shadPS4/src/input/controller.cpp
kalaposfos13 b8aac357cb
Fix SDL gyro and acceleration sensor handling (#2532)
* Fix sensor handling if they are enabled but an error was thrown regardless

* Initialise orientation to a default value + clang
2025-02-24 22:38:06 +02:00

296 lines
8.6 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <SDL3/SDL.h>
#include "common/config.h"
#include "common/logging/log.h"
#include "core/libraries/kernel/time.h"
#include "core/libraries/pad/pad.h"
#include "input/controller.h"
namespace Input {
using Libraries::Pad::OrbisPadButtonDataOffset;
void State::OnButton(OrbisPadButtonDataOffset button, bool isPressed) {
if (isPressed) {
buttonsState |= button;
} else {
buttonsState &= ~button;
}
}
void State::OnAxis(Axis axis, int value) {
const auto toggle = [&](const auto button) {
if (value > 0) {
buttonsState |= button;
} else {
buttonsState &= ~button;
}
};
switch (axis) {
case Axis::TriggerLeft:
toggle(OrbisPadButtonDataOffset::L2);
break;
case Axis::TriggerRight:
toggle(OrbisPadButtonDataOffset::R2);
break;
default:
break;
}
axes[static_cast<int>(axis)] = value;
}
void State::OnTouchpad(int touchIndex, bool isDown, float x, float y) {
touchpad[touchIndex].state = isDown;
touchpad[touchIndex].x = static_cast<u16>(x * 1920);
touchpad[touchIndex].y = static_cast<u16>(y * 941);
}
void State::OnGyro(const float gyro[3]) {
angularVelocity.x = gyro[0];
angularVelocity.y = gyro[1];
angularVelocity.z = gyro[2];
}
void State::OnAccel(const float accel[3]) {
acceleration.x = accel[0];
acceleration.y = accel[1];
acceleration.z = accel[2];
}
GameController::GameController() {
m_states_num = 0;
m_last_state = State();
}
void GameController::ReadState(State* state, bool* isConnected, int* connectedCount) {
std::scoped_lock lock{m_mutex};
*isConnected = m_connected;
*connectedCount = m_connected_count;
*state = GetLastState();
}
int GameController::ReadStates(State* states, int states_num, bool* isConnected,
int* connectedCount) {
std::scoped_lock lock{m_mutex};
*isConnected = m_connected;
*connectedCount = m_connected_count;
int ret_num = 0;
if (m_connected) {
if (m_states_num == 0) {
ret_num = 1;
states[0] = m_last_state;
} else {
for (uint32_t i = 0; i < m_states_num; i++) {
if (ret_num >= states_num) {
break;
}
auto index = (m_first_state + i) % MAX_STATES;
if (!m_private[index].obtained) {
m_private[index].obtained = true;
states[ret_num++] = m_states[index];
}
}
}
}
return ret_num;
}
State GameController::GetLastState() const {
if (m_states_num == 0) {
return m_last_state;
}
const u32 last = (m_first_state + m_states_num - 1) % MAX_STATES;
return m_states[last];
}
void GameController::AddState(const State& state) {
if (m_states_num >= MAX_STATES) {
m_states_num = MAX_STATES - 1;
m_first_state = (m_first_state + 1) % MAX_STATES;
}
const u32 index = (m_first_state + m_states_num) % MAX_STATES;
m_states[index] = state;
m_last_state = state;
m_private[index].obtained = false;
m_states_num++;
}
void GameController::CheckButton(int id, OrbisPadButtonDataOffset button, bool is_pressed) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
state.OnButton(button, is_pressed);
AddState(state);
}
void GameController::Axis(int id, Input::Axis axis, int value) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
state.OnAxis(axis, value);
AddState(state);
}
void GameController::Gyro(int id, const float gyro[3]) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
// Update the angular velocity (gyro data)
state.OnGyro(gyro);
AddState(state);
}
void GameController::Acceleration(int id, const float acceleration[3]) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
// Update the acceleration values
state.OnAccel(acceleration);
AddState(state);
}
// Stolen from
// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
float eInt[3] = {0.0f, 0.0f, 0.0f}; // Integral error terms
const float Kp = 50.0f; // Proportional gain
const float Ki = 1.0f; // Integral gain
Libraries::Pad::OrbisFQuaternion o = {1, 0, 0, 0};
void GameController::CalculateOrientation(Libraries::Pad::OrbisFVector3& acceleration,
Libraries::Pad::OrbisFVector3& angularVelocity,
float deltaTime,
Libraries::Pad::OrbisFQuaternion& orientation) {
float ax = acceleration.x, ay = acceleration.y, az = acceleration.z;
float gx = angularVelocity.x, gy = angularVelocity.y, gz = angularVelocity.z;
float q1 = o.w, q2 = o.x, q3 = o.y, q4 = o.z;
// Normalize accelerometer measurement
float norm = std::sqrt(ax * ax + ay * ay + az * az);
if (norm == 0.0f || deltaTime == 0.0f)
return; // Handle NaN
norm = 1.0f / norm;
ax *= norm;
ay *= norm;
az *= norm;
// Estimated direction of gravity
float vx = 2.0f * (q2 * q4 - q1 * q3);
float vy = 2.0f * (q1 * q2 + q3 * q4);
float vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
// Error is cross product between estimated direction and measured direction of gravity
float ex = (ay * vz - az * vy);
float ey = (az * vx - ax * vz);
float ez = (ax * vy - ay * vx);
if (Ki > 0.0f) {
eInt[0] += ex * deltaTime; // Accumulate integral error
eInt[1] += ey * deltaTime;
eInt[2] += ez * deltaTime;
} else {
eInt[0] = eInt[1] = eInt[2] = 0.0f; // Prevent integral wind-up
}
// Apply feedback terms
gx += Kp * ex + Ki * eInt[0];
gy += Kp * ey + Ki * eInt[1];
gz += Kp * ez + Ki * eInt[2];
//// Integrate rate of change of quaternion
q1 += (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltaTime);
q2 += (q1 * gx + q3 * gz - q4 * gy) * (0.5f * deltaTime);
q3 += (q1 * gy - q2 * gz + q4 * gx) * (0.5f * deltaTime);
q4 += (q1 * gz + q2 * gy - q3 * gx) * (0.5f * deltaTime);
// Normalize quaternion
norm = std::sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
norm = 1.0f / norm;
orientation.w = q1 * norm;
orientation.x = q2 * norm;
orientation.y = q3 * norm;
orientation.z = q4 * norm;
o.w = q1 * norm;
o.x = q2 * norm;
o.y = q3 * norm;
o.z = q4 * norm;
LOG_DEBUG(Lib_Pad, "Calculated orientation: {:.2f} {:.2f} {:.2f} {:.2f}", orientation.x,
orientation.y, orientation.z, orientation.w);
}
void GameController::SetLightBarRGB(u8 r, u8 g, u8 b) {
if (!m_engine) {
return;
}
std::scoped_lock _{m_mutex};
m_engine->SetLightBarRGB(r, g, b);
}
void GameController::SetVibration(u8 smallMotor, u8 largeMotor) {
if (!m_engine) {
return;
}
std::scoped_lock _{m_mutex};
m_engine->SetVibration(smallMotor, largeMotor);
}
void GameController::SetTouchpadState(int touchIndex, bool touchDown, float x, float y) {
if (touchIndex < 2) {
std::scoped_lock lock{m_mutex};
auto state = GetLastState();
state.time = Libraries::Kernel::sceKernelGetProcessTime();
state.OnTouchpad(touchIndex, touchDown, x, y);
AddState(state);
}
}
void GameController::SetEngine(std::unique_ptr<Engine> engine) {
std::scoped_lock _{m_mutex};
m_engine = std::move(engine);
if (m_engine) {
m_engine->Init();
}
}
Engine* GameController::GetEngine() {
return m_engine.get();
}
u32 GameController::Poll() {
if (m_connected) {
std::scoped_lock lock{m_mutex};
auto time = Libraries::Kernel::sceKernelGetProcessTime();
if (m_states_num == 0) {
auto diff = (time - m_last_state.time) / 1000;
if (diff >= 100) {
AddState(GetLastState());
}
} else {
auto index = (m_first_state - 1 + m_states_num) % MAX_STATES;
auto diff = (time - m_states[index].time) / 1000;
if (m_private[index].obtained && diff >= 100) {
AddState(GetLastState());
}
}
}
return 100;
}
} // namespace Input