xCC, 0x18, 0x50, 0x9A, 0x10, 0x5F, 0x5B, 0x4C, 0x1C, 0x4E, 0xB0,
0xA7, 0xE3, 0x59, 0xB1, 0x2D, 0xA0, 0xC6, 0xB0, 0x20, 0x2C, 0x21, 0x33, 0x12,
0xB3, 0xAF, 0x72, 0x34, 0x83, 0xCD, 0x52, 0x2F, 0xAF, 0x0F, 0x20, 0x5A, 0x1B,
0xC0, 0xE2, 0xA3, 0x76, 0x34, 0x0F, 0xD7, 0xFC, 0xC1, 0x41, 0xC9, 0xF9, 0x79,
0x40, 0x17, 0x42, 0x21, 0x3E, 0x9D, 0xFD, 0xC7, 0xC1, 0x50, 0xDE, 0x44, 0x5A,
0xC9, 0x31, 0x89, 0x6A, 0x78, 0x05, 0xBE, 0x65, 0xB4, 0xE8, 0x2D};
Prime2 = new CryptoPP::byte[0x80]{
0xC7, 0x9E, 0x47, 0x58, 0x00, 0x7D, 0x62, 0x82, 0xB0, 0xD2, 0x22, 0x81, 0xD4,
0xA8, 0x97, 0x1B, 0x79, 0x0C, 0x3A, 0xB0, 0xD7, 0xC9, 0x30, 0xE3, 0xC3, 0x53,
0x8E, 0x57, 0xEF, 0xF0, 0x9B, 0x9F, 0xB3, 0x90, 0x52, 0xC6, 0x94, 0x22, 0x36,
0xAA, 0xE6, 0x4A, 0x5F, 0x72, 0x1D, 0x70, 0xE8, 0x76, 0x58, 0xC8, 0xB2, 0x91,
0xCE, 0x9C, 0xC3, 0xE9, 0x09, 0x7F, 0x2E, 0x47, 0x97, 0xCC, 0x90, 0x39, 0x15,
0x35, 0x31, 0xDE, 0x1F, 0x0C, 0x8C, 0x0D, 0xC1, 0xC2, 0x92, 0xBE, 0x97, 0xBF,
0x2F, 0x91, 0xA1, 0x8C, 0x7D, 0x50, 0xA8, 0x21, 0x2F, 0xD7, 0xA2, 0x9A, 0x7E,
0xB5, 0xA7, 0x2A, 0x90, 0x02, 0xD9, 0xF3, 0x3D, 0xD1, 0xEB, 0xB8, 0xE0, 0x5A,
0x79, 0x9E, 0x7D, 0x8D, 0xCA, 0x18, 0x6D, 0xBD, 0x9E, 0xA1, 0x80, 0x28, 0x6B,
0x2A, 0xFE, 0x51, 0x24, 0x9B, 0x6F, 0x4D, 0x84, 0x77, 0x80, 0x23};
};
static constexpr CryptoPP::byte Prime2[] = {
0xC7, 0x9E, 0x47, 0x58, 0x00, 0x7D, 0x62, 0x82, 0xB0, 0xD2, 0x22, 0x81, 0xD4, 0xA8, 0x97,
0x1B, 0x79, 0x0C, 0x3A, 0xB0, 0xD7, 0xC9, 0x30, 0xE3, 0xC3, 0x53, 0x8E, 0x57, 0xEF, 0xF0,
0x9B, 0x9F, 0xB3, 0x90, 0x52, 0xC6, 0x94, 0x22, 0x36, 0xAA, 0xE6, 0x4A, 0x5F, 0x72, 0x1D,
0x70, 0xE8, 0x76, 0x58, 0xC8, 0xB2, 0x91, 0xCE, 0x9C, 0xC3, 0xE9, 0x09, 0x7F, 0x2E, 0x47,
0x97, 0xCC, 0x90, 0x39, 0x15, 0x35, 0x31, 0xDE, 0x1F, 0x0C, 0x8C, 0x0D, 0xC1, 0xC2, 0x92,
0xBE, 0x97, 0xBF, 0x2F, 0x91, 0xA1, 0x8C, 0x7D, 0x50, 0xA8, 0x21, 0x2F, 0xD7, 0xA2, 0x9A,
0x7E, 0xB5, 0xA7, 0x2A, 0x90, 0x02, 0xD9, 0xF3, 0x3D, 0xD1, 0xEB, 0xB8, 0xE0, 0x5A, 0x79,
0x9E, 0x7D, 0x8D, 0xCA, 0x18, 0x6D, 0xBD, 0x9E, 0xA1, 0x80, 0x28, 0x6B, 0x2A, 0xFE, 0x51,
0x24, 0x9B, 0x6F, 0x4D, 0x84, 0x77, 0x80, 0x23};
static constexpr CryptoPP::byte PrivateExponent[] = {
0x7F, 0x76, 0xCD, 0x0E, 0xE2, 0xD4, 0xDE, 0x05, 0x1C, 0xC6, 0xD9, 0xA8, 0x0E, 0x8D, 0xFA,
0x7B, 0xCA, 0x1E, 0xAA, 0x27, 0x1A, 0x40, 0xF8, 0xF1, 0x22, 0x87, 0x35, 0xDD, 0xDB, 0xFD,
0xEE, 0xF8, 0xC2, 0xBC, 0xBD, 0x01, 0xFB, 0x8B, 0xE2, 0x3E, 0x63, 0xB2, 0xB1, 0x22, 0x5C,
0x56, 0x49, 0x6E, 0x11, 0xBE, 0x07, 0x44, 0x0B, 0x9A, 0x26, 0x66, 0xD1, 0x49, 0x2C, 0x8F,
0xD3, 0x1B, 0xCF, 0xA4, 0xA1, 0xB8, 0xD1, 0xFB, 0xA4, 0x9E, 0xD2, 0x21, 0x28, 0x83, 0x09,
0x8A, 0xF6, 0xA0, 0x0B, 0xA3, 0xD6, 0x0F, 0x9B, 0x63, 0x68, 0xCC, 0xBC, 0x0C, 0x4E, 0x14,
0x5B, 0x27, 0xA4, 0xA9, 0xF4, 0x2B, 0xB9, 0xB8, 0x7B, 0xC0, 0xE6, 0x51, 0xAD, 0x1D, 0x77,
0xD4, 0x6B, 0xB9, 0xCE, 0x20, 0xD1, 0x26, 0x66, 0x7E, 0x5E, 0x9E, 0xA2, 0xE9, 0x6B, 0x90,
0xF3, 0x73, 0xB8, 0x52, 0x8F, 0x44, 0x11, 0x03, 0x0C, 0x13, 0x97, 0x39, 0x3D, 0x13, 0x22,
0x58, 0xD5, 0x43, 0x82, 0x49, 0xDA, 0x6E, 0x7C, 0xA1, 0xC5, 0x8C, 0xA5, 0xB0, 0x09, 0xE0,
0xCE, 0x3D, 0xDF, 0xF4, 0x9D, 0x3C, 0x97, 0x15, 0xE2, 0x6A, 0xC7, 0x2B, 0x3C, 0x50, 0x93,
0x23, 0xDB, 0xBA, 0x4A, 0x22, 0x66, 0x44, 0xAC, 0x78, 0xBB, 0x0E, 0x1A, 0x27, 0x43, 0xB5,
0x71, 0x67, 0xAF, 0xF4, 0xAB, 0x48, 0x46, 0x93, 0x73, 0xD0, 0x42, 0xAB, 0x93, 0x63, 0xE5,
0x6C, 0x9A, 0xDE, 0x50, 0x24, 0xC0, 0x23, 0x7D, 0x99, 0x79, 0x3F, 0x22, 0x07, 0xE0, 0xC1,
0x48, 0x56, 0x1B, 0xDF, 0x83, 0x09, 0x12, 0xB4, 0x2D, 0x45, 0x6B, 0xC9, 0xC0, 0x68, 0x85,
0x99, 0x90, 0x79, 0x96, 0x1A, 0xD7, 0xF5, 0x4D, 0x1F, 0x37, 0x83, 0x40, 0x4A, 0xEC, 0x39,
0x37, 0xA6, 0x80, 0x92, 0x7D, 0xC5, 0x80, 0xC7, 0xD6, 0x6F, 0xFE, 0x8A, 0x79, 0x89, 0xC6,
0xB1};
};
class DebugRifKeyset {
public:
// Constructor
// std::uint8_t* PrivateExponent;
const CryptoPP::byte* Exponent1;
static constexpr CryptoPP::byte Exponent1[] = {
0xCD, 0x9A, 0x61, 0xB0, 0xB8, 0xD5, 0xB4, 0xE4, 0xE4, 0xF6, 0xAB, 0xF7, 0x27, 0xB7, 0x56,
0x59, 0x6B, 0xB9, 0x11, 0xE7, 0xF4, 0x83, 0xAF, 0xB9, 0x73, 0x99, 0x7F, 0x49, 0xA2, 0x9C,
0xF0, 0xB5, 0x6D, 0x37, 0x82, 0x14, 0x15, 0xF1, 0x04, 0x8A, 0xD4, 0x8E, 0xEB, 0x2E, 0x1F,
0xE2, 0x81, 0xA9, 0x62, 0x6E, 0xB1, 0x68, 0x75, 0x62, 0xF3, 0x0F, 0xFE, 0xD4, 0x91, 0x87,
0x98, 0x78, 0xBF, 0x26, 0xB5, 0x07, 0x58, 0xD0, 0xEE, 0x3F, 0x21, 0xE8, 0xC8, 0x0F, 0x5F,
0xFA, 0x1C, 0x64, 0x74, 0x49, 0x52, 0xEB, 0xE7, 0xEE, 0xDE, 0xBA, 0x23, 0x26, 0x4A, 0xF6,
0x9C, 0x1A, 0x09, 0x3F, 0xB9, 0x0B, 0x36, 0x26, 0x1A, 0xBE, 0xA9, 0x76, 0xE6, 0xF2, 0x69,
0xDE, 0xFF, 0xAF, 0xCC, 0x0C, 0x9A, 0x66, 0x03, 0x86, 0x0A, 0x1F, 0x49, 0xA4, 0x10, 0xB6,
0xBC, 0xC3, 0x7C, 0x88, 0xE8, 0xCE, 0x4B, 0xD9};
// exponent2 = d mod (q - 1)
const CryptoPP::byte* Exponent2;
static constexpr CryptoPP::byte Exponent2[] = {
0xB3, 0x73, 0xA3, 0x59, 0xE6, 0x97, 0xC0, 0xAB, 0x3B, 0x68, 0xFC, 0x39, 0xAC, 0xDB, 0x44,
0xB1, 0xB4, 0x9E, 0x35, 0x4D, 0xBE, 0xC5, 0x36, 0x69, 0x6C, 0x3D, 0xC5, 0xFC, 0xFE, 0x4B,
0x2F, 0xDC, 0x86, 0x80, 0x46, 0x96, 0x40, 0x1A, 0x0D, 0x6E, 0xFA, 0x8C, 0xE0, 0x47, 0x91,
0xAC, 0xAD, 0x95, 0x2B, 0x8E, 0x1F, 0xF2, 0x0A, 0x45, 0xF8, 0x29, 0x95, 0x70, 0xC6, 0x88,
0x5F, 0x71, 0x03, 0x99, 0x79, 0xBC, 0x84, 0x71, 0xBD, 0xE8, 0x84, 0x8C, 0x0E, 0xD4, 0x7B,
0x30, 0x74, 0x57, 0x1A, 0x95, 0xE7, 0x90, 0x19, 0x8D, 0xAD, 0x8B, 0x4C, 0x4E, 0xC3, 0xE7,
0x6B, 0x23, 0x86, 0x01, 0xEE, 0x9B, 0xE0, 0x2F, 0x15, 0xA2, 0x2C, 0x4C, 0x39, 0xD3, 0xDF,
0x9C, 0x39, 0x01, 0xF1, 0x8C, 0x44, 0x4A, 0x15, 0x44, 0xDC, 0x51, 0xF7, 0x22, 0xD7, 0x7F,
0x41, 0x7F, 0x68, 0xFA, 0xEE, 0x56, 0xE8, 0x05};
// e
const CryptoPP::byte* PublicExponent;
static constexpr CryptoPP::byte PublicExponent[] = {0x00, 0x01, 0x00, 0x01};
// (InverseQ)(q) = 1 mod p
const CryptoPP::byte* Coefficient;
static constexpr CryptoPP::byte Coefficient[] = {
0xC0, 0x32, 0x43, 0xD3, 0x8C, 0x3D, 0xB4, 0xD2, 0x48, 0x8C, 0x42, 0x41, 0x24, 0x94, 0x6C,
0x80, 0xC9, 0xC1, 0x79, 0x36, 0x7F, 0xAC, 0xC3, 0xFF, 0x6A, 0x25, 0xEB, 0x2C, 0xFB, 0xD4,
0x2B, 0xA0, 0xEB, 0xFE, 0x25, 0xE9, 0xC6, 0x77, 0xCE, 0xFE, 0x2D, 0x23, 0xFE, 0xD0, 0xF4,
0x0F, 0xD9, 0x7E, 0xD5, 0xA5, 0x7D, 0x1F, 0xC0, 0xE8, 0xE8, 0xEC, 0x80, 0x5B, 0xC7, 0xFD,
0xE2, 0xBD, 0x94, 0xA6, 0x2B, 0xDD, 0x6A, 0x60, 0x45, 0x54, 0xAB, 0xCA, 0x42, 0x9C, 0x6A,
0x6C, 0xBF, 0x3C, 0x84, 0xF9, 0xA5, 0x0E, 0x63, 0x0C, 0x51, 0x58, 0x62, 0x6D, 0x5A, 0xB7,
0x3C, 0x3F, 0x49, 0x1A, 0xD0, 0x93, 0xB8, 0x4F, 0x1A, 0x6C, 0x5F, 0xC5, 0xE5, 0xA9, 0x75,
0xD4, 0x86, 0x9E, 0xDF, 0x87, 0x0F, 0x27, 0xB0, 0x26, 0x78, 0x4E, 0xFB, 0xC1, 0x8A, 0x4A,
0x24, 0x3F, 0x7F, 0x8F, 0x9A, 0x12, 0x51, 0xCB};
// n = p * q
const CryptoPP::byte* Modulus;
static constexpr CryptoPP::byte Modulus[] = {
0xC2, 0xD2, 0x44, 0xBC, 0xDD, 0x84, 0x3F, 0xD9, 0xC5, 0x22, 0xAF, 0xF7, 0xFC, 0x88, 0x8A,
0x33, 0x80, 0xED, 0x8E, 0xE2, 0xCC, 0x81, 0xF7, 0xEC, 0xF8, 0x1C, 0x79, 0xBF, 0x02, 0xBB,
0x12, 0x8E, 0x61, 0x68, 0x29, 0x1B, 0x15, 0xB6, 0x5E, 0xC6, 0xF8, 0xBF, 0x5A, 0xE0, 0x3B,
0x6A, 0x6C, 0xD9, 0xD6, 0xF5, 0x75, 0xAB, 0xA0, 0x6F, 0x34, 0x81, 0x34, 0x9A, 0x5B, 0xAD,
0xED, 0x31, 0xE3, 0xC6, 0xEA, 0x1A, 0xD1, 0x13, 0x22, 0xBB, 0xB3, 0xDA, 0xB3, 0xB2, 0x53,
0xBD, 0x45, 0x79, 0x87, 0xAD, 0x0A, 0x01, 0x72, 0x18, 0x10, 0x29, 0x49, 0xF4, 0x41, 0x7F,
0xD6, 0x47, 0x0C, 0x72, 0x92, 0x9E, 0xE9, 0xBB, 0x95, 0xA9, 0x5D, 0x79, 0xEB, 0xE4, 0x30,
0x76, 0x90, 0x45, 0x4B, 0x9D, 0x9C, 0xCF, 0x92, 0x03, 0x60, 0x8C, 0x4B, 0x6C, 0xB3, 0x7A,
0x3A, 0x05, 0x39, 0xA0, 0x66, 0xA9, 0x35, 0xCF, 0xB9, 0xFA, 0xAD, 0x9C, 0xAB, 0xEB, 0xE4,
0x6A, 0x8C, 0xE9, 0x3B, 0xCC, 0x72, 0x12, 0x62, 0x63, 0xBD, 0x80, 0xC4, 0xEE, 0x37, 0x2B,
0x32, 0x03, 0xA3, 0x09, 0xF7, 0xA0, 0x61, 0x57, 0xAD, 0x0D, 0xCF, 0x15, 0x98, 0x9E, 0x4E,
0x49, 0xF8, 0xB5, 0xA3, 0x5C, 0x27, 0xEE, 0x45, 0x04, 0xEA, 0xE4, 0x4B, 0xBC, 0x8F, 0x87,
0xED, 0x19, 0x1E, 0x46, 0x75, 0x63, 0xC4, 0x5B, 0xD5, 0xBC, 0x09, 0x2F, 0x02, 0x73, 0x19,
0x3C, 0x58, 0x55, 0x49, 0x66, 0x4C, 0x11, 0xEC, 0x0F, 0x09, 0xFA, 0xA5, 0x56, 0x0A, 0x5A,
0x63, 0x56, 0xAD, 0xA0, 0x0D, 0x86, 0x08, 0xC1, 0xE6, 0xB6, 0x13, 0x22, 0x49, 0x2F, 0x7C,
0xDB, 0x4C, 0x56, 0x97, 0x0E, 0xC2, 0xD9, 0x2E, 0x87, 0xBC, 0x0E, 0x67, 0xC0, 0x1B, 0x58,
0xBC, 0x64, 0x2B, 0xC2, 0x6E, 0xE2, 0x93, 0x2E, 0xB5, 0x6B, 0x70, 0xA4, 0x42, 0x9F, 0x64,
0xC1};
// p
const CryptoPP::byte* Prime1;
static constexpr CryptoPP::byte Prime1[] = {
0xE5, 0x62, 0xE1, 0x7F, 0x9F, 0x86, 0x08, 0xE2, 0x61, 0xD3, 0xD0, 0x42, 0xE2, 0xC4, 0xB6,
0xA8, 0x51, 0x09, 0x19, 0x14, 0xA4, 0x3A, 0x11, 0x4C, 0x33, 0xA5, 0x9C, 0x01, 0x5E, 0x34,
0xB6, 0x3F, 0x02, 0x1A, 0xCA, 0x47, 0xF1, 0x4F, 0x3B, 0x35, 0x2A, 0x07, 0x20, 0xEC, 0xD8,
0xC1, 0x15, 0xD9, 0xCA, 0x03, 0x4F, 0xB8, 0xE8, 0x09, 0x73, 0x3F, 0x85, 0xB7, 0x41, 0xD5,
0x51, 0x3E, 0x7B, 0xE3, 0x53, 0x2B, 0x48, 0x8B, 0x8E, 0xCB, 0xBA, 0xF7, 0xE0, 0x60, 0xF5,
0x35, 0x0E, 0x6F, 0xB0, 0xD9, 0x2A, 0x99, 0xD0, 0xFF, 0x60, 0x14, 0xED, 0x40, 0xEA, 0xF8,
0xD7, 0x0B, 0xC3, 0x8D, 0x8C, 0xE8, 0x81, 0xB3, 0x75, 0x93, 0x15, 0xB3, 0x7D, 0xF6, 0x39,
0x60, 0x1A, 0x00, 0xE7, 0xC3, 0x27, 0xAD, 0xA4, 0x33, 0xD5, 0x3E, 0xA4, 0x35, 0x48, 0x6F,
0x22, 0xEF, 0x5D, 0xDD, 0x7D, 0x7B, 0x61, 0x05};
// q
const CryptoPP::byte* Prime2;
const CryptoPP::byte* PrivateExponent;
// Constructor
DebugRifKeyset() {
// Initialize PrivateExponent
PrivateExponent = new CryptoPP::byte[0x100]{
0x01, 0x61, 0xAD, 0xD8, 0x9C, 0x06, 0x89, 0xD0, 0x60, 0xC8, 0x41, 0xF0, 0xB3, 0x83,
0x01, 0x5D, 0xE3, 0xA2, 0x6B, 0xA2, 0xBA, 0x9A, 0x0A, 0x58, 0xCD, 0x1A, 0xA0, 0x97,
0x64, 0xEC, 0xD0, 0x31, 0x1F, 0xCA, 0x36, 0x0E, 0x69, 0xDD, 0x40, 0xF7, 0x4E, 0xC0,
0xC6, 0xA3, 0x73, 0xF0, 0x69, 0x84, 0xB2, 0xF4, 0x4B, 0x29, 0x14, 0x2A, 0x6D, 0xB8,
0x23, 0xD8, 0x1B, 0x61, 0xD4, 0x9E, 0x87, 0xB3, 0xBB, 0xA9, 0xC4, 0x85, 0x4A, 0xF8,
0x03, 0x4A, 0xBF, 0xFE, 0xF9, 0xFE, 0x8B, 0xDD, 0x54, 0x83, 0xBA, 0xE0, 0x2F, 0x3F,
0xB1, 0xEF, 0xA5, 0x05, 0x5D, 0x28, 0x8B, 0xAB, 0xB5, 0xD0, 0x23, 0x2F, 0x8A, 0xCF,
0x48, 0x7C, 0xAA, 0xBB, 0xC8, 0x5B, 0x36, 0x27, 0xC5, 0x16, 0xA4, 0xB6, 0x61, 0xAC,
0x0C, 0x28, 0x47, 0x79, 0x3F, 0x38, 0xAE, 0x5E, 0x25, 0xC6, 0xAF, 0x35, 0xAE, 0xBC,
0xB0, 0xF3, 0xBC, 0xBD, 0xFD, 0xA4, 0x87, 0x0D, 0x14, 0x3D, 0x90, 0xE4, 0xDE, 0x5D,
0x1D, 0x46, 0x81, 0xF1, 0x28, 0x6D, 0x2F, 0x2C, 0x5E, 0x97, 0x2D, 0x89, 0x2A, 0x51,
0x72, 0x3C, 0x20, 0x02, 0x59, 0xB1, 0x98, 0x93, 0x05, 0x1E, 0x3F, 0xA1, 0x8A, 0x69,
0x30, 0x0E, 0x70, 0x84, 0x8B, 0xAE, 0x97, 0xA1, 0x08, 0x95, 0x63, 0x4C, 0xC7, 0xE8,
0x5D, 0x59, 0xCA, 0x78, 0x2A, 0x23, 0x87, 0xAC, 0x6F, 0x04, 0x33, 0xB1, 0x61, 0xB9,
0xF0, 0x95, 0xDA, 0x33, 0xCC, 0xE0, 0x4C, 0x82, 0x68, 0x82, 0x14, 0x51, 0xBE, 0x49,
0x1C, 0x58, 0xA2, 0x8B, 0x05, 0x4E, 0x98, 0x37, 0xEB, 0x94, 0x0B, 0x01, 0x22, 0xDC,
0xB3, 0x19, 0xCA, 0x77, 0xA6, 0x6E, 0x97, 0xFF, 0x8A, 0x53, 0x5A, 0xC5, 0x24, 0xE4,
0xAF, 0x6E, 0xA8, 0x2B, 0x53, 0xA4, 0xBE, 0x96, 0xA5, 0x7B, 0xCE, 0x22, 0x56, 0xA3,
0xF1, 0xCF, 0x14, 0xA5};
// Initialize Exponent1
Exponent1 = new CryptoPP::byte[0x80]{
0xCD, 0x9A, 0x61, 0xB0, 0xB8, 0xD5, 0xB4, 0xE4, 0xE4, 0xF6, 0xAB, 0xF7, 0x27,
0xB7, 0x56, 0x59, 0x6B, 0xB9, 0x11, 0xE7, 0xF4, 0x83, 0xAF, 0xB9, 0x73, 0x99,
0x7F, 0x49, 0xA2, 0x9C, 0xF0, 0xB5, 0x6D, 0x37, 0x82, 0x14, 0x15, 0xF1, 0x04,
0x8A, 0xD4, 0x8E, 0xEB, 0x2E, 0x1F, 0xE2, 0x81, 0xA9, 0x62, 0x6E, 0xB1, 0x68,
0x75, 0x62, 0xF3, 0x0F, 0xFE, 0xD4, 0x91, 0x87, 0x98, 0x78, 0xBF, 0x26, 0xB5,
0x07, 0x58, 0xD0, 0xEE, 0x3F, 0x21, 0xE8, 0xC8, 0x0F, 0x5F, 0xFA, 0x1C, 0x64,
0x74, 0x49, 0x52, 0xEB, 0xE7, 0xEE, 0xDE, 0xBA, 0x23, 0x26, 0x4A, 0xF6, 0x9C,
0x1A, 0x09, 0x3F, 0xB9, 0x0B, 0x36, 0x26, 0x1A, 0xBE, 0xA9, 0x76, 0xE6, 0xF2,
0x69, 0xDE, 0xFF, 0xAF, 0xCC, 0x0C, 0x9A, 0x66, 0x03, 0x86, 0x0A, 0x1F, 0x49,
0xA4, 0x10, 0xB6, 0xBC, 0xC3, 0x7C, 0x88, 0xE8, 0xCE, 0x4B, 0xD9
};
Exponent2 = new CryptoPP::byte[0x80]{
0xB3, 0x73, 0xA3, 0x59, 0xE6, 0x97, 0xC0, 0xAB, 0x3B, 0x68, 0xFC, 0x39, 0xAC,
0xDB, 0x44, 0xB1, 0xB4, 0x9E, 0x35, 0x4D, 0xBE, 0xC5, 0x36, 0x69, 0x6C, 0x3D,
0xC5, 0xFC, 0xFE, 0x4B, 0x2F, 0xDC, 0x86, 0x80, 0x46, 0x96, 0x40, 0x1A, 0x0D,
0x6E, 0xFA, 0x8C, 0xE0, 0x47, 0x91, 0xAC, 0xAD, 0x95, 0x2B, 0x8E, 0x1F, 0xF2,
0x0A, 0x45, 0xF8, 0x29, 0x95, 0x70, 0xC6, 0x88, 0x5F, 0x71, 0x03, 0x99, 0x79,
0xBC, 0x84, 0x71, 0xBD, 0xE8, 0x84, 0x8C, 0x0E, 0xD4, 0x7B, 0x30, 0x74, 0x57,
0x1A, 0x95, 0xE7, 0x90, 0x19, 0x8D, 0xAD, 0x8B, 0x4C, 0x4E, 0xC3, 0xE7, 0x6B,
0x23, 0x86, 0x01, 0xEE, 0x9B, 0xE0, 0x2F, 0x15, 0xA2, 0x2C, 0x4C, 0x39, 0xD3,
0xDF, 0x9C, 0x39, 0x01, 0xF1, 0x8C, 0x44, 0x4A, 0x15, 0x44, 0xDC, 0x51, 0xF7,
0x22, 0xD7, 0x7F, 0x41, 0x7F, 0x68, 0xFA, 0xEE, 0x56, 0xE8, 0x05};
PublicExponent = new CryptoPP::byte[4]{0x00, 0x01, 0x00, 0x01};
Coefficient = new CryptoPP::byte[0x80]{
0xC0, 0x32, 0x43, 0xD3, 0x8C, 0x3D, 0xB4, 0xD2, 0x48, 0x8C, 0x42, 0x41, 0x24,
0x94, 0x6C, 0x80, 0xC9, 0xC1, 0x79, 0x36, 0x7F, 0xAC, 0xC3, 0xFF, 0x6A, 0x25,
0xEB, 0x2C, 0xFB, 0xD4, 0x2B, 0xA0, 0xEB, 0xFE, 0x25, 0xE9, 0xC6, 0x77, 0xCE,
0xFE, 0x2D, 0x23, 0xFE, 0xD0, 0xF4, 0x0F, 0xD9, 0x7E, 0xD5, 0xA5, 0x7D, 0x1F,
0xC0, 0xE8, 0xE8, 0xEC, 0x80, 0x5B, 0xC7, 0xFD, 0xE2, 0xBD, 0x94, 0xA6, 0x2B,
0xDD, 0x6A, 0x60, 0x45, 0x54, 0xAB, 0xCA, 0x42, 0x9C, 0x6A, 0x6C, 0xBF, 0x3C,
0x84, 0xF9, 0xA5, 0x0E, 0x63, 0x0C, 0x51, 0x58, 0x62, 0x6D, 0x5A, 0xB7, 0x3C,
0x3F, 0x49, 0x1A, 0xD0, 0x93, 0xB8, 0x4F, 0x1A, 0x6C, 0x5F, 0xC5, 0xE5, 0xA9,
0x75, 0xD4, 0x86, 0x9E, 0xDF, 0x87, 0x0F, 0x27, 0xB0, 0x26, 0x78, 0x4E, 0xFB,
0xC1, 0x8A, 0x4A, 0x24, 0x3F, 0x7F, 0x8F, 0x9A, 0x12, 0x51, 0xCB};
Modulus = new CryptoPP::byte[0x100]{
0xC2, 0xD2, 0x44, 0xBC, 0xDD, 0x84, 0x3F, 0xD9, 0xC5, 0x22, 0xAF, 0xF7, 0xFC, 0x88,
0x8A, 0x33, 0x80, 0xED, 0x8E, 0xE2, 0xCC, 0x81, 0xF7, 0xEC, 0xF8, 0x1C, 0x79, 0xBF,
0x02, 0xBB, 0x12, 0x8E, 0x61, 0x68, 0x29, 0x1B, 0x15, 0xB6, 0x5E, 0xC6, 0xF8, 0xBF,
0x5A, 0xE0, 0x3B, 0x6A, 0x6C, 0xD9, 0xD6, 0xF5, 0x75, 0xAB, 0xA0, 0x6F, 0x34, 0x81,
0x34, 0x9A, 0x5B, 0xAD, 0xED, 0x31, 0xE3, 0xC6, 0xEA, 0x1A, 0xD1, 0x13, 0x22, 0xBB,
0xB3, 0xDA, 0xB3, 0xB2, 0x53, 0xBD, 0x45, 0x79, 0x87, 0xAD, 0x0A, 0x01, 0x72, 0x18,
0x10, 0x29, 0x49, 0xF4, 0x41, 0x7F, 0xD6, 0x47, 0x0C, 0x72, 0x92, 0x9E, 0xE9, 0xBB,
0x95, 0xA9, 0x5D, 0x79, 0xEB, 0xE4, 0x30, 0x76, 0x90, 0x45, 0x4B, 0x9D, 0x9C, 0xCF,
0x92, 0x03, 0x60, 0x8C, 0x4B, 0x6C, 0xB3, 0x7A, 0x3A, 0x05, 0x39, 0xA0, 0x66, 0xA9,
0x35, 0xCF, 0xB9, 0xFA, 0xAD, 0x9C, 0xAB, 0xEB, 0xE4, 0x6A, 0x8C, 0xE9, 0x3B, 0xCC,
0x72, 0x12, 0x62, 0x63, 0xBD, 0x80, 0xC4, 0xEE, 0x37, 0x2B, 0x32, 0x03, 0xA3, 0x09,
0xF7, 0xA0, 0x61, 0x57, 0xAD, 0x0D, 0xCF, 0x15, 0x98, 0x9E, 0x4E, 0x49, 0xF8, 0xB5,
0xA3, 0x5C, 0x27, 0xEE, 0x45, 0x04, 0xEA, 0xE4, 0x4B, 0xBC, 0x8F, 0x87, 0xED, 0x19,
0x1E, 0x46, 0x75, 0x63, 0xC4, 0x5B, 0xD5, 0xBC, 0x09, 0x2F, 0x02, 0x73, 0x19, 0x3C,
0x58, 0x55, 0x49, 0x66, 0x4C, 0x11, 0xEC, 0x0F, 0x09, 0xFA, 0xA5, 0x56, 0x0A, 0x5A,
0x63, 0x56, 0xAD, 0xA0, 0x0D, 0x86, 0x08, 0xC1, 0xE6, 0xB6, 0x13, 0x22, 0x49, 0x2F,
0x7C, 0xDB, 0x4C, 0x56, 0x97, 0x0E, 0xC2, 0xD9, 0x2E, 0x87, 0xBC, 0x0E, 0x67, 0xC0,
0x1B, 0x58, 0xBC, 0x64, 0x2B, 0xC2, 0x6E, 0xE2, 0x93, 0x2E, 0xB5, 0x6B, 0x70, 0xA4,
0x42, 0x9F, 0x64, 0xC1};
Prime1 = new CryptoPP::byte[0x80]{
0xE5, 0x62, 0xE1, 0x7F, 0x9F, 0x86, 0x08, 0xE2, 0x61, 0xD3, 0xD0, 0x42, 0xE2,
0xC4, 0xB6, 0xA8, 0x51, 0x09, 0x19, 0x14, 0xA4, 0x3A, 0x11, 0x4C, 0x33, 0xA5,
0x9C, 0x01, 0x5E, 0x34, 0xB6, 0x3F, 0x02, 0x1A, 0xCA, 0x47, 0xF1, 0x4F, 0x3B,
0x35, 0x2A, 0x07, 0x20, 0xEC, 0xD8, 0xC1, 0x15, 0xD9, 0xCA, 0x03, 0x4F, 0xB8,
0xE8, 0x09, 0x73, 0x3F, 0x85, 0xB7, 0x41, 0xD5, 0x51, 0x3E, 0x7B, 0xE3, 0x53,
0x2B, 0x48, 0x8B, 0x8E, 0xCB, 0xBA, 0xF7, 0xE0, 0x60, 0xF5, 0x35, 0x0E, 0x6F,
0xB0, 0xD9, 0x2A, 0x99, 0xD0, 0xFF, 0x60, 0x14, 0xED, 0x40, 0xEA, 0xF8, 0xD7,
0x0B, 0xC3, 0x8D, 0x8C, 0xE8, 0x81, 0xB3, 0x75, 0x93, 0x15, 0xB3, 0x7D, 0xF6,
0x39, 0x60, 0x1A, 0x00, 0xE7, 0xC3, 0x27, 0xAD, 0xA4, 0x33, 0xD5, 0x3E, 0xA4,
0x35, 0x48, 0x6F, 0x22, 0xEF, 0x5D, 0xDD, 0x7D, 0x7B, 0x61, 0x05};
Prime2 = new CryptoPP::byte[0x80]{
0xD9, 0x6C, 0xC2, 0x0C, 0xF7, 0xAE, 0xD1, 0xF3, 0x3B, 0x3B, 0x49, 0x1E, 0x9F,
0x12, 0x9C, 0xA1, 0x78, 0x1F, 0x35, 0x1D, 0x98, 0x26, 0x13, 0x71, 0xF9, 0x09,
0xFD, 0xF0, 0xAD, 0x38, 0x55, 0xB7, 0xEE, 0x61, 0x04, 0x72, 0x51, 0x87, 0x2E,
0x05, 0x84, 0xB1, 0x1D, 0x0C, 0x0D, 0xDB, 0xD4, 0x25, 0x3E, 0x26, 0xED, 0xEA,
0xB8, 0xF7, 0x49, 0xFE, 0xA2, 0x94, 0xE6, 0xF2, 0x08, 0x92, 0xA7, 0x85, 0xF5,
0x30, 0xB9, 0x84, 0x22, 0xBF, 0xCA, 0xF0, 0x5F, 0xCB, 0x31, 0x20, 0x34, 0x49,
0x16, 0x76, 0x34, 0xCC, 0x7A, 0xCB, 0x96, 0xFE, 0x78, 0x7A, 0x41, 0xFE, 0x9A,
0xA2, 0x23, 0xF7, 0x68, 0x80, 0xD6, 0xCE, 0x4A, 0x78, 0xA5, 0xB7, 0x05, 0x77,
0x81, 0x1F, 0xDE, 0x5E, 0xA8, 0x6E, 0x3E, 0x87, 0xEC, 0x44, 0xD2, 0x69, 0xC6,
0x54, 0x91, 0x6B, 0x5E, 0x13, 0x8A, 0x03, 0x87, 0x05, 0x31, 0x8D};
};
static constexpr CryptoPP::byte Prime2[] = {
0xD9, 0x6C, 0xC2, 0x0C, 0xF7, 0xAE, 0xD1, 0xF3, 0x3B, 0x3B, 0x49, 0x1E, 0x9F, 0x12, 0x9C,
0xA1, 0x78, 0x1F, 0x35, 0x1D, 0x98, 0x26, 0x13, 0x71, 0xF9, 0x09, 0xFD, 0xF0, 0xAD, 0x38,
0x55, 0xB7, 0xEE, 0x61, 0x04, 0x72, 0x51, 0x87, 0x2E, 0x05, 0x84, 0xB1, 0x1D, 0x0C, 0x0D,
0xDB, 0xD4, 0x25, 0x3E, 0x26, 0xED, 0xEA, 0xB8, 0xF7, 0x49, 0xFE, 0xA2, 0x94, 0xE6, 0xF2,
0x08, 0x92, 0xA7, 0x85, 0xF5, 0x30, 0xB9, 0x84, 0x22, 0xBF, 0xCA, 0xF0, 0x5F, 0xCB, 0x31,
0x20, 0x34, 0x49, 0x16, 0x76, 0x34, 0xCC, 0x7A, 0xCB, 0x96, 0xFE, 0x78, 0x7A, 0x41, 0xFE,
0x9A, 0xA2, 0x23, 0xF7, 0x68, 0x80, 0xD6, 0xCE, 0x4A, 0x78, 0xA5, 0xB7, 0x05, 0x77, 0x81,
0x1F, 0xDE, 0x5E, 0xA8, 0x6E, 0x3E, 0x87, 0xEC, 0x44, 0xD2, 0x69, 0xC6, 0x54, 0x91, 0x6B,
0x5E, 0x13, 0x8A, 0x03, 0x87, 0x05, 0x31, 0x8D};
static constexpr CryptoPP::byte PrivateExponent[] = {
0x01, 0x61, 0xAD, 0xD8, 0x9C, 0x06, 0x89, 0xD0, 0x60, 0xC8, 0x41, 0xF0, 0xB3, 0x83, 0x01,
0x5D, 0xE3, 0xA2, 0x6B, 0xA2, 0xBA, 0x9A, 0x0A, 0x58, 0xCD, 0x1A, 0xA0, 0x97, 0x64, 0xEC,
0xD0, 0x31, 0x1F, 0xCA, 0x36, 0x0E, 0x69, 0xDD, 0x40, 0xF7, 0x4E, 0xC0, 0xC6, 0xA3, 0x73,
0xF0, 0x69, 0x84, 0xB2, 0xF4, 0x4B, 0x29, 0x14, 0x2A, 0x6D, 0xB8, 0x23, 0xD8, 0x1B, 0x61,
0xD4, 0x9E, 0x87, 0xB3, 0xBB, 0xA9, 0xC4, 0x85, 0x4A, 0xF8, 0x03, 0x4A, 0xBF, 0xFE, 0xF9,
0xFE, 0x8B, 0xDD, 0x54, 0x83, 0xBA, 0xE0, 0x2F, 0x3F, 0xB1, 0xEF, 0xA5, 0x05, 0x5D, 0x28,
0x8B, 0xAB, 0xB5, 0xD0, 0x23, 0x2F, 0x8A, 0xCF, 0x48, 0x7C, 0xAA, 0xBB, 0xC8, 0x5B, 0x36,
0x27, 0xC5, 0x16, 0xA4, 0xB6, 0x61, 0xAC, 0x0C, 0x28, 0x47, 0x79, 0x3F, 0x38, 0xAE, 0x5E,
0x25, 0xC6, 0xAF, 0x35, 0xAE, 0xBC, 0xB0, 0xF3, 0xBC, 0xBD, 0xFD, 0xA4, 0x87, 0x0D, 0x14,
0x3D, 0x90, 0xE4, 0xDE, 0x5D, 0x1D, 0x46, 0x81, 0xF1, 0x28, 0x6D, 0x2F, 0x2C, 0x5E, 0x97,
0x2D, 0x89, 0x2A, 0x51, 0x72, 0x3C, 0x20, 0x02, 0x59, 0xB1, 0x98, 0x93, 0x05, 0x1E, 0x3F,
0xA1, 0x8A, 0x69, 0x30, 0x0E, 0x70, 0x84, 0x8B, 0xAE, 0x97, 0xA1, 0x08, 0x95, 0x63, 0x4C,
0xC7, 0xE8, 0x5D, 0x59, 0xCA, 0x78, 0x2A, 0x23, 0x87, 0xAC, 0x6F, 0x04, 0x33, 0xB1, 0x61,
0xB9, 0xF0, 0x95, 0xDA, 0x33, 0xCC, 0xE0, 0x4C, 0x82, 0x68, 0x82, 0x14, 0x51, 0xBE, 0x49,
0x1C, 0x58, 0xA2, 0x8B, 0x05, 0x4E, 0x98, 0x37, 0xEB, 0x94, 0x0B, 0x01, 0x22, 0xDC, 0xB3,
0x19, 0xCA, 0x77, 0xA6, 0x6E, 0x97, 0xFF, 0x8A, 0x53, 0x5A, 0xC5, 0x24, 0xE4, 0xAF, 0x6E,
0xA8, 0x2B, 0x53, 0xA4, 0xBE, 0x96, 0xA5, 0x7B, 0xCE, 0x22, 0x56, 0xA3, 0xF1, 0xCF, 0x14,
0xA5};
};
class PkgDerivedKey3Keyset {
public:
// PkgDerivedKey3Keyset();
//~PkgDerivedKey3Keyset();
// Constructor
// std::uint8_t* PrivateExponent;
const CryptoPP::byte* Exponent1;
static constexpr CryptoPP::byte Exponent1[] = {
0x52, 0xCC, 0x2D, 0xA0, 0x9C, 0x9E, 0x75, 0xE7, 0x28, 0xEE, 0x3D, 0xDE, 0xE3, 0x45, 0xD1,
0x4F, 0x94, 0x1C, 0xCC, 0xC8, 0x87, 0x29, 0x45, 0x3B, 0x8D, 0x6E, 0xAB, 0x6E, 0x2A, 0xA7,
0xC7, 0x15, 0x43, 0xA3, 0x04, 0x8F, 0x90, 0x5F, 0xEB, 0xF3, 0x38, 0x4A, 0x77, 0xFA, 0x36,
0xB7, 0x15, 0x76, 0xB6, 0x01, 0x1A, 0x8E, 0x25, 0x87, 0x82, 0xF1, 0x55, 0xD8, 0xC6, 0x43,
0x2A, 0xC0, 0xE5, 0x98, 0xC9, 0x32, 0xD1, 0x94, 0x6F, 0xD9, 0x01, 0xBA, 0x06, 0x81, 0xE0,
0x6D, 0x88, 0xF2, 0x24, 0x2A, 0x25, 0x01, 0x64, 0x5C, 0xBF, 0xF2, 0xD9, 0x99, 0x67, 0x3E,
0xF6, 0x72, 0xEE, 0xE4, 0xE2, 0x33, 0x5C, 0xF8, 0x00, 0x40, 0xE3, 0x2A, 0x9A, 0xF4, 0x3D,
0x22, 0x86, 0x44, 0x3C, 0xFB, 0x0A, 0xA5, 0x7C, 0x3F, 0xCC, 0xF5, 0xF1, 0x16, 0xC4, 0xAC,
0x88, 0xB4, 0xDE, 0x62, 0x94, 0x92, 0x6A, 0x13};
// exponent2 = d mod (q - 1)
const CryptoPP::byte* Exponent2;
static constexpr CryptoPP::byte Exponent2[] = {
0x7C, 0x9D, 0xAD, 0x39, 0xE0, 0xD5, 0x60, 0x14, 0x94, 0x48, 0x19, 0x7F, 0x88, 0x95, 0xD5,
0x8B, 0x80, 0xAD, 0x85, 0x8A, 0x4B, 0x77, 0x37, 0x85, 0xD0, 0x77, 0xBB, 0xBF, 0x89, 0x71,
0x4A, 0x72, 0xCB, 0x72, 0x68, 0x38, 0xEC, 0x02, 0xC6, 0x7D, 0xC6, 0x44, 0x06, 0x33, 0x51,
0x1C, 0xC0, 0xFF, 0x95, 0x8F, 0x0D, 0x75, 0xDC, 0x25, 0xBB, 0x0B, 0x73, 0x91, 0xA9, 0x6D,
0x42, 0xD8, 0x03, 0xB7, 0x68, 0xD4, 0x1E, 0x75, 0x62, 0xA3, 0x70, 0x35, 0x79, 0x78, 0x00,
0xC8, 0xF5, 0xEF, 0x15, 0xB9, 0xFC, 0x4E, 0x47, 0x5A, 0xC8, 0x70, 0x70, 0x5B, 0x52, 0x98,
0xC0, 0xC2, 0x58, 0x4A, 0x70, 0x96, 0xCC, 0xB8, 0x10, 0xE1, 0x2F, 0x78, 0x8B, 0x2B, 0xA1,
0x7F, 0xF9, 0xAC, 0xDE, 0xF0, 0xBB, 0x2B, 0xE2, 0x66, 0xE3, 0x22, 0x92, 0x31, 0x21, 0x57,
0x92, 0xC4, 0xB8, 0xF2, 0x3E, 0x76, 0x20, 0x37};
// e
const CryptoPP::byte* PublicExponent;
static constexpr CryptoPP::byte PublicExponent[] = {0, 1, 0, 1};
// (InverseQ)(q) = 1 mod p
const CryptoPP::byte* Coefficient;
static constexpr CryptoPP::byte Coefficient[] = {
0x45, 0x97, 0x55, 0xD4, 0x22, 0x08, 0x5E, 0xF3, 0x5C, 0xB4, 0x05, 0x7A, 0xFD, 0xAA, 0x42,
0x42, 0xAD, 0x9A, 0x8C, 0xA0, 0x6C, 0xBB, 0x1D, 0x68, 0x54, 0x54, 0x6E, 0x3E, 0x32, 0xE3,
0x53, 0x73, 0x76, 0xF1, 0x3E, 0x01, 0xEA, 0xD3, 0xCF, 0xEB, 0xEB, 0x23, 0x3E, 0xC0, 0xBE,
0xCE, 0xEC, 0x2C, 0x89, 0x5F, 0xA8, 0x27, 0x3A, 0x4C, 0xB7, 0xE6, 0x74, 0xBC, 0x45, 0x4C,
0x26, 0xC8, 0x25, 0xFF, 0x34, 0x63, 0x25, 0x37, 0xE1, 0x48, 0x10, 0xC1, 0x93, 0xA6, 0xAF,
0xEB, 0xBA, 0xE3, 0xA2, 0xF1, 0x3D, 0xEF, 0x63, 0xD8, 0xF4, 0xFD, 0xD3, 0xEE, 0xE2, 0x5D,
0xE9, 0x33, 0xCC, 0xAD, 0xBA, 0x75, 0x5C, 0x85, 0xAF, 0xCE, 0xA9, 0x3D, 0xD1, 0xA2, 0x17,
0xF3, 0xF6, 0x98, 0xB3, 0x50, 0x8E, 0x5E, 0xF6, 0xEB, 0x02, 0x8E, 0xA1, 0x62, 0xA7, 0xD6,
0x2C, 0xEC, 0x91, 0xFF, 0x15, 0x40, 0xD2, 0xE3};
// n = p * q
const CryptoPP::byte* Modulus;
static constexpr CryptoPP::byte Modulus[] = {
0xd2, 0x12, 0xfc, 0x33, 0x5f, 0x6d, 0xdb, 0x83, 0x16, 0x09, 0x62, 0x8b, 0x03, 0x56, 0x27,
0x37, 0x82, 0xd4, 0x77, 0x85, 0x35, 0x29, 0x39, 0x2d, 0x52, 0x6b, 0x8c, 0x4c, 0x8c, 0xfb,
0x06, 0xc1, 0x84, 0x5b, 0xe7, 0xd4, 0xf7, 0xbc, 0xd2, 0x4e, 0x62, 0x45, 0xcd, 0x2a, 0xbb,
0xd7, 0x77, 0x76, 0x45, 0x36, 0x55, 0x27, 0x3f, 0xb3, 0xf5, 0xf9, 0x8e, 0xda, 0x4b, 0xef,
0xaa, 0x59, 0xae, 0xb3, 0x9b, 0xea, 0x54, 0x98, 0xd2, 0x06, 0x32, 0x6a, 0x58, 0x31, 0x2a,
0xe0, 0xd4, 0x4f, 0x90, 0xb5, 0x0a, 0x7d, 0xec, 0xf4, 0x3a, 0x9c, 0x52, 0x67, 0x2d, 0x99,
0x31, 0x8e, 0x0c, 0x43, 0xe6, 0x82, 0xfe, 0x07, 0x46, 0xe1, 0x2e, 0x50, 0xd4, 0x1f, 0x2d,
0x2f, 0x7e, 0xd9, 0x08, 0xba, 0x06, 0xb3, 0xbf, 0x2e, 0x20, 0x3f, 0x4e, 0x3f, 0xfe, 0x44,
0xff, 0xaa, 0x50, 0x43, 0x57, 0x91, 0x69, 0x94, 0x49, 0x15, 0x82, 0x82, 0xe4, 0x0f, 0x4c,
0x8d, 0x9d, 0x2c, 0xc9, 0x5b, 0x1d, 0x64, 0xbf, 0x88, 0x8b, 0xd4, 0xc5, 0x94, 0xe7, 0x65,
0x47, 0x84, 0x1e, 0xe5, 0x79, 0x10, 0xfb, 0x98, 0x93, 0x47, 0xb9, 0x7d, 0x85, 0x12, 0xa6,
0x40, 0x98, 0x2c, 0xf7, 0x92, 0xbc, 0x95, 0x19, 0x32, 0xed, 0xe8, 0x90, 0x56, 0x0d, 0x65,
0xc1, 0xaa, 0x78, 0xc6, 0x2e, 0x54, 0xfd, 0x5f, 0x54, 0xa1, 0xf6, 0x7e, 0xe5, 0xe0, 0x5f,
0x61, 0xc1, 0x20, 0xb4, 0xb9, 0xb4, 0x33, 0x08, 0x70, 0xe4, 0xdf, 0x89, 0x56, 0xed, 0x01,
0x29, 0x46, 0x77, 0x5f, 0x8c, 0xb8, 0xa9, 0xf5, 0x1e, 0x2e, 0xb3, 0xb9, 0xbf, 0xe0, 0x09,
0xb7, 0x8d, 0x28, 0xd4, 0xa6, 0xc3, 0xb8, 0x1e, 0x1f, 0x07, 0xeb, 0xb4, 0x12, 0x0b, 0x95,
0xb8, 0x85, 0x30, 0xfd, 0xdc, 0x39, 0x13, 0xd0, 0x7c, 0xdc, 0x8f, 0xed, 0xf9, 0xc9, 0xa3,
0xc1};
// p
const CryptoPP::byte* Prime1;
static constexpr CryptoPP::byte Prime1[] = {
0xF9, 0x67, 0xAD, 0x99, 0x12, 0x31, 0x0C, 0x56, 0xA2, 0x2E, 0x16, 0x1C, 0x46, 0xB3, 0x4D,
0x5B, 0x43, 0xBE, 0x42, 0xA2, 0xF6, 0x86, 0x96, 0x80, 0x42, 0xC3, 0xC7, 0x3F, 0xC3, 0x42,
0xF5, 0x87, 0x49, 0x33, 0x9F, 0x07, 0x5D, 0x6E, 0x2C, 0x04, 0xFD, 0xE3, 0xE1, 0xB2, 0xAE,
0x0A, 0x0C, 0xF0, 0xC7, 0xA6, 0x1C, 0xA1, 0x63, 0x50, 0xC8, 0x09, 0x9C, 0x51, 0x24, 0x52,
0x6C, 0x5E, 0x5E, 0xBD, 0x1E, 0x27, 0x06, 0xBB, 0xBC, 0x9E, 0x94, 0xE1, 0x35, 0xD4, 0x6D,
0xB3, 0xCB, 0x3C, 0x68, 0xDD, 0x68, 0xB3, 0xFE, 0x6C, 0xCB, 0x8D, 0x82, 0x20, 0x76, 0x23,
0x63, 0xB7, 0xE9, 0x68, 0x10, 0x01, 0x4E, 0xDC, 0xBA, 0x27, 0x5D, 0x01, 0xC1, 0x2D, 0x80,
0x5E, 0x2B, 0xAF, 0x82, 0x6B, 0xD8, 0x84, 0xB6, 0x10, 0x52, 0x86, 0xA7, 0x89, 0x8E, 0xAE,
0x9A, 0xE2, 0x89, 0xC6, 0xF7, 0xD5, 0x87, 0xFB};
// q
const CryptoPP::byte* Prime2;
const CryptoPP::byte* PrivateExponent;
PkgDerivedKey3Keyset() {
Prime1 = new CryptoPP::byte[0x80]{
0xF9, 0x67, 0xAD, 0x99, 0x12, 0x31, 0x0C, 0x56, 0xA2, 0x2E, 0x16, 0x1C, 0x46,
0xB3, 0x4D, 0x5B, 0x43, 0xBE, 0x42, 0xA2, 0xF6, 0x86, 0x96, 0x80, 0x42, 0xC3,
0xC7, 0x3F, 0xC3, 0x42, 0xF5, 0x87, 0x49, 0x33, 0x9F, 0x07, 0x5D, 0x6E, 0x2C,
0x04, 0xFD, 0xE3, 0xE1, 0xB2, 0xAE, 0x0A, 0x0C, 0xF0, 0xC7, 0xA6, 0x1C, 0xA1,
0x63, 0x50, 0xC8, 0x09, 0x9C, 0x51, 0x24, 0x52, 0x6C, 0x5E, 0x5E, 0xBD, 0x1E,
0x27, 0x06, 0xBB, 0xBC, 0x9E, 0x94, 0xE1, 0x35, 0xD4, 0x6D, 0xB3, 0xCB, 0x3C,
0x68, 0xDD, 0x68, 0xB3, 0xFE, 0x6C, 0xCB, 0x8D, 0x82, 0x20, 0x76, 0x23, 0x63,
0xB7, 0xE9, 0x68, 0x10, 0x01, 0x4E, 0xDC, 0xBA, 0x27, 0x5D, 0x01, 0xC1, 0x2D,
0x80, 0x5E, 0x2B, 0xAF, 0x82, 0x6B, 0xD8, 0x84, 0xB6, 0x10, 0x52, 0x86, 0xA7,
0x89, 0x8E, 0xAE, 0x9A, 0xE2, 0x89, 0xC6, 0xF7, 0xD5, 0x87, 0xFB};
Prime2 = new CryptoPP::byte[0x80]{
0xD7, 0xA1, 0x0F, 0x9A, 0x8B, 0xF2, 0xC9, 0x11, 0x95, 0x32, 0x9A, 0x8C, 0xF0,
0xD9, 0x40, 0x47, 0xF5, 0x68, 0xA0, 0x0D, 0xBD, 0xC1, 0xFC, 0x43, 0x2F, 0x65,
0xF9, 0xC3, 0x61, 0x0F, 0x25, 0x77, 0x54, 0xAD, 0xD7, 0x58, 0xAC, 0x84, 0x40,
0x60, 0x8D, 0x3F, 0xF3, 0x65, 0x89, 0x75, 0xB5, 0xC6, 0x2C, 0x51, 0x1A, 0x2F,
0x1F, 0x22, 0xE4, 0x43, 0x11, 0x54, 0xBE, 0xC9, 0xB4, 0xC7, 0xB5, 0x1B, 0x05,
0x0B, 0xBC, 0x56, 0x9A, 0xCD, 0x4A, 0xD9, 0x73, 0x68, 0x5E, 0x5C, 0xFB, 0x92,
0xB7, 0x8B, 0x0D, 0xFF, 0xF5, 0x07, 0xCA, 0xB4, 0xC8, 0x9B, 0x96, 0x3C, 0x07,
0x9E, 0x3E, 0x6B, 0x2A, 0x11, 0xF2, 0x8A, 0xB1, 0x8A, 0xD7, 0x2E, 0x1B, 0xA5,
0x53, 0x24, 0x06, 0xED, 0x50, 0xB8, 0x90, 0x67, 0xB1, 0xE2, 0x41, 0xC6, 0x92,
0x01, 0xEE, 0x10, 0xF0, 0x61, 0xBB, 0xFB, 0xB2, 0x7D, 0x4A, 0x73};
PrivateExponent = new CryptoPP::byte[0x100]{
0x32, 0xD9, 0x03, 0x90, 0x8F, 0xBD, 0xB0, 0x8F, 0x57, 0x2B, 0x28, 0x5E, 0x0B, 0x8D,
0xB3, 0xEA, 0x5C, 0xD1, 0x7E, 0xA8, 0x90, 0x88, 0x8C, 0xDD, 0x6A, 0x80, 0xBB, 0xB1,
0xDF, 0xC1, 0xF7, 0x0D, 0xAA, 0x32, 0xF0, 0xB7, 0x7C, 0xCB, 0x88, 0x80, 0x0E, 0x8B,
0x64, 0xB0, 0xBE, 0x4C, 0xD6, 0x0E, 0x9B, 0x8C, 0x1E, 0x2A, 0x64, 0xE1, 0xF3, 0x5C,
0xD7, 0x76, 0x01, 0x41, 0x5E, 0x93, 0x5C, 0x94, 0xFE, 0xDD, 0x46, 0x62, 0xC3, 0x1B,
0x5A, 0xE2, 0xA0, 0xBC, 0x2D, 0xEB, 0xC3, 0x98, 0x0A, 0xA7, 0xB7, 0x85, 0x69, 0x70,
0x68, 0x2B, 0x64, 0x4A, 0xB3, 0x1F, 0xCC, 0x7D, 0xDC, 0x7C, 0x26, 0xF4, 0x77, 0xF6,
0x5C, 0xF2, 0xAE, 0x5A, 0x44, 0x2D, 0xD3, 0xAB, 0x16, 0x62, 0x04, 0x19, 0xBA, 0xFB,
0x90, 0xFF, 0xE2, 0x30, 0x50, 0x89, 0x6E, 0xCB, 0x56, 0xB2, 0xEB, 0xC0, 0x91, 0x16,
0x92, 0x5E, 0x30, 0x8E, 0xAE, 0xC7, 0x94, 0x5D, 0xFD, 0x35, 0xE1, 0x20, 0xF8, 0xAD,
0x3E, 0xBC, 0x08, 0xBF, 0xC0, 0x36, 0x74, 0x9F, 0xD5, 0xBB, 0x52, 0x08, 0xFD, 0x06,
0x66, 0xF3, 0x7A, 0xB3, 0x04, 0xF4, 0x75, 0x29, 0x5D, 0xE9, 0x5F, 0xAA, 0x10, 0x30,
0xB2, 0x0F, 0x5A, 0x1A, 0xC1, 0x2A, 0xB3, 0xFE, 0xCB, 0x21, 0xAD, 0x80, 0xEC, 0x8F,
0x20, 0x09, 0x1C, 0xDB, 0xC5, 0x58, 0x94, 0xC2, 0x9C, 0xC6, 0xCE, 0x82, 0x65, 0x3E,
0x57, 0x90, 0xBC, 0xA9, 0x8B, 0x06, 0xB4, 0xF0, 0x72, 0xF6, 0x77, 0xDF, 0x98, 0x64,
0xF1, 0xEC, 0xFE, 0x37, 0x2D, 0xBC, 0xAE, 0x8C, 0x08, 0x81, 0x1F, 0xC3, 0xC9, 0x89,
0x1A, 0xC7, 0x42, 0x82, 0x4B, 0x2E, 0xDC, 0x8E, 0x8D, 0x73, 0xCE, 0xB1, 0xCC, 0x01,
0xD9, 0x08, 0x70, 0x87, 0x3C, 0x44, 0x08, 0xEC, 0x49, 0x8F, 0x81, 0x5A, 0xE2, 0x40,
0xFF, 0x77, 0xFC, 0x0D};
Exponent1 = new CryptoPP::byte[0x80]{
0x52, 0xCC, 0x2D, 0xA0, 0x9C, 0x9E, 0x75, 0xE7, 0x28, 0xEE, 0x3D, 0xDE, 0xE3,
0x45, 0xD1, 0x4F, 0x94, 0x1C, 0xCC, 0xC8, 0x87, 0x29, 0x45, 0x3B, 0x8D, 0x6E,
0xAB, 0x6E, 0x2A, 0xA7, 0xC7, 0x15, 0x43, 0xA3, 0x04, 0x8F, 0x90, 0x5F, 0xEB,
0xF3, 0x38, 0x4A, 0x77, 0xFA, 0x36, 0xB7, 0x15, 0x76, 0xB6, 0x01, 0x1A, 0x8E,
0x25, 0x87, 0x82, 0xF1, 0x55, 0xD8, 0xC6, 0x43, 0x2A, 0xC0, 0xE5, 0x98, 0xC9,
0x32, 0xD1, 0x94, 0x6F, 0xD9, 0x01, 0xBA, 0x06, 0x81, 0xE0, 0x6D, 0x88, 0xF2,
0x24, 0x2A, 0x25, 0x01, 0x64, 0x5C, 0xBF, 0xF2, 0xD9, 0x99, 0x67, 0x3E, 0xF6,
0x72, 0xEE, 0xE4, 0xE2, 0x33, 0x5C, 0xF8, 0x00, 0x40, 0xE3, 0x2A, 0x9A, 0xF4,
0x3D, 0x22, 0x86, 0x44, 0x3C, 0xFB, 0x0A, 0xA5, 0x7C, 0x3F, 0xCC, 0xF5, 0xF1,
0x16, 0xC4, 0xAC, 0x88, 0xB4, 0xDE, 0x62, 0x94, 0x92, 0x6A, 0x13};
Exponent2 = new CryptoPP::byte[0x80]{
0x7C, 0x9D, 0xAD, 0x39, 0xE0, 0xD5, 0x60, 0x14, 0x94, 0x48, 0x19, 0x7F, 0x88,
0x95, 0xD5, 0x8B, 0x80, 0xAD, 0x85, 0x8A, 0x4B, 0x77, 0x37, 0x85, 0xD0, 0x77,
0xBB, 0xBF, 0x89, 0x71, 0x4A, 0x72, 0xCB, 0x72, 0x68, 0x38, 0xEC, 0x02, 0xC6,
0x7D, 0xC6, 0x44, 0x06, 0x33, 0x51, 0x1C, 0xC0, 0xFF, 0x95, 0x8F, 0x0D, 0x75,
0xDC, 0x25, 0xBB, 0x0B, 0x73, 0x91, 0xA9, 0x6D, 0x42, 0xD8, 0x03, 0xB7, 0x68,
0xD4, 0x1E, 0x75, 0x62, 0xA3, 0x70, 0x35, 0x79, 0x78, 0x00, 0xC8, 0xF5, 0xEF,
0x15, 0xB9, 0xFC, 0x4E, 0x47, 0x5A, 0xC8, 0x70, 0x70, 0x5B, 0x52, 0x98, 0xC0,
0xC2, 0x58, 0x4A, 0x70, 0x96, 0xCC, 0xB8, 0x10, 0xE1, 0x2F, 0x78, 0x8B, 0x2B,
0xA1, 0x7F, 0xF9, 0xAC, 0xDE, 0xF0, 0xBB, 0x2B, 0xE2, 0x66, 0xE3, 0x22, 0x92,
0x31, 0x21, 0x57, 0x92, 0xC4, 0xB8, 0xF2, 0x3E, 0x76, 0x20, 0x37};
Coefficient = new CryptoPP::byte[0x80]{
0x45, 0x97, 0x55, 0xD4, 0x22, 0x08, 0x5E, 0xF3, 0x5C, 0xB4, 0x05, 0x7A, 0xFD,
0xAA, 0x42, 0x42, 0xAD, 0x9A, 0x8C, 0xA0, 0x6C, 0xBB, 0x1D, 0x68, 0x54, 0x54,
0x6E, 0x3E, 0x32, 0xE3, 0x53, 0x73, 0x76, 0xF1, 0x3E, 0x01, 0xEA, 0xD3, 0xCF,
0xEB, 0xEB, 0x23, 0x3E, 0xC0, 0xBE, 0xCE, 0xEC, 0x2C, 0x89, 0x5F, 0xA8, 0x27,
0x3A, 0x4C, 0xB7, 0xE6, 0x74, 0xBC, 0x45, 0x4C, 0x26, 0xC8, 0x25, 0xFF, 0x34,
0x63, 0x25, 0x37, 0xE1, 0x48, 0x10, 0xC1, 0x93, 0xA6, 0xAF, 0xEB, 0xBA, 0xE3,
0xA2, 0xF1, 0x3D, 0xEF, 0x63, 0xD8, 0xF4, 0xFD, 0xD3, 0xEE, 0xE2, 0x5D, 0xE9,
0x33, 0xCC, 0xAD, 0xBA, 0x75, 0x5C, 0x85, 0xAF, 0xCE, 0xA9, 0x3D, 0xD1, 0xA2,
0x17, 0xF3, 0xF6, 0x98, 0xB3, 0x50, 0x8E, 0x5E, 0xF6, 0xEB, 0x02, 0x8E, 0xA1,
0x62, 0xA7, 0xD6, 0x2C, 0xEC, 0x91, 0xFF, 0x15, 0x40, 0xD2, 0xE3};
Modulus = new CryptoPP::byte[0x100]{
0xd2, 0x12, 0xfc, 0x33, 0x5f, 0x6d, 0xdb, 0x83, 0x16, 0x09, 0x62, 0x8b, 0x03, 0x56,
0x27, 0x37, 0x82, 0xd4, 0x77, 0x85, 0x35, 0x29, 0x39, 0x2d, 0x52, 0x6b, 0x8c, 0x4c,
0x8c, 0xfb, 0x06, 0xc1, 0x84, 0x5b, 0xe7, 0xd4, 0xf7, 0xbc, 0xd2, 0x4e, 0x62, 0x45,
0xcd, 0x2a, 0xbb, 0xd7, 0x77, 0x76, 0x45, 0x36, 0x55, 0x27, 0x3f, 0xb3, 0xf5, 0xf9,
0x8e, 0xda, 0x4b, 0xef, 0xaa, 0x59, 0xae, 0xb3, 0x9b, 0xea, 0x54, 0x98, 0xd2, 0x06,
0x32, 0x6a, 0x58, 0x31, 0x2a, 0xe0, 0xd4, 0x4f, 0x90, 0xb5, 0x0a, 0x7d, 0xec, 0xf4,
0x3a, 0x9c, 0x52, 0x67, 0x2d, 0x99, 0x31, 0x8e, 0x0c, 0x43, 0xe6, 0x82, 0xfe, 0x07,
0x46, 0xe1, 0x2e, 0x50, 0xd4, 0x1f, 0x2d, 0x2f, 0x7e, 0xd9, 0x08, 0xba, 0x06, 0xb3,
0xbf, 0x2e, 0x20, 0x3f, 0x4e, 0x3f, 0xfe, 0x44, 0xff, 0xaa, 0x50, 0x43, 0x57, 0x91,
0x69, 0x94, 0x49, 0x15, 0x82, 0x82, 0xe4, 0x0f, 0x4c, 0x8d, 0x9d, 0x2c, 0xc9, 0x5b,
0x1d, 0x64, 0xbf, 0x88, 0x8b, 0xd4, 0xc5, 0x94, 0xe7, 0x65, 0x47, 0x84, 0x1e, 0xe5,
0x79, 0x10, 0xfb, 0x98, 0x93, 0x47, 0xb9, 0x7d, 0x85, 0x12, 0xa6, 0x40, 0x98, 0x2c,
0xf7, 0x92, 0xbc, 0x95, 0x19, 0x32, 0xed, 0xe8, 0x90, 0x56, 0x0d, 0x65, 0xc1, 0xaa,
0x78, 0xc6, 0x2e, 0x54, 0xfd, 0x5f, 0x54, 0xa1, 0xf6, 0x7e, 0xe5, 0xe0, 0x5f, 0x61,
0xc1, 0x20, 0xb4, 0xb9, 0xb4, 0x33, 0x08, 0x70, 0xe4, 0xdf, 0x89, 0x56, 0xed, 0x01,
0x29, 0x46, 0x77, 0x5f, 0x8c, 0xb8, 0xa9, 0xf5, 0x1e, 0x2e, 0xb3, 0xb9, 0xbf, 0xe0,
0x09, 0xb7, 0x8d, 0x28, 0xd4, 0xa6, 0xc3, 0xb8, 0x1e, 0x1f, 0x07, 0xeb, 0xb4, 0x12,
0x0b, 0x95, 0xb8, 0x85, 0x30, 0xfd, 0xdc, 0x39, 0x13, 0xd0, 0x7c, 0xdc, 0x8f, 0xed,
0xf9, 0xc9, 0xa3, 0xc1};
PublicExponent = new CryptoPP::byte[4]{0, 1, 0, 1};
};
static constexpr CryptoPP::byte Prime2[] = {
0xD7, 0xA1, 0x0F, 0x9A, 0x8B, 0xF2, 0xC9, 0x11, 0x95, 0x32, 0x9A, 0x8C, 0xF0, 0xD9, 0x40,
0x47, 0xF5, 0x68, 0xA0, 0x0D, 0xBD, 0xC1, 0xFC, 0x43, 0x2F, 0x65, 0xF9, 0xC3, 0x61, 0x0F,
0x25, 0x77, 0x54, 0xAD, 0xD7, 0x58, 0xAC, 0x84, 0x40, 0x60, 0x8D, 0x3F, 0xF3, 0x65, 0x89,
0x75, 0xB5, 0xC6, 0x2C, 0x51, 0x1A, 0x2F, 0x1F, 0x22, 0xE4, 0x43, 0x11, 0x54, 0xBE, 0xC9,
0xB4, 0xC7, 0xB5, 0x1B, 0x05, 0x0B, 0xBC, 0x56, 0x9A, 0xCD, 0x4A, 0xD9, 0x73, 0x68, 0x5E,
0x5C, 0xFB, 0x92, 0xB7, 0x8B, 0x0D, 0xFF, 0xF5, 0x07, 0xCA, 0xB4, 0xC8, 0x9B, 0x96, 0x3C,
0x07, 0x9E, 0x3E, 0x6B, 0x2A, 0x11, 0xF2, 0x8A, 0xB1, 0x8A, 0xD7, 0x2E, 0x1B, 0xA5, 0x53,
0x24, 0x06, 0xED, 0x50, 0xB8, 0x90, 0x67, 0xB1, 0xE2, 0x41, 0xC6, 0x92, 0x01, 0xEE, 0x10,
0xF0, 0x61, 0xBB, 0xFB, 0xB2, 0x7D, 0x4A, 0x73};
static constexpr CryptoPP::byte PrivateExponent[] = {
0x32, 0xD9, 0x03, 0x90, 0x8F, 0xBD, 0xB0, 0x8F, 0x57, 0x2B, 0x28, 0x5E, 0x0B, 0x8D, 0xB3,
0xEA, 0x5C, 0xD1, 0x7E, 0xA8, 0x90, 0x88, 0x8C, 0xDD, 0x6A, 0x80, 0xBB, 0xB1, 0xDF, 0xC1,
0xF7, 0x0D, 0xAA, 0x32, 0xF0, 0xB7, 0x7C, 0xCB, 0x88, 0x80, 0x0E, 0x8B, 0x64, 0xB0, 0xBE,
0x4C, 0xD6, 0x0E, 0x9B, 0x8C, 0x1E, 0x2A, 0x64, 0xE1, 0xF3, 0x5C, 0xD7, 0x76, 0x01, 0x41,
0x5E, 0x93, 0x5C, 0x94, 0xFE, 0xDD, 0x46, 0x62, 0xC3, 0x1B, 0x5A, 0xE2, 0xA0, 0xBC, 0x2D,
0xEB, 0xC3, 0x98, 0x0A, 0xA7, 0xB7, 0x85, 0x69, 0x70, 0x68, 0x2B, 0x64, 0x4A, 0xB3, 0x1F,
0xCC, 0x7D, 0xDC, 0x7C, 0x26, 0xF4, 0x77, 0xF6, 0x5C, 0xF2, 0xAE, 0x5A, 0x44, 0x2D, 0xD3,
0xAB, 0x16, 0x62, 0x04, 0x19, 0xBA, 0xFB, 0x90, 0xFF, 0xE2, 0x30, 0x50, 0x89, 0x6E, 0xCB,
0x56, 0xB2, 0xEB, 0xC0, 0x91, 0x16, 0x92, 0x5E, 0x30, 0x8E, 0xAE, 0xC7, 0x94, 0x5D, 0xFD,
0x35, 0xE1, 0x20, 0xF8, 0xAD, 0x3E, 0xBC, 0x08, 0xBF, 0xC0, 0x36, 0x74, 0x9F, 0xD5, 0xBB,
0x52, 0x08, 0xFD, 0x06, 0x66, 0xF3, 0x7A, 0xB3, 0x04, 0xF4, 0x75, 0x29, 0x5D, 0xE9, 0x5F,
0xAA, 0x10, 0x30, 0xB2, 0x0F, 0x5A, 0x1A, 0xC1, 0x2A, 0xB3, 0xFE, 0xCB, 0x21, 0xAD, 0x80,
0xEC, 0x8F, 0x20, 0x09, 0x1C, 0xDB, 0xC5, 0x58, 0x94, 0xC2, 0x9C, 0xC6, 0xCE, 0x82, 0x65,
0x3E, 0x57, 0x90, 0xBC, 0xA9, 0x8B, 0x06, 0xB4, 0xF0, 0x72, 0xF6, 0x77, 0xDF, 0x98, 0x64,
0xF1, 0xEC, 0xFE, 0x37, 0x2D, 0xBC, 0xAE, 0x8C, 0x08, 0x81, 0x1F, 0xC3, 0xC9, 0x89, 0x1A,
0xC7, 0x42, 0x82, 0x4B, 0x2E, 0xDC, 0x8E, 0x8D, 0x73, 0xCE, 0xB1, 0xCC, 0x01, 0xD9, 0x08,
0x70, 0x87, 0x3C, 0x44, 0x08, 0xEC, 0x49, 0x8F, 0x81, 0x5A, 0xE2, 0x40, 0xFF, 0x77, 0xFC,
0x0D};
};

View File

@@ -1,9 +1,10 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// Generated By moduleGenerator
#include "ajm.h"
#include "ajm_error.h"
#include "common/logging/log.h"
#include "core/libraries/ajm/ajm.h"
#include "core/libraries/error_codes.h"
#include "core/libraries/libs.h"

View File

@@ -0,0 +1,28 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
constexpr int ORBIS_AJM_ERROR_UNKNOWN = 0x80930001;
constexpr int ORBIS_AJM_ERROR_INVALID_CONTEXT = 0x80930002;
constexpr int ORBIS_AJM_ERROR_INVALID_INSTANCE = 0x80930003;
constexpr int ORBIS_AJM_ERROR_INVALID_BATCH = 0x80930004;
constexpr int ORBIS_AJM_ERROR_INVALID_PARAMETER = 0x80930005;
constexpr int ORBIS_AJM_ERROR_OUT_OF_MEMORY = 0x80930006;
constexpr int ORBIS_AJM_ERROR_OUT_OF_RESOURCES = 0x80930007;
constexpr int ORBIS_AJM_ERROR_CODEC_NOT_SUPPORTED = 0x80930008;
constexpr int ORBIS_AJM_ERROR_CODEC_ALREADY_REGISTERED = 0x80930009;
constexpr int ORBIS_AJM_ERROR_CODEC_NOT_REGISTERED = 0x8093000A;
constexpr int ORBIS_AJM_ERROR_WRONG_REVISION_FLAG = 0x8093000B;
constexpr int ORBIS_AJM_ERROR_FLAG_NOT_SUPPORTED = 0x8093000C;
constexpr int ORBIS_AJM_ERROR_BUSY = 0x8093000D;
constexpr int ORBIS_AJM_ERROR_BAD_PRIORITY = 0x8093000E;
constexpr int ORBIS_AJM_ERROR_IN_PROGRESS = 0x8093000F;
constexpr int ORBIS_AJM_ERROR_RETRY = 0x80930010;
constexpr int ORBIS_AJM_ERROR_MALFORMED_BATCH = 0x80930011;
constexpr int ORBIS_AJM_ERROR_JOB_CREATION = 0x80930012;
constexpr int ORBIS_AJM_ERROR_INVALID_OPCODE = 0x80930013;
constexpr int ORBIS_AJM_ERROR_PRIORITY_VIOLATION = 0x80930014;
constexpr int ORBIS_AJM_ERROR_BUFFER_TOO_BIG = 0x80930015;
constexpr int ORBIS_AJM_ERROR_INVALID_ADDRESS = 0x80930016;
constexpr int ORBIS_AJM_ERROR_CANCELLED = 0x80930017;

View File

@@ -7,6 +7,8 @@
#include "common/types.h"
#include <string_view>
struct AVIOContext;
namespace Libraries::AvPlayer {
@@ -14,6 +16,7 @@ namespace Libraries::AvPlayer {
class IDataStreamer {
public:
virtual ~IDataStreamer() = default;
virtual bool Init(std::string_view path) = 0;
virtual AVIOContext* GetContext() = 0;
};

View File

@@ -18,19 +18,8 @@ extern "C" {
namespace Libraries::AvPlayer {
AvPlayerFileStreamer::AvPlayerFileStreamer(const SceAvPlayerFileReplacement& file_replacement,
std::string_view path)
: m_file_replacement(file_replacement) {
const auto ptr = m_file_replacement.object_ptr;
m_fd = m_file_replacement.open(ptr, path.data());
ASSERT(m_fd >= 0);
m_file_size = m_file_replacement.size(ptr);
// avio_buffer is deallocated in `avio_context_free`
const auto avio_buffer = reinterpret_cast<u8*>(av_malloc(AVPLAYER_AVIO_BUFFER_SIZE));
m_avio_context =
avio_alloc_context(avio_buffer, AVPLAYER_AVIO_BUFFER_SIZE, 0, this,
&AvPlayerFileStreamer::ReadPacket, nullptr, &AvPlayerFileStreamer::Seek);
}
AvPlayerFileStreamer::AvPlayerFileStreamer(const SceAvPlayerFileReplacement& file_replacement)
: m_file_replacement(file_replacement) {}
AvPlayerFileStreamer::~AvPlayerFileStreamer() {
if (m_avio_context != nullptr) {
@@ -43,6 +32,21 @@ AvPlayerFileStreamer::~AvPlayerFileStreamer() {
}
}
bool AvPlayerFileStreamer::Init(std::string_view path) {
const auto ptr = m_file_replacement.object_ptr;
m_fd = m_file_replacement.open(ptr, path.data());
if (m_fd < 0) {
return false;
}
m_file_size = m_file_replacement.size(ptr);
// avio_buffer is deallocated in `avio_context_free`
const auto avio_buffer = reinterpret_cast<u8*>(av_malloc(AVPLAYER_AVIO_BUFFER_SIZE));
m_avio_context =
avio_alloc_context(avio_buffer, AVPLAYER_AVIO_BUFFER_SIZE, 0, this,
&AvPlayerFileStreamer::ReadPacket, nullptr, &AvPlayerFileStreamer::Seek);
return true;
}
s32 AvPlayerFileStreamer::ReadPacket(void* opaque, u8* buffer, s32 size) {
const auto self = reinterpret_cast<AvPlayerFileStreamer*>(opaque);
if (self->m_position >= self->m_file_size) {

View File

@@ -15,9 +15,11 @@ namespace Libraries::AvPlayer {
class AvPlayerFileStreamer : public IDataStreamer {
public:
AvPlayerFileStreamer(const SceAvPlayerFileReplacement& file_replacement, std::string_view path);
AvPlayerFileStreamer(const SceAvPlayerFileReplacement& file_replacement);
~AvPlayerFileStreamer();
bool Init(std::string_view path) override;
AVIOContext* GetContext() override {
return m_avio_context;
}

View File

@@ -110,7 +110,7 @@ s32 AvPlayer::AddSource(std::string_view path) {
if (path.empty()) {
return ORBIS_AVPLAYER_ERROR_INVALID_PARAMS;
}
if (AVPLAYER_IS_ERROR(m_state->AddSource(path, GetSourceType(path)))) {
if (!m_state->AddSource(path, GetSourceType(path))) {
return ORBIS_AVPLAYER_ERROR_OPERATION_FAILED;
}
return ORBIS_OK;
@@ -128,7 +128,7 @@ s32 AvPlayer::GetStreamCount() {
}
s32 AvPlayer::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info) {
if (AVPLAYER_IS_ERROR(m_state->GetStreamInfo(stream_index, info))) {
if (!m_state->GetStreamInfo(stream_index, info)) {
return ORBIS_AVPLAYER_ERROR_OPERATION_FAILED;
}
return ORBIS_OK;
@@ -145,7 +145,10 @@ s32 AvPlayer::EnableStream(u32 stream_index) {
}
s32 AvPlayer::Start() {
return m_state->Start();
if (!m_state->Start()) {
return ORBIS_AVPLAYER_ERROR_OPERATION_FAILED;
}
return ORBIS_OK;
}
bool AvPlayer::GetVideoData(SceAvPlayerFrameInfo& video_info) {

View File

@@ -24,31 +24,39 @@ namespace Libraries::AvPlayer {
using namespace Kernel;
AvPlayerSource::AvPlayerSource(AvPlayerStateCallback& state, std::string_view path,
const SceAvPlayerInitData& init_data,
SceAvPlayerSourceType source_type)
: m_state(state), m_memory_replacement(init_data.memory_replacement),
m_num_output_video_framebuffers(
std::min(std::max(2, init_data.num_output_video_framebuffers), 16)) {
AVFormatContext* context = avformat_alloc_context();
if (init_data.file_replacement.open != nullptr) {
m_up_data_streamer =
std::make_unique<AvPlayerFileStreamer>(init_data.file_replacement, path);
context->pb = m_up_data_streamer->GetContext();
ASSERT(!AVPLAYER_IS_ERROR(avformat_open_input(&context, nullptr, nullptr, nullptr)));
} else {
const auto mnt = Common::Singleton<Core::FileSys::MntPoints>::Instance();
const auto filepath = mnt->GetHostPath(path);
ASSERT(!AVPLAYER_IS_ERROR(
avformat_open_input(&context, filepath.string().c_str(), nullptr, nullptr)));
}
m_avformat_context = AVFormatContextPtr(context, &ReleaseAVFormatContext);
}
AvPlayerSource::AvPlayerSource(AvPlayerStateCallback& state) : m_state(state) {}
AvPlayerSource::~AvPlayerSource() {
Stop();
}
bool AvPlayerSource::Init(const SceAvPlayerInitData& init_data, std::string_view path) {
m_memory_replacement = init_data.memory_replacement,
m_num_output_video_framebuffers =
std::min(std::max(2, init_data.num_output_video_framebuffers), 16);
AVFormatContext* context = avformat_alloc_context();
if (init_data.file_replacement.open != nullptr) {
m_up_data_streamer = std::make_unique<AvPlayerFileStreamer>(init_data.file_replacement);
if (!m_up_data_streamer->Init(path)) {
return false;
}
context->pb = m_up_data_streamer->GetContext();
if (AVPLAYER_IS_ERROR(avformat_open_input(&context, nullptr, nullptr, nullptr))) {
return false;
}
} else {
const auto mnt = Common::Singleton<Core::FileSys::MntPoints>::Instance();
const auto filepath = mnt->GetHostPath(path);
if (AVPLAYER_IS_ERROR(
avformat_open_input(&context, filepath.string().c_str(), nullptr, nullptr))) {
return false;
}
}
m_avformat_context = AVFormatContextPtr(context, &ReleaseAVFormatContext);
return true;
}
bool AvPlayerSource::FindStreamInfo() {
if (m_avformat_context == nullptr) {
LOG_ERROR(Lib_AvPlayer, "Could not find stream info. NULL context.");
@@ -87,16 +95,16 @@ static f32 AVRationalToF32(const AVRational rational) {
return f32(rational.num) / rational.den;
}
s32 AvPlayerSource::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info) {
bool AvPlayerSource::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info) {
info = {};
if (m_avformat_context == nullptr || stream_index >= m_avformat_context->nb_streams) {
LOG_ERROR(Lib_AvPlayer, "Could not get stream {} info.", stream_index);
return -1;
return false;
}
const auto p_stream = m_avformat_context->streams[stream_index];
if (p_stream == nullptr || p_stream->codecpar == nullptr) {
LOG_ERROR(Lib_AvPlayer, "Could not get stream {} info. NULL stream.", stream_index);
return -1;
return false;
}
info.type = CodecTypeToStreamType(p_stream->codecpar->codec_type);
info.start_time = p_stream->start_time;
@@ -140,9 +148,9 @@ s32 AvPlayerSource::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info)
break;
default:
LOG_ERROR(Lib_AvPlayer, "Stream {} type is unknown: {}.", stream_index, info.type);
return -1;
return false;
}
return 0;
return true;
}
bool AvPlayerSource::EnableStream(u32 stream_index) {
@@ -215,12 +223,12 @@ std::optional<bool> AvPlayerSource::HasFrames(u32 num_frames) {
return m_video_packets.Size() > num_frames || m_is_eof;
}
s32 AvPlayerSource::Start() {
bool AvPlayerSource::Start() {
std::unique_lock lock(m_state_mutex);
if (m_audio_codec_context == nullptr && m_video_codec_context == nullptr) {
LOG_ERROR(Lib_AvPlayer, "Could not start playback. NULL context.");
return -1;
return false;
}
m_demuxer_thread = std::jthread([this](std::stop_token stop) { this->DemuxerThread(stop); });
m_video_decoder_thread =
@@ -228,7 +236,7 @@ s32 AvPlayerSource::Start() {
m_audio_decoder_thread =
std::jthread([this](std::stop_token stop) { this->AudioDecoderThread(stop); });
m_start_time = std::chrono::high_resolution_clock::now();
return 0;
return true;
}
bool AvPlayerSource::Stop() {

View File

@@ -120,17 +120,17 @@ private:
class AvPlayerSource {
public:
AvPlayerSource(AvPlayerStateCallback& state, std::string_view path,
const SceAvPlayerInitData& init_data, SceAvPlayerSourceType source_type);
AvPlayerSource(AvPlayerStateCallback& state);
~AvPlayerSource();
bool Init(const SceAvPlayerInitData& init_data, std::string_view path);
bool FindStreamInfo();
s32 GetStreamCount();
s32 GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info);
bool GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info);
bool EnableStream(u32 stream_index);
void SetLooping(bool is_looping);
std::optional<bool> HasFrames(u32 num_frames);
s32 Start();
bool Start();
bool Stop();
bool GetAudioData(SceAvPlayerFrameInfo& audio_info);
bool GetVideoData(SceAvPlayerFrameInfo& video_info);

View File

@@ -24,6 +24,7 @@ void PS4_SYSV_ABI AvPlayerState::AutoPlayEventCallback(void* opaque, s32 event_i
s32 timedtext_stream_index = -1;
const s32 stream_count = self->GetStreamCount();
if (AVPLAYER_IS_ERROR(stream_count)) {
self->Stop();
return;
}
if (stream_count == 0) {
@@ -32,7 +33,10 @@ void PS4_SYSV_ABI AvPlayerState::AutoPlayEventCallback(void* opaque, s32 event_i
}
for (u32 stream_index = 0; stream_index < stream_count; ++stream_index) {
SceAvPlayerStreamInfo info{};
self->GetStreamInfo(stream_index, info);
if (!self->GetStreamInfo(stream_index, info)) {
self->Stop();
return;
}
const std::string_view default_language(
reinterpret_cast<char*>(self->m_default_language));
@@ -116,23 +120,28 @@ AvPlayerState::~AvPlayerState() {
}
// Called inside GAME thread
s32 AvPlayerState::AddSource(std::string_view path, SceAvPlayerSourceType source_type) {
bool AvPlayerState::AddSource(std::string_view path, SceAvPlayerSourceType source_type) {
if (path.empty()) {
LOG_ERROR(Lib_AvPlayer, "File path is empty.");
return -1;
return false;
}
{
std::unique_lock lock(m_source_mutex);
if (m_up_source != nullptr) {
LOG_ERROR(Lib_AvPlayer, "Only one source is supported.");
return -1;
return false;
}
m_up_source = std::make_unique<AvPlayerSource>(*this, path, m_init_data, source_type);
m_up_source = std::make_unique<AvPlayerSource>(*this);
if (!m_up_source->Init(m_init_data, path)) {
SetState(AvState::Error);
m_up_source.reset();
return false;
}
}
AddSourceEvent();
return 0;
return true;
}
// Called inside GAME thread
@@ -146,25 +155,25 @@ s32 AvPlayerState::GetStreamCount() {
}
// Called inside GAME thread
s32 AvPlayerState::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info) {
bool AvPlayerState::GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info) {
std::shared_lock lock(m_source_mutex);
if (m_up_source == nullptr) {
LOG_ERROR(Lib_AvPlayer, "Could not get stream {} info. No source.", stream_index);
return -1;
return false;
}
return m_up_source->GetStreamInfo(stream_index, info);
}
// Called inside GAME thread
s32 AvPlayerState::Start() {
bool AvPlayerState::Start() {
std::shared_lock lock(m_source_mutex);
if (m_up_source == nullptr || m_up_source->Start() < 0) {
if (m_up_source == nullptr || !m_up_source->Start()) {
LOG_ERROR(Lib_AvPlayer, "Could not start playback.");
return -1;
return false;
}
SetState(AvState::Play);
OnPlaybackStateChanged(AvState::Play);
return 0;
return true;
}
void AvPlayerState::AvControllerThread(std::stop_token stop) {
@@ -219,10 +228,10 @@ bool AvPlayerState::Stop() {
if (m_up_source == nullptr || m_current_state == AvState::Stop) {
return false;
}
if (!SetState(AvState::Stop)) {
if (!m_up_source->Stop()) {
return false;
}
if (!m_up_source->Stop()) {
if (!SetState(AvState::Stop)) {
return false;
}
OnPlaybackStateChanged(AvState::Stop);

View File

@@ -24,11 +24,11 @@ public:
AvPlayerState(const SceAvPlayerInitData& init_data);
~AvPlayerState();
s32 AddSource(std::string_view filename, SceAvPlayerSourceType source_type);
bool AddSource(std::string_view filename, SceAvPlayerSourceType source_type);
s32 GetStreamCount();
s32 GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info);
bool GetStreamInfo(u32 stream_index, SceAvPlayerStreamInfo& info);
bool EnableStream(u32 stream_index);
s32 Start();
bool Start();
bool Stop();
bool GetAudioData(SceAvPlayerFrameInfo& audio_info);
bool GetVideoData(SceAvPlayerFrameInfo& video_info);

View File

@@ -233,9 +233,6 @@ constexpr int SCE_KERNEL_ERROR_ESDKVERSION = 0x80020063;
constexpr int SCE_KERNEL_ERROR_ESTART = 0x80020064;
constexpr int SCE_KERNEL_ERROR_ESTOP = 0x80020065;
// libSceRandom error codes
constexpr int SCE_RANDOM_ERROR_INVALID = 0x817C0016;
// videoOut
constexpr int SCE_VIDEO_OUT_ERROR_INVALID_VALUE = 0x80290001; // invalid argument
constexpr int SCE_VIDEO_OUT_ERROR_INVALID_ADDRESS = 0x80290002; // invalid addresses
@@ -249,14 +246,6 @@ constexpr int SCE_VIDEO_OUT_ERROR_SLOT_OCCUPIED = 0x80290010; // slot alr
constexpr int SCE_VIDEO_OUT_ERROR_FLIP_QUEUE_FULL = 0x80290012; // flip queue is full
constexpr int SCE_VIDEO_OUT_ERROR_INVALID_OPTION = 0x8029001A; // Invalid buffer attribute option
// GnmDriver
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_PIPE_ID = 0x80D17000;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_QUEUE_ID = 0x80D17001;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_BASE_ADDR = 0x80D17003;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_SIZE = 0x80D17002;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_READ_PTR_ADDR = 0x80D17004;
constexpr int ORBIS_GNM_ERROR_FAILURE = 0x8EEE00FF;
// Generic
constexpr int ORBIS_OK = 0x00000000;
constexpr int ORBIS_FAIL = 0xFFFFFFFF;

View File

@@ -0,0 +1,85 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
constexpr int ORBIS_GNM_ERROR_SUBMISSION_FAILED_INVALID_ARGUMENT = 0x80D11000;
constexpr int ORBIS_GNM_ERROR_SUBMISSION_NOT_ENOUGH_RESOURCES = 0x80D11001;
constexpr int ORBIS_GNM_ERROR_SUBMISSION_AND_FLIP_FAILED_INVALID_COMMAND_BUFFER = 0x80D11080;
constexpr int ORBIS_GNM_ERROR_SUBMISSION_AND_FLIP_FAILED_INVALID_QUEUE_FULL = 0x80D11081;
constexpr int ORBIS_GNM_ERROR_SUBMISSION_AND_FLIP_FAILED_REQUEST_FAILED = 0x80D11082;
constexpr int ORBIS_GNM_ERROR_SUBMISSION_FAILED_INTERNAL_ERROR = 0x80D110FF;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING = 0x80D12000;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_RWBUFFER_ROTYPE = 0x80D12001;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_BLENDING = 0x80D12002;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_DRAW_CU_MASK = 0x80D12003;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_MRT_SETUP = 0x80D12004;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_DEPTH_RT_SETUP = 0x80D12005;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WARNING_PS_AND_MRT_FORMAT = 0x80D1200F;
constexpr int ORBIS_GNM_ERROR_VALIDATION_ERROR = 0x80D13000;
constexpr int ORBIS_GNM_ERROR_VALIDATION_VSHARP = 0x80D13001;
constexpr int ORBIS_GNM_ERROR_VALIDATION_TSHARP = 0x80D13002;
constexpr int ORBIS_GNM_ERROR_VALIDATION_RESOURCE = 0x80D13003;
constexpr int ORBIS_GNM_ERROR_VALIDATION_TABLE_MEMORY = 0x80D13004;
constexpr int ORBIS_GNM_ERROR_VALIDATION_WRITE_EVENT_OP = 0x80D13005;
constexpr int ORBIS_GNM_ERROR_VALIDATION_INDEX_BUFFER = 0x80D13006;
constexpr int ORBIS_GNM_ERROR_VALIDATION_TESS_FACTOR_BUFFER = 0x80D13007;
constexpr int ORBIS_GNM_ERROR_VALIDATION_SCRATCH_RING = 0x80D13008;
constexpr int ORBIS_GNM_ERROR_VALIDATION_PRIMITIVE_TYPE = 0x80D13009;
constexpr int ORBIS_GNM_ERROR_VALIDATION_INDEX_SIZE = 0x80D1300A;
constexpr int ORBIS_GNM_ERROR_VALIDATION_INLINE_DRAW_SIZE = 0x80D1300B;
constexpr int ORBIS_GNM_ERROR_VALIDATION_NUM_INPUT_PATCHES = 0x80D1300C;
constexpr int ORBIS_GNM_ERROR_VALIDATION_GS_MODE = 0x80D1300D;
constexpr int ORBIS_GNM_ERROR_VALIDATION_SHADER_ADDRESS = 0x80D1300E;
constexpr int ORBIS_GNM_ERROR_VALIDATION_BORDER_COLOR_TABLE = 0x80D1300F;
constexpr int ORBIS_GNM_ERROR_VALIDATION_SSHARP = 0x80D13010;
constexpr int ORBIS_GNM_ERROR_VALIDATION_DISPATCH_DRAW = 0x80D13011;
constexpr int ORBIS_GNM_ERROR_VALIDATION_ACTIVE_SHADER_STAGE = 0x80D13012;
constexpr int ORBIS_GNM_ERROR_VALIDATION_DCB = 0x80D13013;
constexpr int ORBIS_GNM_ERROR_VALIDATION_MISMATCH_SHADER_STAGE = 0x80D13014;
constexpr int ORBIS_GNM_ERROR_VALIDATION_MRT_SETUP = 0x80D13015;
constexpr int ORBIS_GNM_ERROR_VALIDATION_BAD_OP_CODE = 0x80D13016;
constexpr int ORBIS_GNM_ERROR_VALIDATION_DEPTH_RT_SETUP = 0x80D13017;
constexpr int ORBIS_GNM_ERROR_VALIDATION_NUM_INSTANCES = 0x80D13018;
constexpr int ORBIS_GNM_ERROR_VALIDATION_SRT = 0x80D13019;
constexpr int ORBIS_GNM_ERROR_VALIDATION_INVALID_ARGUMENT = 0x80D13FFD;
constexpr int ORBIS_GNM_ERROR_VALIDATION_FAILED_INTERNAL_ERROR = 0x80D13FFE;
constexpr int ORBIS_GNM_ERROR_VALIDATION_NOT_ENABLED = 0x80D13FFF;
constexpr int ORBIS_GNM_ERROR_CAPTURE_FILE_IO = 0x80D15000;
constexpr int ORBIS_GNM_ERROR_CAPTURE_RAZOR_NOT_LOADED = 0x80D15001;
constexpr int ORBIS_GNM_ERROR_CAPTURE_NOTHING_TO_CAPTURE = 0x80D15002;
constexpr int ORBIS_GNM_ERROR_CAPTURE_FAILED_INTERNAL = 0x80D1500F;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_PIPE_ID = 0x80D17000;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_QUEUE_ID = 0x80D17001;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_SIZE = 0x80D17002;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_RING_BASE_ADDR = 0x80D17003;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_READ_PTR_ADDR = 0x80D17004;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INVALID_PIPE_PRIORITY = 0x80D17005;
constexpr int ORBIS_GNM_ERROR_COMPUTEQUEUE_INTERNAL = 0x80D170FF;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INVALID_ARGUMENT = 0x80D19000;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INVALID_SHADER = 0x80D19001;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_STALE_HANDLE = 0x80D19002;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_FULL = 0x80D19003;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_NOT_PERMITTED = 0x80D19004;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_OUTPUT_ARGUMENT_IS_NULL = 0x80D19005;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_OWNER_HANDLE_INVALID = 0x80D19006;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_HANDLE_INVALID = 0x80D19007;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_TYPE_INVALID = 0x80D19008;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_GDS_RESOURCE_TYPE_INVALID = 0x80D19009;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_SIZE_INVALID = 0x80D1900A;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_ADDRESS_IS_NULL = 0x80D1900B;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_GDS_OFFSET_INVALID = 0x80D1900C;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_NAME_IS_NULL = 0x80D1900D;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_OWNER_NAME_IS_NULL = 0x80D1900E;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_FIND_CALLBACK_IS_NULL = 0x80D1900F;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_RESOURCE_IS_NOT_SHADER = 0x80D19010;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_USER_MEMORY_PARAM_IS_NULL = 0x80D19011;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_USER_MEMORY_PARAM_NOT_ALIGNED = 0x80D19012;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INVALID_NAME_LENGTH_PARAM = 0x80D19013;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INVALID_SIZE_PARAM = 0x80D19014;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INVALID_NUM_RESOURCES_PARAM = 0x80D19015;
constexpr int ORBIS_GNM_ERROR_RESOURCE_REGISTRATION_INTERNAL = 0x80D19FFF;
constexpr int ORBIS_GNM_ERROR_GET_GPU_INFO_PARAMETER_NULL = 0x80D1B000;
constexpr int ORBIS_GNM_ERROR_GET_GPU_INFO_FAILED = 0x80D1B001;
constexpr int ORBIS_GNM_ERROR_GET_GPU_INFO_PARAMETER_INVALID = 0x80D1B002;
constexpr int ORBIS_GNM_ERROR_FAILURE = 0x8EEE00FF;

View File

@@ -1,6 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "gnm_error.h"
#include "gnmdriver.h"
#include "common/assert.h"
#include "common/config.h"
#include "common/debug.h"
@@ -9,7 +12,6 @@
#include "common/slot_vector.h"
#include "core/address_space.h"
#include "core/libraries/error_codes.h"
#include "core/libraries/gnmdriver/gnmdriver.h"
#include "core/libraries/kernel/libkernel.h"
#include "core/libraries/libs.h"
#include "core/libraries/videoout/video_out.h"

View File

@@ -15,7 +15,8 @@ namespace Libraries::Kernel {
u64 PS4_SYSV_ABI sceKernelGetDirectMemorySize() {
LOG_WARNING(Kernel_Vmm, "called");
return SCE_KERNEL_MAIN_DMEM_SIZE;
const auto* memory = Core::Memory::Instance();
return memory->GetTotalDirectSize();
}
int PS4_SYSV_ABI sceKernelAllocateDirectMemory(s64 searchStart, s64 searchEnd, u64 len,
@@ -52,8 +53,8 @@ int PS4_SYSV_ABI sceKernelAllocateDirectMemory(s64 searchStart, s64 searchEnd, u
s32 PS4_SYSV_ABI sceKernelAllocateMainDirectMemory(size_t len, size_t alignment, int memoryType,
s64* physAddrOut) {
return sceKernelAllocateDirectMemory(0, SCE_KERNEL_MAIN_DMEM_SIZE, len, alignment, memoryType,
physAddrOut);
const auto searchEnd = static_cast<s64>(sceKernelGetDirectMemorySize());
return sceKernelAllocateDirectMemory(0, searchEnd, len, alignment, memoryType, physAddrOut);
}
s32 PS4_SYSV_ABI sceKernelCheckedReleaseDirectMemory(u64 start, size_t len) {
@@ -78,7 +79,7 @@ s32 PS4_SYSV_ABI sceKernelAvailableDirectMemorySize(u64 searchStart, u64 searchE
if (physAddrOut == nullptr || sizeOut == nullptr) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (searchEnd > SCE_KERNEL_MAIN_DMEM_SIZE) {
if (searchEnd > sceKernelGetDirectMemorySize()) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (searchEnd <= searchStart) {
@@ -254,46 +255,56 @@ int PS4_SYSV_ABI sceKernelMunmap(void* addr, size_t len);
s32 PS4_SYSV_ABI sceKernelBatchMap2(OrbisKernelBatchMapEntry* entries, int numEntries,
int* numEntriesOut, int flags) {
int result = ORBIS_OK;
int processed = 0;
int result = 0;
for (int i = 0; i < numEntries; i++) {
for (int i = 0; i < numEntries; i++, processed++) {
if (entries == nullptr || entries[i].length == 0 || entries[i].operation > 4) {
result = ORBIS_KERNEL_ERROR_EINVAL;
break; // break and assign a value to numEntriesOut.
}
if (entries[i].operation == MemoryOpTypes::ORBIS_KERNEL_MAP_OP_MAP_DIRECT) {
switch (entries[i].operation) {
case MemoryOpTypes::ORBIS_KERNEL_MAP_OP_MAP_DIRECT: {
result = sceKernelMapNamedDirectMemory(&entries[i].start, entries[i].length,
entries[i].protection, flags,
static_cast<s64>(entries[i].offset), 0, "");
LOG_INFO(
Kernel_Vmm,
"BatchMap: entry = {}, operation = {}, len = {:#x}, offset = {:#x}, type = {}, "
"result = {}",
i, entries[i].operation, entries[i].length, entries[i].offset, (u8)entries[i].type,
result);
if (result == 0)
processed++;
} else if (entries[i].operation == MemoryOpTypes::ORBIS_KERNEL_MAP_OP_UNMAP) {
LOG_INFO(Kernel_Vmm,
"entry = {}, operation = {}, len = {:#x}, offset = {:#x}, type = {}, "
"result = {}",
i, entries[i].operation, entries[i].length, entries[i].offset,
(u8)entries[i].type, result);
break;
}
case MemoryOpTypes::ORBIS_KERNEL_MAP_OP_UNMAP: {
result = sceKernelMunmap(entries[i].start, entries[i].length);
LOG_INFO(Kernel_Vmm, "BatchMap: entry = {}, operation = {}, len = {:#x}, result = {}",
i, entries[i].operation, entries[i].length, result);
if (result == 0)
processed++;
} else if (entries[i].operation == MemoryOpTypes::ORBIS_KERNEL_MAP_OP_MAP_FLEXIBLE) {
LOG_INFO(Kernel_Vmm, "entry = {}, operation = {}, len = {:#x}, result = {}", i,
entries[i].operation, entries[i].length, result);
break;
}
case MemoryOpTypes::ORBIS_KERNEL_MAP_OP_MAP_FLEXIBLE: {
result = sceKernelMapNamedFlexibleMemory(&entries[i].start, entries[i].length,
entries[i].protection, flags, "");
LOG_INFO(Kernel_Vmm,
"BatchMap: entry = {}, operation = {}, len = {:#x}, type = {}, "
"entry = {}, operation = {}, len = {:#x}, type = {}, "
"result = {}",
i, entries[i].operation, entries[i].length, (u8)entries[i].type, result);
break;
}
case MemoryOpTypes::ORBIS_KERNEL_MAP_OP_TYPE_PROTECT: {
// By now, ignore protection and log it instead
LOG_WARNING(Kernel_Vmm,
"entry = {}, operation = {}, len = {:#x}, type = {} "
"is UNSUPPORTED and skipped",
i, entries[i].operation, entries[i].length, (u8)entries[i].type);
break;
}
default: {
UNREACHABLE();
}
}
if (result == 0)
processed++;
} else {
UNREACHABLE_MSG("called: Unimplemented Operation = {}", entries[i].operation);
if (result != ORBIS_OK) {
break;
}
}
if (numEntriesOut != NULL) { // can be zero. do not return an error code.

View File

@@ -6,7 +6,7 @@
#include "common/bit_field.h"
#include "common/types.h"
constexpr u64 SCE_KERNEL_MAIN_DMEM_SIZE = 4608_MB; // ~ 4.5GB
constexpr u64 SCE_KERNEL_MAIN_DMEM_SIZE = 5056_MB; // ~ 5GB
namespace Libraries::Kernel {

View File

@@ -2,8 +2,8 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include <mutex>
#include <semaphore>
#include <thread>
#include <semaphore.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/error.h"
@@ -510,23 +510,24 @@ int PS4_SYSV_ABI scePthreadMutexattrInit(ScePthreadMutexattr* attr) {
int PS4_SYSV_ABI scePthreadMutexattrSettype(ScePthreadMutexattr* attr, int type) {
int ptype = PTHREAD_MUTEX_DEFAULT;
switch (type) {
case 1:
case ORBIS_PTHREAD_MUTEX_ERRORCHECK:
ptype = PTHREAD_MUTEX_ERRORCHECK;
break;
case 2:
case ORBIS_PTHREAD_MUTEX_RECURSIVE:
ptype = PTHREAD_MUTEX_RECURSIVE;
break;
case 3:
case 4:
case ORBIS_PTHREAD_MUTEX_NORMAL:
case ORBIS_PTHREAD_MUTEX_ADAPTIVE:
ptype = PTHREAD_MUTEX_NORMAL;
break;
default:
UNREACHABLE_MSG("Invalid type: {}", type);
return SCE_KERNEL_ERROR_EINVAL;
}
int result = pthread_mutexattr_settype(&(*attr)->pth_mutex_attr, ptype);
ASSERT(result == 0);
return result == 0 ? SCE_OK : SCE_KERNEL_ERROR_EINVAL;
return SCE_OK;
}
int PS4_SYSV_ABI scePthreadMutexattrSetprotocol(ScePthreadMutexattr* attr, int protocol) {
@@ -1373,90 +1374,97 @@ int PS4_SYSV_ABI posix_pthread_detach(ScePthread thread) {
return pthread_detach(thread->pth);
}
int PS4_SYSV_ABI posix_sem_init(sem_t* sem, int pshared, unsigned int value) {
int result = sem_init(sem, pshared, value);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_init(PthreadSemInternal** sem, int pshared, unsigned int value) {
if (value > ORBIS_KERNEL_SEM_VALUE_MAX) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
if (sem != nullptr) {
*sem = new PthreadSemInternal{
.semaphore = std::counting_semaphore<ORBIS_KERNEL_SEM_VALUE_MAX>{value},
.value = {static_cast<int>(value)},
};
}
return 0;
}
int PS4_SYSV_ABI posix_sem_wait(sem_t* sem) {
int result = sem_wait(sem);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_wait(PthreadSemInternal** sem) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
(*sem)->semaphore.acquire();
--(*sem)->value;
return 0;
}
int PS4_SYSV_ABI posix_sem_trywait(sem_t* sem) {
int result = sem_trywait(sem);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_trywait(PthreadSemInternal** sem) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
if (!(*sem)->semaphore.try_acquire()) {
SetPosixErrno(EAGAIN);
return -1;
}
--(*sem)->value;
return 0;
}
#ifndef HAVE_SEM_TIMEDWAIT
int sem_timedwait(sem_t* sem, const struct timespec* abstime) {
int rc;
while ((rc = sem_trywait(sem)) == EAGAIN) {
struct timespec curr_time;
clock_gettime(CLOCK_REALTIME, &curr_time);
s64 remaining_ns = 0;
remaining_ns +=
(static_cast<s64>(abstime->tv_sec) - static_cast<s64>(curr_time.tv_sec)) * 1000000000L;
remaining_ns += static_cast<s64>(abstime->tv_nsec) - static_cast<s64>(curr_time.tv_nsec);
if (remaining_ns <= 0) {
return ETIMEDOUT;
}
struct timespec sleep_time;
sleep_time.tv_sec = 0;
if (remaining_ns < 5000000L) {
sleep_time.tv_nsec = remaining_ns;
} else {
sleep_time.tv_nsec = 5000000;
}
nanosleep(&sleep_time, nullptr);
int PS4_SYSV_ABI posix_sem_timedwait(PthreadSemInternal** sem, const timespec* t) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return rc;
}
#endif
int PS4_SYSV_ABI posix_sem_timedwait(sem_t* sem, const timespec* t) {
int result = sem_timedwait(sem, t);
if (result == -1) {
SetPosixErrno(errno);
using std::chrono::duration_cast;
using std::chrono::nanoseconds;
using std::chrono::seconds;
using std::chrono::system_clock;
const system_clock::time_point time{
duration_cast<system_clock::duration>(seconds{t->tv_sec} + nanoseconds{t->tv_nsec})};
if (!(*sem)->semaphore.try_acquire_until(time)) {
SetPosixErrno(ETIMEDOUT);
return -1;
}
return result;
--(*sem)->value;
return 0;
}
int PS4_SYSV_ABI posix_sem_post(sem_t* sem) {
int result = sem_post(sem);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_post(PthreadSemInternal** sem) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
if ((*sem)->value == ORBIS_KERNEL_SEM_VALUE_MAX) {
SetPosixErrno(EOVERFLOW);
return -1;
}
++(*sem)->value;
(*sem)->semaphore.release();
return 0;
}
int PS4_SYSV_ABI posix_sem_destroy(sem_t* sem) {
int result = sem_destroy(sem);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_destroy(PthreadSemInternal** sem) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
delete *sem;
*sem = nullptr;
return 0;
}
int PS4_SYSV_ABI posix_sem_getvalue(sem_t* sem, int* sval) {
int result = sem_getvalue(sem, sval);
if (result == -1) {
SetPosixErrno(errno);
int PS4_SYSV_ABI posix_sem_getvalue(PthreadSemInternal** sem, int* sval) {
if (sem == nullptr || *sem == nullptr) {
SetPosixErrno(EINVAL);
return -1;
}
return result;
if (sval) {
*sval = (*sem)->value;
}
return 0;
}
int PS4_SYSV_ABI posix_pthread_attr_getstacksize(const pthread_attr_t* attr, size_t* size) {

View File

@@ -5,6 +5,7 @@
#include <atomic>
#include <mutex>
#include <semaphore>
#include <string>
#include <vector>
#include <pthread.h>
@@ -19,6 +20,12 @@ namespace Libraries::Kernel {
constexpr int ORBIS_KERNEL_PRIO_FIFO_DEFAULT = 700;
constexpr int ORBIS_KERNEL_PRIO_FIFO_HIGHEST = 256;
constexpr int ORBIS_KERNEL_PRIO_FIFO_LOWEST = 767;
constexpr int ORBIS_KERNEL_SEM_VALUE_MAX = 0x7FFFFFFF;
constexpr int ORBIS_PTHREAD_MUTEX_ERRORCHECK = 1;
constexpr int ORBIS_PTHREAD_MUTEX_RECURSIVE = 2;
constexpr int ORBIS_PTHREAD_MUTEX_NORMAL = 3;
constexpr int ORBIS_PTHREAD_MUTEX_ADAPTIVE = 4;
struct PthreadInternal;
struct PthreadAttrInternal;
@@ -104,6 +111,11 @@ struct PthreadRwInternal {
std::string name;
};
struct PthreadSemInternal {
std::counting_semaphore<ORBIS_KERNEL_SEM_VALUE_MAX> semaphore;
std::atomic<s32> value;
};
class PThreadPool {
public:
ScePthread Create();

View File

@@ -3,54 +3,116 @@
#pragma once
constexpr int ORBIS_NGS2_ERROR_INVALID_PARAMETERS = 0x804A0001;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAXIMUM_GRAIN_SAMPLES = 0x804A0050;
constexpr int ORBIS_NGS2_ERROR_INVALID_GRAIN_SAMPLES = 0x804A0051;
constexpr int ORBIS_NGS2_ERROR_INVALID_CHANNELS = 0x804A0052;
constexpr int ORBIS_NGS2_ERROR_INVALD_ADDRESS = 0x804A0053;
constexpr int ORBIS_NGS2_ERROR_INVALD_SIZE = 0x804A0054;
constexpr int ORBIS_NGS2_ERROR_FAIL = 0x804A0001;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_GRAIN_SAMPLES = 0x804A0050;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_GRAIN_SAMPLES = 0x804A0051;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_CHANNELS = 0x804A0052;
constexpr int ORBIS_NGS2_ERROR_INVALID_OUT_ADDRESS = 0x804A0053;
constexpr int ORBIS_NGS2_ERROR_INVALID_OUT_SIZE = 0x804A0054;
constexpr int ORBIS_NGS2_ERROR_INVALID_OPTION_ADDRESS = 0x804A0080;
constexpr int ORBIS_NGS2_ERROR_INVALID_OPTION_SIZE = 0x804A0081;
constexpr int ORBIS_NGS2_ERROR_INVALID_RACK_OPTION_MAX_MATRICES = 0x804A0100;
constexpr int ORBIS_NGS2_ERROR_INVALID_RACK_OPTION_MAX_PORTS = 0x804A0101;
constexpr int ORBIS_NGS2_ERROR_INVALID_RACK_OPTION_MAX_INPUT_DELAY_BLOCKS = 0x804A0102;
constexpr int ORBIS_NGS2_ERROR_INVALID_MATRIX_LEVELS = 0x804A0150;
constexpr int ORBIS_NGS2_ERROR_SAMPLER_WAVEFORM_TERMINATED = 0x804A0151;
constexpr int ORBIS_NGS2_ERROR_INVALID_ENVELOPE_POINTS = 0x804A0152;
constexpr int ORBIS_NGS2_ERROR_INVALID_OPTION_FLAG = 0x804A0082;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_MATRICES = 0x804A0100;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_PORTS = 0x804A0101;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_INPUT_DELAY_BLOCKS = 0x804A0102;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_VOICES = 0x804A0103;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_CHANNELS = 0x804A0104;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_CHANNEL_WORKS = 0x804A0105;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_WAVEFORM_BLOCKS = 0x804A0106;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_ENVELOPE_POINTS = 0x804A0107;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_FILTERS = 0x804A0108;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_CODEC_CACHES = 0x804A0109;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_ATRAC9_DECODERS = 0x804A010A;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_ATRAC9_CHANNEL_WORKS = 0x804A010B;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_INPUTS = 0x804A010C;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_MATRIX_LEVELS = 0x804A0150;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_WAVEFORM_BLOCKS = 0x804A0151;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_ENVELOPE_POINTS = 0x804A0152;
constexpr int ORBIS_NGS2_ERROR_INVALID_MATRIX_LEVEL_ADDRESS = 0x804A0153;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_BLOCK_ADDRESS = 0x804A0154;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_BLOCK_ADDRESS = 0x804A0154;
constexpr int ORBIS_NGS2_ERROR_INVALID_ENVELOPE_POINT_ADDRESS = 0x804A0155;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_PEAKMETER_BLOCKS = 0x804A0156;
constexpr int ORBIS_NGS2_ERROR_INVALID_HANDLE = 0x804A0200;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLE_RATE = 0x804A0201;
constexpr int ORBIS_NGS2_ERROR_INVALID_REPORT_TYPE = 0x804A0202;
constexpr int ORBIS_NGS2_ERROR_INVALID_REPORT_HANDLER = 0x804A0203;
constexpr int ORBIS_NGS2_ERROR_INVALID_REPORT_HANDLE = 0x804A0204;
constexpr int ORBIS_NGS2_ERROR_EMPTY_REPORT_HANDLE = 0x804A0205;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_INFO = 0x804A0206;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_ADDRESS = 0x804A0207;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_ALIGNMENT = 0x804A0208;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_ALIGN = 0x804A0208;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_SIZE = 0x804A0209;
constexpr int ORBIS_NGS2_ERROR_INVALID_BUFFER_ALLOCATOR = 0x804A020A;
constexpr int ORBIS_NGS2_ERROR_BUFFER_VERIFY_FAILED = 0x804A020B;
constexpr int ORBIS_NGS2_ERROR_MODULE_PLAYER_DATA_EMPTY = 0x804A020C;
constexpr int ORBIS_NGS2_ERROR_BUFFER_BROKEN = 0x804A020B;
constexpr int ORBIS_NGS2_ERROR_EMPTY_BUFFER = 0x804A020C;
constexpr int ORBIS_NGS2_ERROR_INVALID_SYSTEM_HANDLE = 0x804A0230;
constexpr int ORBIS_NGS2_ERROR_INVALID_RACK_ID = 0x804A0260;
constexpr int ORBIS_NGS2_ERROR_INVALID_RACK_HANDLE = 0x804A0261;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_HANDLE = 0x804A0300;
constexpr int ORBIS_NGS2_ERROR_UNINIT_VOICE = 0x804A0301;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_INDEX = 0x804A0302;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_EVENT = 0x804A0303;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_PORT_INDEX = 0x804A0304;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_INPUT_OR_RACK_OCCUPIED = 0x804A0305;
constexpr int ORBIS_NGS2_ERROR_INVALID_CONTROL_ID = 0x804A0308;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_CONTROL_PARAMETER = 0x804A0309;
constexpr int ORBIS_NGS2_ERROR_INVALID_PARAMETER_SIZE = 0x804A030A;
constexpr int ORBIS_NGS2_ERROR_INVALID_EVENT_TYPE = 0x804A0303;
constexpr int ORBIS_NGS2_ERROR_INVALID_PORT_INDEX = 0x804A0304;
constexpr int ORBIS_NGS2_ERROR_INVALID_PATCH = 0x804A0305;
constexpr int ORBIS_NGS2_ERROR_EMPTY_CHANNEL_WORK = 0x804A0306;
constexpr int ORBIS_NGS2_ERROR_EMPTY_CODEC_DECODER = 0x804A0307;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_CONTROL_ID = 0x804A0308;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_CONTROL_ADDRESS = 0x804A0309;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_CONTROL_SIZE = 0x804A030A;
constexpr int ORBIS_NGS2_ERROR_DETECTED_CIRCULAR_VOICE_CONTROL = 0x804A030B;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_DATA = 0x804A0400;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_FORMAT = 0x804A0401;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_TYPE_NO_ATRAC9_DECODERS = 0x804A0402;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_ATRAC9_CONFIG_DATA = 0x804A0403;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_SAMPLE_RATE = 0x804A0404;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_FRAME = 0x804A0405;
constexpr int ORBIS_NGS2_ERROR_INVALID_SAMPLER_WAVEFORM_ADDRESS = 0x804A0406;
constexpr int ORBIS_NGS2_ERROR_UNABLE_CALLBACK = 0x804A030C;
constexpr int ORBIS_NGS2_ERROR_INVALID_CALLBACK_FLAG = 0x804A030D;
constexpr int ORBIS_NGS2_ERROR_INVALID_CALLBACK_HANDLER = 0x804A030E;
constexpr int ORBIS_NGS2_ERROR_INVALID_OPERATION = 0x804A030F;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_FORMAT = 0x804A0400;
constexpr int ORBIS_NGS2_ERROR_UNKNOWN_WAVEFORM_FORMAT = 0x804A0401;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_TYPE = 0x804A0402;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_CONFIG = 0x804A0403;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_SAMPLE_RATE = 0x804A0404;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_FRAME = 0x804A0405;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_ADDRESS = 0x804A0406;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_SIZE = 0x804A0407;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_DATA = 0x804A0408;
constexpr int ORBIS_NGS2_ERROR_INVALID_WAVEFORM_BLOCK_NUM_REPEATS = 0x804A0409;
constexpr int ORBIS_NGS2_ERROR_INVALID_ENVELOPE_CURVE = 0x804A0500;
constexpr int ORBIS_NGS2_ERROR_INVALID_PEAKMETER_FLAG = 0x804A0510;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_CHORUS_PHASES = 0x804A0520;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_CHORUS_PHASES = 0x804A0521;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_DELAY_LENGTH = 0x804A0530;
constexpr int ORBIS_NGS2_ERROR_INVALID_MAX_DELAY_TAPS = 0x804A0531;
constexpr int ORBIS_NGS2_ERROR_INVALID_DELAY_TYPE = 0x804A0532;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_DELAY_TAPS = 0x804A0533;
constexpr int ORBIS_NGS2_ERROR_INVALID_DELAY_TAP_INFO = 0x804A0534;
constexpr int ORBIS_NGS2_ERROR_INVALID_PITCH_SHIFT_QUALITY = 0x804A0540;
constexpr int ORBIS_NGS2_ERROR_INVALID_FILTER_INDEX = 0x804A0600;
constexpr int ORBIS_NGS2_ERROR_INVALID_FILTER_TYPE = 0x804A0601;
constexpr int ORBIS_NGS2_ERROR_INVALID_FILTER_LOCATION = 0x804A0602;
constexpr int ORBIS_NGS2_ERROR_INVALID_LFE_CUT_OFF_FREQUENCY = 0x804A0603;
constexpr int ORBIS_NGS2_ERROR_INVALID_MATRIX_INDEX_OR_TYPE = 0x804A0700;
constexpr int ORBIS_NGS2_ERROR_INVALID_LFE_FC = 0x804A0603;
constexpr int ORBIS_NGS2_ERROR_INVALID_USER_FX_PARAM_SIZE = 0x804A0650;
constexpr int ORBIS_NGS2_ERROR_INVALID_MATRIX_INDEX = 0x804A0700;
constexpr int ORBIS_NGS2_ERROR_CODEC_UNKNOWN_WAVEFORM = 0x804A0800;
constexpr int ORBIS_NGS2_ERROR_CODEC_EMPTY_INSTANCE = 0x804A0801;
constexpr int ORBIS_NGS2_ERROR_CODEC_EMPTY_CHANNEL = 0x804A0802;
constexpr int ORBIS_NGS2_ERROR_CODEC_SETUP_FAIL = 0x804A0803;
constexpr int ORBIS_NGS2_ERROR_CODEC_RESET_FAIL = 0x804A0804;
constexpr int ORBIS_NGS2_ERROR_CODEC_DECODE_FAIL = 0x804A0805;
constexpr int ORBIS_NGS2_ERROR_INVALID_REVERB_SIZE = 0x804A0900;
constexpr int ORBIS_NGS2_ERROR_INVALID_PAN_UNIT_ANGLE = 0x804A0910;
constexpr int ORBIS_NGS2_ERROR_INVALID_PAN_SPEAKER = 0x804A0911;
constexpr int ORBIS_NGS2_ERROR_INVALID_PAN_MATRIX_FORMAT = 0x804A0912;
constexpr int ORBIS_NGS2_ERROR_INVALID_PAN_WORK = 0x804A0913;
constexpr int ORBIS_NGS2_ERROR_INVALID_PAN_PARAM = 0x804A0914;
constexpr int ORBIS_NGS2_ERROR_INVALID_GEOM_DISTANCE = 0x804A0920;
constexpr int ORBIS_NGS2_ERROR_INVALID_GEOM_LISTENER_ADDRESS = 0x804A0921;
constexpr int ORBIS_NGS2_ERROR_INVALID_GEOM_SOURCE_ADDRESS = 0x804A0922;
constexpr int ORBIS_NGS2_ERROR_INVALID_GEOM_FLAG = 0x804A0923;
constexpr int ORBIS_NGS2_ERROR_INVALID_GEOM_CONE = 0x804A0924;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_ID = 0x804A0A00;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_MODULES = 0x804A0A01;
constexpr int ORBIS_NGS2_ERROR_INVALID_NUM_MODULE_BUFFERS = 0x804A0A02;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_BUFFER_ID = 0x804A0A03;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_STATE_OFFSET = 0x804A0A04;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_STATE_SIZE = 0x804A0A05;
constexpr int ORBIS_NGS2_ERROR_INVALID_VOICE_STATE_SIZE = 0x804A0A06;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_INDEX = 0x804A0B00;
constexpr int ORBIS_NGS2_ERROR_INVALID_MODULE_INFO_SIZE = 0x804A0B01;

View File

@@ -138,13 +138,13 @@ s32 Ngs2::SystemSetupCore(StackBuffer* buf, SystemOptions* options, Ngs2Handle**
// Validate maxGrainSamples
if (maxGrainSamples < 64 || maxGrainSamples > 1024 || (maxGrainSamples & 0x3F) != 0) {
LOG_ERROR(Lib_Ngs2, "Invalid system option (maxGrainSamples={},x64)", maxGrainSamples);
return ORBIS_NGS2_ERROR_INVALID_MAXIMUM_GRAIN_SAMPLES;
return ORBIS_NGS2_ERROR_INVALID_MAX_GRAIN_SAMPLES;
}
// Validate numGrainSamples
if (numGrainSamples < 64 || numGrainSamples > 1024 || (numGrainSamples & 0x3F) != 0) {
LOG_ERROR(Lib_Ngs2, "Invalid system option (numGrainSamples={},x64)", numGrainSamples);
return ORBIS_NGS2_ERROR_INVALID_GRAIN_SAMPLES;
return ORBIS_NGS2_ERROR_INVALID_NUM_GRAIN_SAMPLES;
}
// Validate sampleRate

View File

@@ -4,6 +4,7 @@
// Generated By moduleGenerator
#include <common/assert.h>
#include <common/singleton.h>
#include "common/config.h"
#include "common/logging/log.h"
#include "core/libraries/error_codes.h"
#include "core/libraries/libs.h"
@@ -25,6 +26,9 @@ int PS4_SYSV_ABI scePadConnectPort() {
int PS4_SYSV_ABI scePadDeviceClassGetExtendedInformation(
s32 handle, OrbisPadDeviceClassExtendedInformation* pExtInfo) {
LOG_ERROR(Lib_Pad, "(STUBBED) called");
if (Config::getUseSpecialPad()) {
pExtInfo->deviceClass = (OrbisPadDeviceClass)Config::getSpecialPadClass();
}
return ORBIS_OK;
}
@@ -107,6 +111,10 @@ int PS4_SYSV_ABI scePadGetControllerInformation(s32 handle, OrbisPadControllerIn
pInfo->connectedCount = 1;
pInfo->connected = true;
pInfo->deviceClass = ORBIS_PAD_DEVICE_CLASS_STANDARD;
if (Config::getUseSpecialPad()) {
pInfo->connectionType = ORBIS_PAD_PORT_TYPE_SPECIAL;
pInfo->deviceClass = (OrbisPadDeviceClass)Config::getSpecialPadClass();
}
return SCE_OK;
}
@@ -239,11 +247,26 @@ int PS4_SYSV_ABI scePadMbusTerm() {
int PS4_SYSV_ABI scePadOpen(s32 userId, s32 type, s32 index, const OrbisPadOpenParam* pParam) {
LOG_INFO(Lib_Pad, "(DUMMY) called user_id = {} type = {} index = {}", userId, type, index);
if (Config::getUseSpecialPad()) {
if (type != ORBIS_PAD_PORT_TYPE_SPECIAL)
return ORBIS_PAD_ERROR_DEVICE_NOT_CONNECTED;
} else {
if (type != ORBIS_PAD_PORT_TYPE_STANDARD)
return ORBIS_PAD_ERROR_DEVICE_NOT_CONNECTED;
}
return 1; // dummy
}
int PS4_SYSV_ABI scePadOpenExt() {
int PS4_SYSV_ABI scePadOpenExt(s32 userId, s32 type, s32 index,
const OrbisPadOpenExtParam* pParam) {
LOG_ERROR(Lib_Pad, "(STUBBED) called");
if (Config::getUseSpecialPad()) {
if (type != ORBIS_PAD_PORT_TYPE_SPECIAL)
return ORBIS_PAD_ERROR_DEVICE_NOT_CONNECTED;
} else {
if (type != ORBIS_PAD_PORT_TYPE_STANDARD)
return ORBIS_PAD_ERROR_DEVICE_NOT_CONNECTED;
}
return 1; // dummy
}
@@ -286,12 +309,13 @@ int PS4_SYSV_ABI scePadRead(s32 handle, OrbisPadData* pData, s32 num) {
pData[i].angularVelocity.x = 0.0f;
pData[i].angularVelocity.y = 0.0f;
pData[i].angularVelocity.z = 0.0f;
pData[i].touchData.touchNum = 0;
pData[i].touchData.touch[0].x = 0;
pData[i].touchData.touch[0].y = 0;
pData[i].touchData.touchNum =
(states[i].touchpad[0].state ? 1 : 0) + (states[i].touchpad[1].state ? 1 : 0);
pData[i].touchData.touch[0].x = states[i].touchpad[0].x;
pData[i].touchData.touch[0].y = states[i].touchpad[0].y;
pData[i].touchData.touch[0].id = 1;
pData[i].touchData.touch[1].x = 0;
pData[i].touchData.touch[1].y = 0;
pData[i].touchData.touch[1].x = states[i].touchpad[1].x;
pData[i].touchData.touch[1].y = states[i].touchpad[1].y;
pData[i].touchData.touch[1].id = 2;
pData[i].connected = connected;
pData[i].timestamp = states[i].time;

View File

@@ -229,6 +229,13 @@ struct OrbisPadOpenParam {
u8 reserve[8];
};
struct OrbisPadOpenExtParam {
u16 vendorId;
u16 productId;
u16 productId_2;
u8 reserve[10];
};
struct OrbisPadLightBarParam {
u8 r;
u8 g;
@@ -284,7 +291,7 @@ int PS4_SYSV_ABI scePadIsValidHandle();
int PS4_SYSV_ABI scePadMbusInit();
int PS4_SYSV_ABI scePadMbusTerm();
int PS4_SYSV_ABI scePadOpen(s32 userId, s32 type, s32 index, const OrbisPadOpenParam* pParam);
int PS4_SYSV_ABI scePadOpenExt();
int PS4_SYSV_ABI scePadOpenExt(s32 userId, s32 type, s32 index, const OrbisPadOpenExtParam* pParam);
int PS4_SYSV_ABI scePadOpenExt2();
int PS4_SYSV_ABI scePadOutputReport();
int PS4_SYSV_ABI scePadRead(s32 handle, OrbisPadData* pData, s32 num);

View File

@@ -1,14 +1,16 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "random.h"
#include "random_error.h"
#include "common/logging/log.h"
#include "core/libraries/error_codes.h"
#include "core/libraries/libs.h"
#include "random.h"
namespace Libraries::Random {
s32 PS4_SYSV_ABI sceRandomGetRandomNumber(u8* buf, size_t size) {
s32 PS4_SYSV_ABI sceRandomGetRandomNumber(u8* buf, std::size_t size) {
LOG_TRACE(Lib_Random, "called");
if (size > SCE_RANDOM_MAX_SIZE) {
return SCE_RANDOM_ERROR_INVALID;

View File

@@ -11,7 +11,7 @@ class SymbolsResolver;
namespace Libraries::Random {
constexpr int32_t SCE_RANDOM_MAX_SIZE = 64;
s32 PS4_SYSV_ABI sceRandomGetRandomNumber(u8* buf, size_t size);
s32 PS4_SYSV_ABI sceRandomGetRandomNumber(u8* buf, std::size_t size);
void RegisterlibSceRandom(Core::Loader::SymbolsResolver* sym);
} // namespace Libraries::Random

View File

@@ -0,0 +1,8 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
constexpr int SCE_RANDOM_ERROR_INVALID = 0x817C0016;
constexpr int SCE_RANDOM_ERROR_OUT_OF_RESOURCES = 0x817C001C;
constexpr int SCE_RANDOM_ERROR_FATAL = 0x817C00FF;

View File

@@ -505,8 +505,11 @@ s32 saveDataMount(u32 user_id, char* dir_name, u32 mount_mode,
ORBIS_SAVE_DATA_MOUNT_MODE_DESTRUCT_OFF:
case ORBIS_SAVE_DATA_MOUNT_MODE_CREATE | ORBIS_SAVE_DATA_MOUNT_MODE_RDWR |
ORBIS_SAVE_DATA_MOUNT_MODE_COPY_ICON:
case ORBIS_SAVE_DATA_MOUNT_MODE_CREATE | ORBIS_SAVE_DATA_MOUNT_MODE_COPY_ICON:
case ORBIS_SAVE_DATA_MOUNT_MODE_CREATE | ORBIS_SAVE_DATA_MOUNT_MODE_DESTRUCT_OFF |
ORBIS_SAVE_DATA_MOUNT_MODE_COPY_ICON: {
ORBIS_SAVE_DATA_MOUNT_MODE_COPY_ICON:
case ORBIS_SAVE_DATA_MOUNT_MODE_CREATE | ORBIS_SAVE_DATA_MOUNT_MODE_RDWR |
ORBIS_SAVE_DATA_MOUNT_MODE_DESTRUCT_OFF | ORBIS_SAVE_DATA_MOUNT_MODE_COPY_ICON: {
if (std::filesystem::exists(mount_dir)) {
return ORBIS_SAVE_DATA_ERROR_EXISTS;
}

View File

@@ -68,11 +68,19 @@ void Linker::Execute() {
}
// Configure used flexible memory size.
// if (auto* mem_param = GetProcParam()->mem_param) {
// if (u64* flexible_size = mem_param->flexible_memory_size) {
// memory->SetTotalFlexibleSize(*flexible_size);
// }
// }
if (const auto* proc_param = GetProcParam()) {
if (proc_param->size >=
offsetof(OrbisProcParam, mem_param) + sizeof(OrbisKernelMemParam*)) {
if (const auto* mem_param = proc_param->mem_param) {
if (mem_param->size >=
offsetof(OrbisKernelMemParam, flexible_memory_size) + sizeof(u64*)) {
if (const auto* flexible_size = mem_param->flexible_memory_size) {
memory->SetupMemoryRegions(*flexible_size);
}
}
}
}
}
// Init primary thread.
Common::SetCurrentThreadName("GAME_MainThread");

View File

@@ -11,9 +11,11 @@
namespace Core {
constexpr u64 SCE_DEFAULT_FLEXIBLE_MEMORY_SIZE = 448_MB;
MemoryManager::MemoryManager() {
// Insert an area that covers direct memory physical block.
dmem_map.emplace(0, DirectMemoryArea{0, SCE_KERNEL_MAIN_DMEM_SIZE});
// Set up the direct and flexible memory regions.
SetupMemoryRegions(SCE_DEFAULT_FLEXIBLE_MEMORY_SIZE);
// Insert a virtual memory area that covers the entire area we manage.
const VAddr system_managed_base = impl.SystemManagedVirtualBase();
@@ -35,6 +37,19 @@ MemoryManager::MemoryManager() {
MemoryManager::~MemoryManager() = default;
void MemoryManager::SetupMemoryRegions(u64 flexible_size) {
total_flexible_size = flexible_size;
total_direct_size = SCE_KERNEL_MAIN_DMEM_SIZE - flexible_size;
// Insert an area that covers direct memory physical block.
// Note that this should never be called after direct memory allocations have been made.
dmem_map.clear();
dmem_map.emplace(0, DirectMemoryArea{0, total_direct_size});
LOG_INFO(Kernel_Vmm, "Configured memory regions: flexible size = {:#x}, direct size = {:#x}",
total_flexible_size, total_direct_size);
}
PAddr MemoryManager::Allocate(PAddr search_start, PAddr search_end, size_t size, u64 alignment,
int memory_type) {
std::scoped_lock lk{mutex};
@@ -42,12 +57,17 @@ PAddr MemoryManager::Allocate(PAddr search_start, PAddr search_end, size_t size,
auto dmem_area = FindDmemArea(search_start);
const auto is_suitable = [&] {
return dmem_area->second.is_free && dmem_area->second.size >= size;
const auto aligned_base = alignment > 0 ? Common::AlignUp(dmem_area->second.base, alignment)
: dmem_area->second.base;
const auto alignment_size = aligned_base - dmem_area->second.base;
const auto remaining_size =
dmem_area->second.size >= alignment_size ? dmem_area->second.size - alignment_size : 0;
return dmem_area->second.is_free && remaining_size >= size;
};
while (!is_suitable() && dmem_area->second.GetEnd() <= search_end) {
dmem_area++;
}
ASSERT_MSG(is_suitable(), "Unable to find free direct memory area");
ASSERT_MSG(is_suitable(), "Unable to find free direct memory area: size = {:#x}", size);
// Align free position
PAddr free_addr = dmem_area->second.base;
@@ -333,14 +353,19 @@ int MemoryManager::DirectQueryAvailable(PAddr search_start, PAddr search_end, si
continue;
}
if (dmem_area->second.size > max_size) {
paddr = dmem_area->second.base;
max_size = dmem_area->second.size;
const auto aligned_base = alignment > 0 ? Common::AlignUp(dmem_area->second.base, alignment)
: dmem_area->second.base;
const auto alignment_size = aligned_base - dmem_area->second.base;
const auto remaining_size =
dmem_area->second.size >= alignment_size ? dmem_area->second.size - alignment_size : 0;
if (remaining_size > max_size) {
paddr = aligned_base;
max_size = remaining_size;
}
dmem_area++;
}
*phys_addr_out = alignment > 0 ? Common::AlignUp(paddr, alignment) : paddr;
*phys_addr_out = paddr;
*size_out = max_size;
return ORBIS_OK;
}
@@ -418,7 +443,8 @@ MemoryManager::DMemHandle MemoryManager::CarveDmemArea(PAddr addr, size_t size)
const PAddr start_in_area = addr - area.base;
const PAddr end_in_vma = start_in_area + size;
ASSERT_MSG(end_in_vma <= area.size, "Mapping cannot fit inside free region");
ASSERT_MSG(end_in_vma <= area.size, "Mapping cannot fit inside free region: size = {:#x}",
size);
if (end_in_vma != area.size) {
// Split VMA at the end of the allocated region

View File

@@ -130,8 +130,8 @@ public:
rasterizer = rasterizer_;
}
void SetTotalFlexibleSize(u64 size) {
total_flexible_size = size;
u64 GetTotalDirectSize() const {
return total_direct_size;
}
u64 GetAvailableFlexibleSize() const {
@@ -142,6 +142,8 @@ public:
return impl.SystemReservedVirtualBase();
}
void SetupMemoryRegions(u64 flexible_size);
PAddr Allocate(PAddr search_start, PAddr search_end, size_t size, u64 alignment,
int memory_type);
@@ -217,7 +219,8 @@ private:
DMemMap dmem_map;
VMAMap vma_map;
std::recursive_mutex mutex;
size_t total_flexible_size = 448_MB;
size_t total_direct_size{};
size_t total_flexible_size{};
size_t flexible_usage{};
Vulkan::Rasterizer* rasterizer{};
};

View File

@@ -132,15 +132,29 @@ bool GameController::SetVibration(u8 smallMotor, u8 largeMotor) {
return true;
}
void GameController::SetTouchpadState(int touchIndex, bool touchDown, float x, float y) {
if (touchIndex < 2) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
state.touchpad[touchIndex].state = touchDown;
state.touchpad[touchIndex].x = static_cast<u16>(x * 1920);
state.touchpad[touchIndex].y = static_cast<u16>(y * 941);
AddState(state);
}
}
void GameController::TryOpenSDLController() {
if (m_sdl_gamepad == nullptr || !SDL_GamepadConnected(m_sdl_gamepad)) {
int gamepad_count;
SDL_JoystickID* gamepads = SDL_GetGamepads(&gamepad_count);
m_sdl_gamepad = gamepad_count > 0 ? SDL_OpenGamepad(gamepads[0]) : nullptr;
SDL_free(gamepads);
}
SetLightBarRGB(0, 0, 255);
SetLightBarRGB(0, 0, 255);
}
}
} // namespace Input

View File

@@ -21,10 +21,17 @@ enum class Axis {
AxisMax
};
struct TouchpadEntry {
bool state{};
u16 x{};
u16 y{};
};
struct State {
u32 buttonsState = 0;
u64 time = 0;
int axes[static_cast<int>(Axis::AxisMax)] = {128, 128, 128, 128, 0, 0};
TouchpadEntry touchpad[2] = {{false, 0, 0}, {false, 0, 0}};
};
inline int GetAxis(int min, int max, int value) {
@@ -47,6 +54,7 @@ public:
void Axis(int id, Input::Axis axis, int value);
void SetLightBarRGB(u8 r, u8 g, u8 b);
bool SetVibration(u8 smallMotor, u8 largeMotor);
void SetTouchpadState(int touchIndex, bool touchDown, float x, float y);
void TryOpenSDLController();
private:

View File

@@ -98,6 +98,11 @@ void WindowSDL::waitEvent() {
case SDL_EVENT_GAMEPAD_BUTTON_DOWN:
case SDL_EVENT_GAMEPAD_BUTTON_UP:
case SDL_EVENT_GAMEPAD_AXIS_MOTION:
case SDL_EVENT_GAMEPAD_ADDED:
case SDL_EVENT_GAMEPAD_REMOVED:
case SDL_EVENT_GAMEPAD_TOUCHPAD_DOWN:
case SDL_EVENT_GAMEPAD_TOUCHPAD_UP:
case SDL_EVENT_GAMEPAD_TOUCHPAD_MOTION:
onGamepadEvent(&event);
break;
case SDL_EVENT_QUIT:
@@ -273,6 +278,15 @@ void WindowSDL::onKeyPress(const SDL_Event* event) {
case SDLK_SPACE:
button = OrbisPadButtonDataOffset::ORBIS_PAD_BUTTON_TOUCH_PAD;
break;
case SDLK_F11:
if (event->type == SDL_EVENT_KEY_DOWN) {
{
SDL_WindowFlags flag = SDL_GetWindowFlags(window);
bool is_fullscreen = flag & SDL_WINDOW_FULLSCREEN;
SDL_SetWindowFullscreen(window, !is_fullscreen);
}
}
break;
default:
break;
}
@@ -290,6 +304,17 @@ void WindowSDL::onGamepadEvent(const SDL_Event* event) {
u32 button = 0;
Input::Axis axis = Input::Axis::AxisMax;
switch (event->type) {
case SDL_EVENT_GAMEPAD_ADDED:
case SDL_EVENT_GAMEPAD_REMOVED:
controller->TryOpenSDLController();
break;
case SDL_EVENT_GAMEPAD_TOUCHPAD_DOWN:
case SDL_EVENT_GAMEPAD_TOUCHPAD_UP:
case SDL_EVENT_GAMEPAD_TOUCHPAD_MOTION:
controller->SetTouchpadState(event->gtouchpad.finger,
event->type != SDL_EVENT_GAMEPAD_TOUCHPAD_UP,
event->gtouchpad.x, event->gtouchpad.y);
break;
case SDL_EVENT_GAMEPAD_BUTTON_DOWN:
case SDL_EVENT_GAMEPAD_BUTTON_UP:
button = sdlGamepadToOrbisButton(event->gbutton.button);

View File

@@ -286,6 +286,7 @@ Id EmitShiftRightLogical64(EmitContext& ctx, Id base, Id shift);
Id EmitShiftRightArithmetic32(EmitContext& ctx, Id base, Id shift);
Id EmitShiftRightArithmetic64(EmitContext& ctx, Id base, Id shift);
Id EmitBitwiseAnd32(EmitContext& ctx, IR::Inst* inst, Id a, Id b);
Id EmitBitwiseAnd64(EmitContext& ctx, IR::Inst* inst, Id a, Id b);
Id EmitBitwiseOr32(EmitContext& ctx, IR::Inst* inst, Id a, Id b);
Id EmitBitwiseOr64(EmitContext& ctx, IR::Inst* inst, Id a, Id b);
Id EmitBitwiseXor32(EmitContext& ctx, IR::Inst* inst, Id a, Id b);

View File

@@ -139,6 +139,13 @@ Id EmitBitwiseAnd32(EmitContext& ctx, IR::Inst* inst, Id a, Id b) {
return result;
}
Id EmitBitwiseAnd64(EmitContext& ctx, IR::Inst* inst, Id a, Id b) {
const Id result{ctx.OpBitwiseAnd(ctx.U64, a, b)};
SetZeroFlag(ctx, inst, result);
SetSignFlag(ctx, inst, result);
return result;
}
Id EmitBitwiseOr32(EmitContext& ctx, IR::Inst* inst, Id a, Id b) {
const Id result{ctx.OpBitwiseOr(ctx.U32[1], a, b)};
SetZeroFlag(ctx, inst, result);

View File

@@ -3,6 +3,7 @@
#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <unordered_map>
#include <utility>

View File

@@ -472,7 +472,7 @@ void Translator::S_MIN_U32(const GcnInst& inst) {
void Translator::S_CMPK_EQ_U32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src0{GetSrc(inst.dst[0])};
const IR::U32 src1{ir.Imm32(simm16)};
ir.SetScc(ir.IEqual(src0, src1));
}

View File

@@ -117,6 +117,7 @@ public:
void V_AND_B32(const GcnInst& inst);
void V_LSHLREV_B32(const GcnInst& inst);
void V_LSHL_B32(const GcnInst& inst);
void V_LSHL_B64(const GcnInst& inst);
void V_ADD_I32(const GcnInst& inst);
void V_ADDC_U32(const GcnInst& inst);
void V_CVT_F32_I32(const GcnInst& inst);

View File

@@ -11,6 +11,8 @@ void Translator::EmitVectorAlu(const GcnInst& inst) {
return V_LSHLREV_B32(inst);
case Opcode::V_LSHL_B32:
return V_LSHL_B32(inst);
case Opcode::V_LSHL_B64:
return V_LSHL_B64(inst);
case Opcode::V_BFREV_B32:
return V_BFREV_B32(inst);
case Opcode::V_BFE_U32:
@@ -390,6 +392,16 @@ void Translator::V_LSHL_B32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_LSHL_B64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
const IR::U64 src1{GetSrc64(inst.src[1])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ASSERT_MSG(src0.IsImmediate() && src0.U64() == 0 && src1.IsImmediate() && src1.U64() == 0,
"V_LSHL_B64 with non-zero src0 or src1 is not supported");
ir.SetVectorReg(dst_reg, ir.Imm32(0));
ir.SetVectorReg(dst_reg + 1, ir.Imm32(0));
}
void Translator::V_ADD_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};

View File

@@ -1115,8 +1115,18 @@ U32U64 IREmitter::ShiftRightArithmetic(const U32U64& base, const U32& shift) {
}
}
U32 IREmitter::BitwiseAnd(const U32& a, const U32& b) {
return Inst<U32>(Opcode::BitwiseAnd32, a, b);
U32U64 IREmitter::BitwiseAnd(const U32U64& a, const U32U64& b) {
if (a.Type() != b.Type()) {
UNREACHABLE_MSG("Mismatching types {} and {}", a.Type(), b.Type());
}
switch (a.Type()) {
case Type::U32:
return Inst<U32>(Opcode::BitwiseAnd32, a, b);
case Type::U64:
return Inst<U64>(Opcode::BitwiseAnd64, a, b);
default:
ThrowInvalidType(a.Type());
}
}
U32U64 IREmitter::BitwiseOr(const U32U64& a, const U32U64& b) {

View File

@@ -195,7 +195,7 @@ public:
[[nodiscard]] U32U64 ShiftLeftLogical(const U32U64& base, const U32& shift);
[[nodiscard]] U32U64 ShiftRightLogical(const U32U64& base, const U32& shift);
[[nodiscard]] U32U64 ShiftRightArithmetic(const U32U64& base, const U32& shift);
[[nodiscard]] U32 BitwiseAnd(const U32& a, const U32& b);
[[nodiscard]] U32U64 BitwiseAnd(const U32U64& a, const U32U64& b);
[[nodiscard]] U32U64 BitwiseOr(const U32U64& a, const U32U64& b);
[[nodiscard]] U32 BitwiseXor(const U32& a, const U32& b);
[[nodiscard]] U32 BitFieldInsert(const U32& base, const U32& insert, const U32& offset,

View File

@@ -260,6 +260,7 @@ OPCODE(ShiftRightLogical64, U64, U64,
OPCODE(ShiftRightArithmetic32, U32, U32, U32, )
OPCODE(ShiftRightArithmetic64, U64, U64, U32, )
OPCODE(BitwiseAnd32, U32, U32, U32, )
OPCODE(BitwiseAnd64, U64, U64, U64, )
OPCODE(BitwiseOr32, U32, U32, U32, )
OPCODE(BitwiseOr64, U64, U64, U64, )
OPCODE(BitwiseXor32, U32, U32, U32, )

View File

@@ -352,9 +352,15 @@ void ConstantPropagation(IR::Block& block, IR::Inst& inst) {
case IR::Opcode::BitwiseAnd32:
FoldWhenAllImmediates(inst, [](u32 a, u32 b) { return a & b; });
return;
case IR::Opcode::BitwiseAnd64:
FoldWhenAllImmediates(inst, [](u64 a, u64 b) { return a & b; });
return;
case IR::Opcode::BitwiseOr32:
FoldWhenAllImmediates(inst, [](u32 a, u32 b) { return a | b; });
return;
case IR::Opcode::BitwiseOr64:
FoldWhenAllImmediates(inst, [](u64 a, u64 b) { return a | b; });
return;
case IR::Opcode::BitwiseXor32:
FoldWhenAllImmediates(inst, [](u32 a, u32 b) { return a ^ b; });
return;

View File

@@ -293,10 +293,11 @@ std::pair<const IR::Inst*, bool> TryDisableAnisoLod0(const IR::Inst* inst) {
return not_found;
}
// The bits range is for lods
// The bits range is for lods (note that constants are changed after constant propagation pass)
const auto* prod0_arg0 = prod0->Arg(0).InstRecursive();
if (prod0_arg0->GetOpcode() != IR::Opcode::BitFieldUExtract ||
prod0_arg0->Arg(1).InstRecursive()->Arg(0).U32() != 0x0008000cu) {
!(prod0_arg0->Arg(1).IsIdentity() && prod0_arg0->Arg(1).U32() == 12) ||
!(prod0_arg0->Arg(2).IsIdentity() && prod0_arg0->Arg(2).U32() == 8)) {
return not_found;
}

View File

@@ -2,6 +2,7 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/config.h"
#include "common/debug.h"
#include "common/polyfill_thread.h"
#include "common/thread.h"
@@ -175,294 +176,305 @@ Liverpool::Task Liverpool::ProcessGraphics(std::span<const u32> dcb, std::span<c
while (!dcb.empty()) {
const auto* header = reinterpret_cast<const PM4Header*>(dcb.data());
const u32 type = header->type;
if (type != 3) {
// No other types of packets were spotted so far
UNREACHABLE_MSG("Invalid PM4 type {}", type);
}
const u32 count = header->type3.NumWords();
const PM4ItOpcode opcode = header->type3.opcode;
switch (opcode) {
case PM4ItOpcode::Nop: {
const auto* nop = reinterpret_cast<const PM4CmdNop*>(header);
if (nop->header.count.Value() == 0) {
break;
}
switch (type) {
case 0:
case 1:
UNREACHABLE_MSG("Unsupported PM4 type {}", type);
break;
case 2:
// Type-2 packet are used for padding purposes
dcb = dcb.subspan(1);
continue;
case 3:
const u32 count = header->type3.NumWords();
const PM4ItOpcode opcode = header->type3.opcode;
switch (opcode) {
case PM4ItOpcode::Nop: {
const auto* nop = reinterpret_cast<const PM4CmdNop*>(header);
if (nop->header.count.Value() == 0) {
break;
}
switch (nop->data_block[0]) {
case PM4CmdNop::PayloadType::PatchedFlip: {
// There is no evidence that GPU CP drives flip events by parsing
// special NOP packets. For convenience lets assume that it does.
Platform::IrqC::Instance()->Signal(Platform::InterruptId::GfxFlip);
switch (nop->data_block[0]) {
case PM4CmdNop::PayloadType::PatchedFlip: {
// There is no evidence that GPU CP drives flip events by parsing
// special NOP packets. For convenience lets assume that it does.
Platform::IrqC::Instance()->Signal(Platform::InterruptId::GfxFlip);
break;
}
case PM4CmdNop::PayloadType::DebugMarkerPush: {
const auto marker_sz = nop->header.count.Value() * 2;
const std::string_view label{reinterpret_cast<const char*>(&nop->data_block[1]),
marker_sz};
rasterizer->ScopeMarkerBegin(label);
break;
}
case PM4CmdNop::PayloadType::DebugMarkerPop: {
rasterizer->ScopeMarkerEnd();
break;
}
default:
break;
}
break;
}
case PM4CmdNop::PayloadType::DebugMarkerPush: {
const auto marker_sz = nop->header.count.Value() * 2;
const std::string_view label{reinterpret_cast<const char*>(&nop->data_block[1]),
marker_sz};
rasterizer->ScopeMarkerBegin(label);
case PM4ItOpcode::ContextControl: {
break;
}
case PM4CmdNop::PayloadType::DebugMarkerPop: {
rasterizer->ScopeMarkerEnd();
case PM4ItOpcode::ClearState: {
regs.SetDefaults();
break;
}
case PM4ItOpcode::SetConfigReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
const auto reg_addr = ConfigRegWordOffset + set_data->reg_offset;
const auto* payload = reinterpret_cast<const u32*>(header + 2);
std::memcpy(&regs.reg_array[reg_addr], payload, (count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::SetContextReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
const auto reg_addr = ContextRegWordOffset + set_data->reg_offset;
const auto* payload = reinterpret_cast<const u32*>(header + 2);
std::memcpy(&regs.reg_array[reg_addr], payload, (count - 1) * sizeof(u32));
// In the case of HW, render target memory has alignment as color block operates on
// tiles. There is no information of actual resource extents stored in CB context
// regs, so any deduction of it from slices/pitch will lead to a larger surface
// created. The same applies to the depth targets. Fortunately, the guest always
// sends a trailing NOP packet right after the context regs setup, so we can use the
// heuristic below and extract the hint to determine actual resource dims.
switch (reg_addr) {
case ContextRegs::CbColor0Base:
case ContextRegs::CbColor1Base:
case ContextRegs::CbColor2Base:
case ContextRegs::CbColor3Base:
case ContextRegs::CbColor4Base:
case ContextRegs::CbColor5Base:
case ContextRegs::CbColor6Base:
case ContextRegs::CbColor7Base: {
const auto col_buf_id = (reg_addr - ContextRegs::CbColor0Base) /
(ContextRegs::CbColor1Base - ContextRegs::CbColor0Base);
ASSERT(col_buf_id < NumColorBuffers);
const auto nop_offset = header->type3.count;
if (nop_offset == 0x0e || nop_offset == 0x0d || nop_offset == 0x0b) {
ASSERT_MSG(payload[nop_offset] == 0xc0001000,
"NOP hint is missing in CB setup sequence");
last_cb_extent[col_buf_id].raw = payload[nop_offset + 1];
} else {
last_cb_extent[col_buf_id].raw = 0;
}
break;
}
case ContextRegs::CbColor0Cmask:
case ContextRegs::CbColor1Cmask:
case ContextRegs::CbColor2Cmask:
case ContextRegs::CbColor3Cmask:
case ContextRegs::CbColor4Cmask:
case ContextRegs::CbColor5Cmask:
case ContextRegs::CbColor6Cmask:
case ContextRegs::CbColor7Cmask: {
const auto col_buf_id =
(reg_addr - ContextRegs::CbColor0Cmask) /
(ContextRegs::CbColor1Cmask - ContextRegs::CbColor0Cmask);
ASSERT(col_buf_id < NumColorBuffers);
const auto nop_offset = header->type3.count;
if (nop_offset == 0x04) {
ASSERT_MSG(payload[nop_offset] == 0xc0001000,
"NOP hint is missing in CB setup sequence");
last_cb_extent[col_buf_id].raw = payload[nop_offset + 1];
}
break;
}
case ContextRegs::DbZInfo: {
if (header->type3.count == 8) {
ASSERT_MSG(payload[20] == 0xc0001000,
"NOP hint is missing in DB setup sequence");
last_db_extent.raw = payload[21];
} else {
last_db_extent.raw = 0;
}
break;
}
default:
break;
}
break;
}
case PM4ItOpcode::SetShReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
std::memcpy(&regs.reg_array[ShRegWordOffset + set_data->reg_offset], header + 2,
(count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::SetUconfigReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
std::memcpy(&regs.reg_array[UconfigRegWordOffset + set_data->reg_offset],
header + 2, (count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::IndexType: {
const auto* index_type = reinterpret_cast<const PM4CmdDrawIndexType*>(header);
regs.index_buffer_type.raw = index_type->raw;
break;
}
case PM4ItOpcode::DrawIndex2: {
const auto* draw_index = reinterpret_cast<const PM4CmdDrawIndex2*>(header);
regs.max_index_size = draw_index->max_size;
regs.index_base_address.base_addr_lo = draw_index->index_base_lo;
regs.index_base_address.base_addr_hi.Assign(draw_index->index_base_hi);
regs.num_indices = draw_index->index_count;
regs.draw_initiator = draw_index->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:DrawIndex2", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(true);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DrawIndexOffset2: {
const auto* draw_index_off =
reinterpret_cast<const PM4CmdDrawIndexOffset2*>(header);
regs.max_index_size = draw_index_off->max_size;
regs.num_indices = draw_index_off->index_count;
regs.draw_initiator = draw_index_off->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(
fmt::format("dcb:{}:DrawIndexOffset2", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(true, draw_index_off->index_offset);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DrawIndexAuto: {
const auto* draw_index = reinterpret_cast<const PM4CmdDrawIndexAuto*>(header);
regs.num_indices = draw_index->index_count;
regs.draw_initiator = draw_index->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:DrawIndexAuto", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(false);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DispatchDirect: {
const auto* dispatch_direct = reinterpret_cast<const PM4CmdDispatchDirect*>(header);
regs.cs_program.dim_x = dispatch_direct->dim_x;
regs.cs_program.dim_y = dispatch_direct->dim_y;
regs.cs_program.dim_z = dispatch_direct->dim_z;
regs.cs_program.dispatch_initiator = dispatch_direct->dispatch_initiator;
if (rasterizer && (regs.cs_program.dispatch_initiator & 1)) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:Dispatch", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->DispatchDirect();
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::NumInstances: {
const auto* num_instances = reinterpret_cast<const PM4CmdDrawNumInstances*>(header);
regs.num_instances.num_instances = num_instances->num_instances;
break;
}
case PM4ItOpcode::IndexBase: {
const auto* index_base = reinterpret_cast<const PM4CmdDrawIndexBase*>(header);
regs.index_base_address.base_addr_lo = index_base->addr_lo;
regs.index_base_address.base_addr_hi.Assign(index_base->addr_hi);
break;
}
case PM4ItOpcode::IndexBufferSize: {
const auto* index_size = reinterpret_cast<const PM4CmdDrawIndexBufferSize*>(header);
regs.num_indices = index_size->num_indices;
break;
}
case PM4ItOpcode::EventWrite: {
// const auto* event = reinterpret_cast<const PM4CmdEventWrite*>(header);
break;
}
case PM4ItOpcode::EventWriteEos: {
const auto* event_eos = reinterpret_cast<const PM4CmdEventWriteEos*>(header);
event_eos->SignalFence();
break;
}
case PM4ItOpcode::EventWriteEop: {
const auto* event_eop = reinterpret_cast<const PM4CmdEventWriteEop*>(header);
event_eop->SignalFence();
break;
}
case PM4ItOpcode::DmaData: {
const auto* dma_data = reinterpret_cast<const PM4DmaData*>(header);
break;
}
case PM4ItOpcode::WriteData: {
const auto* write_data = reinterpret_cast<const PM4CmdWriteData*>(header);
ASSERT(write_data->dst_sel.Value() == 2 || write_data->dst_sel.Value() == 5);
const u32 data_size = (header->type3.count.Value() - 2) * 4;
u64* address = write_data->Address<u64*>();
if (!write_data->wr_one_addr.Value()) {
std::memcpy(address, write_data->data, data_size);
} else {
UNREACHABLE();
}
break;
}
case PM4ItOpcode::AcquireMem: {
// const auto* acquire_mem = reinterpret_cast<PM4CmdAcquireMem*>(header);
break;
}
case PM4ItOpcode::WaitRegMem: {
const auto* wait_reg_mem = reinterpret_cast<const PM4CmdWaitRegMem*>(header);
// ASSERT(wait_reg_mem->engine.Value() == PM4CmdWaitRegMem::Engine::Me);
// Optimization: VO label waits are special because the emulator
// will write to the label when presentation is finished. So if
// there are no other submits to yield to we can sleep the thread
// instead and allow other tasks to run.
const u64* wait_addr = wait_reg_mem->Address<u64*>();
if (vo_port->IsVoLabel(wait_addr) && num_submits == 1) {
vo_port->WaitVoLabel([&] { return wait_reg_mem->Test(); });
}
while (!wait_reg_mem->Test()) {
mapped_queues[GfxQueueId].cs_state = regs.cs_program;
TracyFiberLeave;
co_yield {};
TracyFiberEnter(dcb_task_name);
regs.cs_program = mapped_queues[GfxQueueId].cs_state;
}
break;
}
case PM4ItOpcode::IncrementDeCounter: {
++cblock.de_count;
break;
}
case PM4ItOpcode::WaitOnCeCounter: {
while (cblock.ce_count <= cblock.de_count) {
TracyFiberLeave;
ce_task.handle.resume();
TracyFiberEnter(dcb_task_name);
}
break;
}
case PM4ItOpcode::PfpSyncMe: {
break;
}
default:
break;
UNREACHABLE_MSG("Unknown PM4 type 3 opcode {:#x} with count {}",
static_cast<u32>(opcode), count);
}
dcb = dcb.subspan(header->type3.NumWords() + 1);
break;
}
case PM4ItOpcode::ContextControl: {
break;
}
case PM4ItOpcode::ClearState: {
regs.SetDefaults();
break;
}
case PM4ItOpcode::SetConfigReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
const auto reg_addr = ConfigRegWordOffset + set_data->reg_offset;
const auto* payload = reinterpret_cast<const u32*>(header + 2);
std::memcpy(&regs.reg_array[reg_addr], payload, (count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::SetContextReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
const auto reg_addr = ContextRegWordOffset + set_data->reg_offset;
const auto* payload = reinterpret_cast<const u32*>(header + 2);
std::memcpy(&regs.reg_array[reg_addr], payload, (count - 1) * sizeof(u32));
// In the case of HW, render target memory has alignment as color block operates on
// tiles. There is no information of actual resource extents stored in CB context
// regs, so any deduction of it from slices/pitch will lead to a larger surface created.
// The same applies to the depth targets. Fortunately, the guest always sends
// a trailing NOP packet right after the context regs setup, so we can use the heuristic
// below and extract the hint to determine actual resource dims.
switch (reg_addr) {
case ContextRegs::CbColor0Base:
case ContextRegs::CbColor1Base:
case ContextRegs::CbColor2Base:
case ContextRegs::CbColor3Base:
case ContextRegs::CbColor4Base:
case ContextRegs::CbColor5Base:
case ContextRegs::CbColor6Base:
case ContextRegs::CbColor7Base: {
const auto col_buf_id = (reg_addr - ContextRegs::CbColor0Base) /
(ContextRegs::CbColor1Base - ContextRegs::CbColor0Base);
ASSERT(col_buf_id < NumColorBuffers);
const auto nop_offset = header->type3.count;
if (nop_offset == 0x0e || nop_offset == 0x0d || nop_offset == 0x0b) {
ASSERT_MSG(payload[nop_offset] == 0xc0001000,
"NOP hint is missing in CB setup sequence");
last_cb_extent[col_buf_id].raw = payload[nop_offset + 1];
} else {
last_cb_extent[col_buf_id].raw = 0;
}
break;
}
case ContextRegs::CbColor0Cmask:
case ContextRegs::CbColor1Cmask:
case ContextRegs::CbColor2Cmask:
case ContextRegs::CbColor3Cmask:
case ContextRegs::CbColor4Cmask:
case ContextRegs::CbColor5Cmask:
case ContextRegs::CbColor6Cmask:
case ContextRegs::CbColor7Cmask: {
const auto col_buf_id = (reg_addr - ContextRegs::CbColor0Cmask) /
(ContextRegs::CbColor1Cmask - ContextRegs::CbColor0Cmask);
ASSERT(col_buf_id < NumColorBuffers);
const auto nop_offset = header->type3.count;
if (nop_offset == 0x04) {
ASSERT_MSG(payload[nop_offset] == 0xc0001000,
"NOP hint is missing in CB setup sequence");
last_cb_extent[col_buf_id].raw = payload[nop_offset + 1];
}
break;
}
case ContextRegs::DbZInfo: {
if (header->type3.count == 8) {
ASSERT_MSG(payload[20] == 0xc0001000,
"NOP hint is missing in DB setup sequence");
last_db_extent.raw = payload[21];
} else {
last_db_extent.raw = 0;
}
break;
}
default:
break;
}
break;
}
case PM4ItOpcode::SetShReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
std::memcpy(&regs.reg_array[ShRegWordOffset + set_data->reg_offset], header + 2,
(count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::SetUconfigReg: {
const auto* set_data = reinterpret_cast<const PM4CmdSetData*>(header);
std::memcpy(&regs.reg_array[UconfigRegWordOffset + set_data->reg_offset], header + 2,
(count - 1) * sizeof(u32));
break;
}
case PM4ItOpcode::IndexType: {
const auto* index_type = reinterpret_cast<const PM4CmdDrawIndexType*>(header);
regs.index_buffer_type.raw = index_type->raw;
break;
}
case PM4ItOpcode::DrawIndex2: {
const auto* draw_index = reinterpret_cast<const PM4CmdDrawIndex2*>(header);
regs.max_index_size = draw_index->max_size;
regs.index_base_address.base_addr_lo = draw_index->index_base_lo;
regs.index_base_address.base_addr_hi.Assign(draw_index->index_base_hi);
regs.num_indices = draw_index->index_count;
regs.draw_initiator = draw_index->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:DrawIndex2", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(true);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DrawIndexOffset2: {
const auto* draw_index_off = reinterpret_cast<const PM4CmdDrawIndexOffset2*>(header);
regs.max_index_size = draw_index_off->max_size;
regs.num_indices = draw_index_off->index_count;
regs.draw_initiator = draw_index_off->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:DrawIndexOffset2", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(true, draw_index_off->index_offset);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DrawIndexAuto: {
const auto* draw_index = reinterpret_cast<const PM4CmdDrawIndexAuto*>(header);
regs.num_indices = draw_index->index_count;
regs.draw_initiator = draw_index->draw_initiator;
if (rasterizer) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:DrawIndexAuto", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->Draw(false);
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::DispatchDirect: {
const auto* dispatch_direct = reinterpret_cast<const PM4CmdDispatchDirect*>(header);
regs.cs_program.dim_x = dispatch_direct->dim_x;
regs.cs_program.dim_y = dispatch_direct->dim_y;
regs.cs_program.dim_z = dispatch_direct->dim_z;
regs.cs_program.dispatch_initiator = dispatch_direct->dispatch_initiator;
if (rasterizer && (regs.cs_program.dispatch_initiator & 1)) {
const auto cmd_address = reinterpret_cast<const void*>(header);
rasterizer->ScopeMarkerBegin(fmt::format("dcb:{}:Dispatch", cmd_address));
rasterizer->Breadcrumb(u64(cmd_address));
rasterizer->DispatchDirect();
rasterizer->ScopeMarkerEnd();
}
break;
}
case PM4ItOpcode::NumInstances: {
const auto* num_instances = reinterpret_cast<const PM4CmdDrawNumInstances*>(header);
regs.num_instances.num_instances = num_instances->num_instances;
break;
}
case PM4ItOpcode::IndexBase: {
const auto* index_base = reinterpret_cast<const PM4CmdDrawIndexBase*>(header);
regs.index_base_address.base_addr_lo = index_base->addr_lo;
regs.index_base_address.base_addr_hi.Assign(index_base->addr_hi);
break;
}
case PM4ItOpcode::IndexBufferSize: {
const auto* index_size = reinterpret_cast<const PM4CmdDrawIndexBufferSize*>(header);
regs.num_indices = index_size->num_indices;
break;
}
case PM4ItOpcode::EventWrite: {
// const auto* event = reinterpret_cast<const PM4CmdEventWrite*>(header);
break;
}
case PM4ItOpcode::EventWriteEos: {
const auto* event_eos = reinterpret_cast<const PM4CmdEventWriteEos*>(header);
event_eos->SignalFence();
break;
}
case PM4ItOpcode::EventWriteEop: {
const auto* event_eop = reinterpret_cast<const PM4CmdEventWriteEop*>(header);
event_eop->SignalFence();
break;
}
case PM4ItOpcode::DmaData: {
const auto* dma_data = reinterpret_cast<const PM4DmaData*>(header);
break;
}
case PM4ItOpcode::WriteData: {
const auto* write_data = reinterpret_cast<const PM4CmdWriteData*>(header);
ASSERT(write_data->dst_sel.Value() == 2 || write_data->dst_sel.Value() == 5);
const u32 data_size = (header->type3.count.Value() - 2) * 4;
u64* address = write_data->Address<u64*>();
if (!write_data->wr_one_addr.Value()) {
std::memcpy(address, write_data->data, data_size);
} else {
UNREACHABLE();
}
break;
}
case PM4ItOpcode::AcquireMem: {
// const auto* acquire_mem = reinterpret_cast<PM4CmdAcquireMem*>(header);
break;
}
case PM4ItOpcode::WaitRegMem: {
const auto* wait_reg_mem = reinterpret_cast<const PM4CmdWaitRegMem*>(header);
// ASSERT(wait_reg_mem->engine.Value() == PM4CmdWaitRegMem::Engine::Me);
// Optimization: VO label waits are special because the emulator
// will write to the label when presentation is finished. So if
// there are no other submits to yield to we can sleep the thread
// instead and allow other tasks to run.
const u64* wait_addr = wait_reg_mem->Address<u64*>();
if (vo_port->IsVoLabel(wait_addr) && num_submits == 1) {
vo_port->WaitVoLabel([&] { return wait_reg_mem->Test(); });
}
while (!wait_reg_mem->Test()) {
mapped_queues[GfxQueueId].cs_state = regs.cs_program;
TracyFiberLeave;
co_yield {};
TracyFiberEnter(dcb_task_name);
regs.cs_program = mapped_queues[GfxQueueId].cs_state;
}
break;
}
case PM4ItOpcode::IncrementDeCounter: {
++cblock.de_count;
break;
}
case PM4ItOpcode::WaitOnCeCounter: {
while (cblock.ce_count <= cblock.de_count) {
TracyFiberLeave;
ce_task.handle.resume();
TracyFiberEnter(dcb_task_name);
}
break;
}
case PM4ItOpcode::PfpSyncMe: {
break;
}
default:
UNREACHABLE_MSG("Unknown PM4 type 3 opcode {:#x} with count {}",
static_cast<u32>(opcode), count);
}
dcb = dcb.subspan(header->type3.NumWords() + 1);
}
if (ce_task.handle) {
@@ -568,9 +580,43 @@ Liverpool::Task Liverpool::ProcessCompute(std::span<const u32> acb, int vqid) {
TracyFiberLeave;
}
std::pair<std::span<const u32>, std::span<const u32>> Liverpool::CopyCmdBuffers(
std::span<const u32> dcb, std::span<const u32> ccb) {
auto& queue = mapped_queues[GfxQueueId];
queue.dcb_buffer.resize(
std::max(queue.dcb_buffer.size(), queue.dcb_buffer_offset + dcb.size()));
queue.ccb_buffer.resize(
std::max(queue.ccb_buffer.size(), queue.ccb_buffer_offset + ccb.size()));
u32 prev_dcb_buffer_offset = queue.dcb_buffer_offset;
u32 prev_ccb_buffer_offset = queue.ccb_buffer_offset;
if (!dcb.empty()) {
std::memcpy(queue.dcb_buffer.data() + queue.dcb_buffer_offset, dcb.data(),
dcb.size_bytes());
queue.dcb_buffer_offset += dcb.size();
dcb = std::span<const u32>{queue.dcb_buffer.begin() + prev_dcb_buffer_offset,
queue.dcb_buffer.begin() + queue.dcb_buffer_offset};
}
if (!ccb.empty()) {
std::memcpy(queue.ccb_buffer.data() + queue.ccb_buffer_offset, ccb.data(),
ccb.size_bytes());
queue.ccb_buffer_offset += ccb.size();
ccb = std::span<const u32>{queue.ccb_buffer.begin() + prev_ccb_buffer_offset,
queue.ccb_buffer.begin() + queue.ccb_buffer_offset};
}
return std::make_pair(dcb, ccb);
}
void Liverpool::SubmitGfx(std::span<const u32> dcb, std::span<const u32> ccb) {
auto& queue = mapped_queues[GfxQueueId];
if (Config::copyGPUCmdBuffers()) {
std::tie(dcb, ccb) = CopyCmdBuffers(dcb, ccb);
}
auto task = ProcessGraphics(dcb, ccb);
{
std::scoped_lock lock{queue.m_access};

View File

@@ -10,6 +10,7 @@
#include <mutex>
#include <span>
#include <thread>
#include <vector>
#include <queue>
#include "common/assert.h"
@@ -1047,6 +1048,8 @@ public:
void SubmitDone() noexcept {
std::scoped_lock lk{submit_mutex};
mapped_queues[GfxQueueId].ccb_buffer_offset = 0;
mapped_queues[GfxQueueId].dcb_buffer_offset = 0;
submit_done = true;
submit_cv.notify_one();
}
@@ -1108,6 +1111,8 @@ private:
Handle handle;
};
std::pair<std::span<const u32>, std::span<const u32>> CopyCmdBuffers(std::span<const u32> dcb,
std::span<const u32> ccb);
Task ProcessGraphics(std::span<const u32> dcb, std::span<const u32> ccb);
Task ProcessCeUpdate(std::span<const u32> ccb);
Task ProcessCompute(std::span<const u32> acb, int vqid);
@@ -1116,6 +1121,10 @@ private:
struct GpuQueue {
std::mutex m_access{};
std::atomic<u32> dcb_buffer_offset;
std::atomic<u32> ccb_buffer_offset;
std::vector<u32> dcb_buffer;
std::vector<u32> ccb_buffer;
std::queue<Task::Handle> submits{};
ComputeProgram cs_state{};
};

View File

@@ -4,6 +4,7 @@
#pragma once
#include <cstddef>
#include <optional>
#include <utility>
#include <vector>
#include "common/types.h"

View File

@@ -94,7 +94,7 @@ GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& schedul
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = LiverpoolToVK::PolygonMode(key.polygon_mode),
.cullMode = vk::CullModeFlagBits::eNone /*LiverpoolToVK::CullMode(key.cull_mode)*/,
.cullMode = LiverpoolToVK::CullMode(key.cull_mode),
.frontFace = key.front_face == Liverpool::FrontFace::Clockwise
? vk::FrontFace::eClockwise
: vk::FrontFace::eCounterClockwise,

View File

@@ -34,6 +34,7 @@ static vk::ImageType ConvertImageType(AmdGpu::ImageType type) noexcept {
case AmdGpu::ImageType::Color1DArray:
return vk::ImageType::e1D;
case AmdGpu::ImageType::Color2D:
case AmdGpu::ImageType::Color2DMsaa:
case AmdGpu::ImageType::Cube:
case AmdGpu::ImageType::Color2DArray:
return vk::ImageType::e2D;

View File

@@ -17,6 +17,7 @@ vk::ImageViewType ConvertImageViewType(AmdGpu::ImageType type) {
case AmdGpu::ImageType::Color1DArray:
return vk::ImageViewType::e1DArray;
case AmdGpu::ImageType::Color2D:
case AmdGpu::ImageType::Color2DMsaa:
return vk::ImageViewType::e2D;
case AmdGpu::ImageType::Cube:
return vk::ImageViewType::eCube;