shadPS4/src/core/libraries/kernel/equeue.cpp
Fire Cube de69f2b40b
Equeue: HrTimer fixes (#2987)
* initial changes

* tmp

* impl

* support wait for multiple timers

* cleanup
2025-06-15 19:03:57 +03:00

505 lines
17 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <thread>
#include "common/assert.h"
#include "common/debug.h"
#include "common/logging/log.h"
#include "core/libraries/kernel/equeue.h"
#include "core/libraries/kernel/orbis_error.h"
#include "core/libraries/libs.h"
namespace Libraries::Kernel {
extern boost::asio::io_context io_context;
extern void KernelSignalRequest();
static constexpr auto HrTimerSpinlockThresholdUs = 1200u;
// Events are uniquely identified by id and filter.
bool EqueueInternal::AddEvent(EqueueEvent& event) {
std::scoped_lock lock{m_mutex};
event.time_added = std::chrono::steady_clock::now();
if (event.event.filter == SceKernelEvent::Filter::Timer ||
event.event.filter == SceKernelEvent::Filter::HrTimer) {
// HrTimer events are offset by the threshold of time at the end that we spinlock for
// greater accuracy.
const auto offset =
event.event.filter == SceKernelEvent::Filter::HrTimer ? HrTimerSpinlockThresholdUs : 0u;
event.timer_interval = std::chrono::microseconds(event.event.data - offset);
}
const auto& it = std::ranges::find(m_events, event);
if (it != m_events.cend()) {
*it = std::move(event);
} else {
m_events.emplace_back(std::move(event));
}
return true;
}
bool EqueueInternal::ScheduleEvent(u64 id, s16 filter,
void (*callback)(SceKernelEqueue, const SceKernelEvent&)) {
std::scoped_lock lock{m_mutex};
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
if (it == m_events.cend()) {
return false;
}
const auto& event = *it;
ASSERT(event.event.filter == SceKernelEvent::Filter::Timer ||
event.event.filter == SceKernelEvent::Filter::HrTimer);
if (!it->timer) {
it->timer = std::make_unique<boost::asio::steady_timer>(io_context, event.timer_interval);
} else {
// If the timer already exists we are scheduling a reoccurrence after the next period.
// Set the expiration time to the previous occurrence plus the period.
it->timer->expires_at(it->timer->expiry() + event.timer_interval);
}
it->timer->async_wait(
[this, event_data = event.event, callback](const boost::system::error_code& ec) {
if (ec) {
if (ec != boost::system::errc::operation_canceled) {
LOG_ERROR(Kernel_Event, "Timer callback error: {}", ec.message());
} else {
// Timer was cancelled (removed) before it triggered
LOG_DEBUG(Kernel_Event, "Timer cancelled");
}
return;
}
callback(this, event_data);
});
KernelSignalRequest();
return true;
}
bool EqueueInternal::RemoveEvent(u64 id, s16 filter) {
bool has_found = false;
std::scoped_lock lock{m_mutex};
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
if (it != m_events.cend()) {
m_events.erase(it);
has_found = true;
}
return has_found;
}
int EqueueInternal::WaitForEvents(SceKernelEvent* ev, int num, u32 micros) {
if (HasSmallTimer()) {
// If a small timer is set, just wait for it to expire.
return WaitForSmallTimer(ev, num, micros);
}
int count = 0;
const auto predicate = [&] {
count = GetTriggeredEvents(ev, num);
return count > 0;
};
if (micros == 0) {
std::unique_lock lock{m_mutex};
m_cond.wait(lock, predicate);
} else {
std::unique_lock lock{m_mutex};
m_cond.wait_for(lock, std::chrono::microseconds(micros), predicate);
}
if (HasSmallTimer()) {
if (count > 0) {
const auto time_waited = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::steady_clock::now() - m_events[0].time_added)
.count();
count = WaitForSmallTimer(ev, num, std::max(0l, long(micros - time_waited)));
}
}
if (ev->flags & SceKernelEvent::Flags::OneShot) {
for (auto ev_id = 0u; ev_id < count; ++ev_id) {
RemoveEvent(ev->ident, ev->filter);
}
}
return count;
}
bool EqueueInternal::TriggerEvent(u64 ident, s16 filter, void* trigger_data) {
bool has_found = false;
{
std::scoped_lock lock{m_mutex};
for (auto& event : m_events) {
if (event.event.ident == ident && event.event.filter == filter) {
if (filter == SceKernelEvent::Filter::VideoOut) {
event.TriggerDisplay(trigger_data);
} else if (filter == SceKernelEvent::Filter::User) {
event.TriggerUser(trigger_data);
} else {
event.Trigger(trigger_data);
}
has_found = true;
}
}
}
m_cond.notify_one();
return has_found;
}
int EqueueInternal::GetTriggeredEvents(SceKernelEvent* ev, int num) {
int count = 0;
for (auto& event : m_events) {
if (event.IsTriggered()) {
// Event should not trigger again
event.ResetTriggerState();
if (event.event.flags & SceKernelEvent::Flags::Clear) {
event.Clear();
}
ev[count++] = event.event;
if (count == num) {
break;
}
}
}
return count;
}
bool EqueueInternal::AddSmallTimer(EqueueEvent& ev) {
SmallTimer st;
st.event = ev.event;
st.added = std::chrono::steady_clock::now();
st.interval = std::chrono::microseconds{ev.event.data};
{
std::scoped_lock lock{m_mutex};
m_small_timers[st.event.ident] = std::move(st);
}
return true;
}
int EqueueInternal::WaitForSmallTimer(SceKernelEvent* ev, int num, u32 micros) {
ASSERT(num >= 1);
auto curr_clock = std::chrono::steady_clock::now();
const auto wait_end_us = (micros == 0) ? std::chrono::steady_clock::time_point::max()
: curr_clock + std::chrono::microseconds{micros};
int count = 0;
do {
curr_clock = std::chrono::steady_clock::now();
{
std::scoped_lock lock{m_mutex};
for (auto it = m_small_timers.begin(); it != m_small_timers.end() && count < num;) {
const SmallTimer& st = it->second;
if (curr_clock - st.added >= st.interval) {
ev[count++] = st.event;
it = m_small_timers.erase(it);
} else {
++it;
}
}
if (count > 0)
return count;
}
std::this_thread::yield();
} while (curr_clock < wait_end_us);
return 0;
}
bool EqueueInternal::EventExists(u64 id, s16 filter) {
std::scoped_lock lock{m_mutex};
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
return it != m_events.cend();
}
int PS4_SYSV_ABI sceKernelCreateEqueue(SceKernelEqueue* eq, const char* name) {
if (eq == nullptr) {
LOG_ERROR(Kernel_Event, "Event queue is null!");
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (name == nullptr) {
LOG_ERROR(Kernel_Event, "Event queue name is null!");
return ORBIS_KERNEL_ERROR_EINVAL;
}
// Maximum is 32 including null terminator
static constexpr size_t MaxEventQueueNameSize = 32;
if (std::strlen(name) > MaxEventQueueNameSize) {
LOG_ERROR(Kernel_Event, "Event queue name exceeds 32 bytes!");
return ORBIS_KERNEL_ERROR_ENAMETOOLONG;
}
LOG_INFO(Kernel_Event, "name = {}", name);
*eq = new EqueueInternal(name);
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteEqueue(SceKernelEqueue eq) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
delete eq;
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelWaitEqueue(SceKernelEqueue eq, SceKernelEvent* ev, int num, int* out,
SceKernelUseconds* timo) {
HLE_TRACE;
TRACE_HINT(eq->GetName());
LOG_TRACE(Kernel_Event, "equeue = {} num = {}", eq->GetName(), num);
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (ev == nullptr) {
return ORBIS_KERNEL_ERROR_EFAULT;
}
if (num < 1) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (timo == nullptr) {
// When the timeout is nullptr, we wait indefinitely
*out = eq->WaitForEvents(ev, num, 0);
} else if (*timo == 0) {
// Only events that have already arrived at the time of this function call can be received
*out = eq->GetTriggeredEvents(ev, num);
} else {
// Wait for up to the specified timeout value
*out = eq->WaitForEvents(ev, num, *timo);
}
if (*out == 0) {
return ORBIS_KERNEL_ERROR_ETIMEDOUT;
}
return ORBIS_OK;
}
static void HrTimerCallback(SceKernelEqueue eq, const SceKernelEvent& kevent) {
static EqueueEvent event;
event.event = kevent;
event.event.data = HrTimerSpinlockThresholdUs;
eq->AddSmallTimer(event);
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::HrTimer, kevent.udata);
}
s32 PS4_SYSV_ABI sceKernelAddHRTimerEvent(SceKernelEqueue eq, int id, timespec* ts, void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (ts->tv_sec > 100 || ts->tv_nsec < 100'000) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
ASSERT(ts->tv_nsec > 1000); // assume 1us resolution
const auto total_us = ts->tv_sec * 1000'000 + ts->tv_nsec / 1000;
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::HrTimer;
event.event.flags = SceKernelEvent::Flags::Add | SceKernelEvent::Flags::OneShot;
event.event.fflags = 0;
event.event.data = total_us;
event.event.udata = udata;
// HR timers cannot be implemented within the existing event queue architecture due to the
// slowness of the notification mechanism. For instance, a 100us timer will lose its precision
// as the trigger time drifts by +50-700%, depending on the host PC and workload. To address
// this issue, we use a spinlock for small waits (which can be adjusted using
// `HrTimerSpinlockThresholdUs`) and fall back to boost asio timers if the time to tick is
// large. Even for large delays, we truncate a small portion to complete the wait
// using the spinlock, prioritizing precision.
if (eq->EventExists(event.event.ident, event.event.filter)) {
eq->RemoveEvent(id, SceKernelEvent::Filter::HrTimer);
}
if (total_us < HrTimerSpinlockThresholdUs) {
return eq->AddSmallTimer(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
if (!eq->AddEvent(event) ||
!eq->ScheduleEvent(id, SceKernelEvent::Filter::HrTimer, HrTimerCallback)) {
return ORBIS_KERNEL_ERROR_ENOMEM;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteHRTimerEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (eq->HasSmallTimer()) {
return eq->RemoveSmallTimer(id) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOENT;
} else {
return eq->RemoveEvent(id, SceKernelEvent::Filter::HrTimer) ? ORBIS_OK
: ORBIS_KERNEL_ERROR_ENOENT;
}
}
static void TimerCallback(SceKernelEqueue eq, const SceKernelEvent& kevent) {
if (eq->EventExists(kevent.ident, kevent.filter)) {
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::Timer, kevent.udata);
if (!(kevent.flags & SceKernelEvent::Flags::OneShot)) {
// Reschedule the event for its next period.
eq->ScheduleEvent(kevent.ident, kevent.filter, TimerCallback);
}
}
}
int PS4_SYSV_ABI sceKernelAddTimerEvent(SceKernelEqueue eq, int id, SceKernelUseconds usec,
void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = static_cast<u64>(id);
event.event.filter = SceKernelEvent::Filter::Timer;
event.event.flags = SceKernelEvent::Flags::Add;
event.event.fflags = 0;
event.event.data = usec;
event.event.udata = udata;
if (eq->EventExists(event.event.ident, event.event.filter)) {
eq->RemoveEvent(id, SceKernelEvent::Filter::Timer);
LOG_DEBUG(Kernel_Event,
"Timer event already exists, removing it: queue name={}, queue id={}",
eq->GetName(), event.event.ident);
}
LOG_DEBUG(Kernel_Event, "Added timing event: queue name={}, queue id={}, usec={}, pointer={:x}",
eq->GetName(), event.event.ident, usec, reinterpret_cast<uintptr_t>(udata));
if (!eq->AddEvent(event) ||
!eq->ScheduleEvent(id, SceKernelEvent::Filter::Timer, TimerCallback)) {
return ORBIS_KERNEL_ERROR_ENOMEM;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteTimerEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
return eq->RemoveEvent(id, SceKernelEvent::Filter::Timer) ? ORBIS_OK
: ORBIS_KERNEL_ERROR_ENOENT;
}
int PS4_SYSV_ABI sceKernelAddUserEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::User;
event.event.udata = 0;
event.event.flags = SceKernelEvent::Flags::Add;
event.event.fflags = 0;
event.event.data = 0;
return eq->AddEvent(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
int PS4_SYSV_ABI sceKernelAddUserEventEdge(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::User;
event.event.udata = 0;
event.event.flags = SceKernelEvent::Flags::Add | SceKernelEvent::Flags::Clear;
event.event.fflags = 0;
event.event.data = 0;
return eq->AddEvent(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
void* PS4_SYSV_ABI sceKernelGetEventUserData(const SceKernelEvent* ev) {
ASSERT(ev);
return ev->udata;
}
u64 PS4_SYSV_ABI sceKernelGetEventId(const SceKernelEvent* ev) {
return ev->ident;
}
int PS4_SYSV_ABI sceKernelTriggerUserEvent(SceKernelEqueue eq, int id, void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (!eq->TriggerEvent(id, SceKernelEvent::Filter::User, udata)) {
return ORBIS_KERNEL_ERROR_ENOENT;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteUserEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (!eq->RemoveEvent(id, SceKernelEvent::Filter::User)) {
return ORBIS_KERNEL_ERROR_ENOENT;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelGetEventFilter(const SceKernelEvent* ev) {
return ev->filter;
}
u64 PS4_SYSV_ABI sceKernelGetEventData(const SceKernelEvent* ev) {
return ev->data;
}
void RegisterEventQueue(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("D0OdFMjp46I", "libkernel", 1, "libkernel", 1, 1, sceKernelCreateEqueue);
LIB_FUNCTION("jpFjmgAC5AE", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteEqueue);
LIB_FUNCTION("fzyMKs9kim0", "libkernel", 1, "libkernel", 1, 1, sceKernelWaitEqueue);
LIB_FUNCTION("vz+pg2zdopI", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventUserData);
LIB_FUNCTION("4R6-OvI2cEA", "libkernel", 1, "libkernel", 1, 1, sceKernelAddUserEvent);
LIB_FUNCTION("WDszmSbWuDk", "libkernel", 1, "libkernel", 1, 1, sceKernelAddUserEventEdge);
LIB_FUNCTION("R74tt43xP6k", "libkernel", 1, "libkernel", 1, 1, sceKernelAddHRTimerEvent);
LIB_FUNCTION("J+LF6LwObXU", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteHRTimerEvent);
LIB_FUNCTION("57ZK+ODEXWY", "libkernel", 1, "libkernel", 1, 1, sceKernelAddTimerEvent);
LIB_FUNCTION("YWQFUyXIVdU", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteTimerEvent);
LIB_FUNCTION("F6e0kwo4cnk", "libkernel", 1, "libkernel", 1, 1, sceKernelTriggerUserEvent);
LIB_FUNCTION("LJDwdSNTnDg", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteUserEvent);
LIB_FUNCTION("mJ7aghmgvfc", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventId);
LIB_FUNCTION("23CPPI1tyBY", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventFilter);
LIB_FUNCTION("kwGyyjohI50", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventData);
}
} // namespace Libraries::Kernel