shadPS4/src/shader_recompiler/frontend/translate/scalar_alu.cpp
Marcin Mikołajczyk fff3bf9917
s_flbit_i32_b64 (#3033)
* s_flbit_i32_b64

* Split FindUMsb64 into two 32bit ops
2025-06-05 14:33:25 -07:00

812 lines
27 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <bit>
#include "common/assert.h"
#include "shader_recompiler/frontend/translate/translate.h"
namespace Shader::Gcn {
void Translator::EmitScalarAlu(const GcnInst& inst) {
switch (inst.encoding) {
case InstEncoding::SOPC: {
EmitSOPC(inst);
break;
}
case InstEncoding::SOPK: {
EmitSOPK(inst);
break;
}
default:
switch (inst.opcode) {
// SOP2
case Opcode::S_ADD_U32:
return S_ADD_U32(inst);
case Opcode::S_SUB_U32:
return S_SUB_U32(inst);
case Opcode::S_ADD_I32:
return S_ADD_I32(inst);
case Opcode::S_SUB_I32:
return S_SUB_I32(inst);
case Opcode::S_ADDC_U32:
return S_ADDC_U32(inst);
case Opcode::S_SUBB_U32:
return S_SUBB_U32(inst);
case Opcode::S_MIN_I32:
return S_MIN_U32(true, inst);
case Opcode::S_MIN_U32:
return S_MIN_U32(false, inst);
case Opcode::S_MAX_I32:
return S_MAX_U32(true, inst);
case Opcode::S_MAX_U32:
return S_MAX_U32(false, inst);
case Opcode::S_CSELECT_B32:
return S_CSELECT_B32(inst);
case Opcode::S_CSELECT_B64:
return S_CSELECT_B64(inst);
case Opcode::S_AND_B32:
return S_AND_B32(NegateMode::None, inst);
case Opcode::S_AND_B64:
return S_AND_B64(NegateMode::None, inst);
case Opcode::S_OR_B32:
return S_OR_B32(inst);
case Opcode::S_OR_B64:
return S_OR_B64(NegateMode::None, false, inst);
case Opcode::S_XOR_B32:
return S_XOR_B32(inst);
case Opcode::S_NOT_B32:
return S_NOT_B32(inst);
case Opcode::S_XOR_B64:
return S_OR_B64(NegateMode::None, true, inst);
case Opcode::S_ANDN2_B32:
return S_AND_B32(NegateMode::Src1, inst);
case Opcode::S_ANDN2_B64:
return S_AND_B64(NegateMode::Src1, inst);
case Opcode::S_ORN2_B64:
return S_OR_B64(NegateMode::Src1, false, inst);
case Opcode::S_NAND_B32:
return S_AND_B32(NegateMode::Result, inst);
case Opcode::S_NAND_B64:
return S_AND_B64(NegateMode::Result, inst);
case Opcode::S_NOR_B64:
return S_OR_B64(NegateMode::Result, false, inst);
case Opcode::S_XNOR_B64:
return S_OR_B64(NegateMode::Result, true, inst);
case Opcode::S_LSHL_B32:
return S_LSHL_B32(inst);
case Opcode::S_LSHL_B64:
return S_LSHL_B64(inst);
case Opcode::S_LSHR_B32:
return S_LSHR_B32(inst);
case Opcode::S_ASHR_I32:
return S_ASHR_I32(inst);
case Opcode::S_ASHR_I64:
return S_ASHR_I64(inst);
case Opcode::S_BFM_B32:
return S_BFM_B32(inst);
case Opcode::S_MUL_I32:
return S_MUL_I32(inst);
case Opcode::S_BFE_I32:
return S_BFE(inst, true);
case Opcode::S_BFE_U32:
return S_BFE(inst, false);
case Opcode::S_ABSDIFF_I32:
return S_ABSDIFF_I32(inst);
// SOP1
case Opcode::S_MOV_B32:
return S_MOV(inst);
case Opcode::S_MOV_B64:
return S_MOV_B64(inst);
case Opcode::S_NOT_B64:
return S_NOT_B64(inst);
case Opcode::S_WQM_B64:
break;
case Opcode::S_BREV_B32:
return S_BREV_B32(inst);
case Opcode::S_BCNT1_I32_B32:
return S_BCNT1_I32_B32(inst);
case Opcode::S_BCNT1_I32_B64:
return S_BCNT1_I32_B64(inst);
case Opcode::S_FF1_I32_B32:
return S_FF1_I32_B32(inst);
case Opcode::S_FF1_I32_B64:
return S_FF1_I32_B64(inst);
case Opcode::S_FLBIT_I32_B32:
return S_FLBIT_I32_B32(inst);
case Opcode::S_FLBIT_I32_B64:
return S_FLBIT_I32_B64(inst);
case Opcode::S_BITSET0_B32:
return S_BITSET_B32(inst, 0);
case Opcode::S_BITSET1_B32:
return S_BITSET_B32(inst, 1);
case Opcode::S_AND_SAVEEXEC_B64:
return S_SAVEEXEC_B64(NegateMode::None, false, inst);
case Opcode::S_ORN2_SAVEEXEC_B64:
return S_SAVEEXEC_B64(NegateMode::Src1, true, inst);
case Opcode::S_ABS_I32:
return S_ABS_I32(inst);
default:
LogMissingOpcode(inst);
}
break;
}
}
void Translator::EmitSOPC(const GcnInst& inst) {
switch (inst.opcode) {
case Opcode::S_CMP_EQ_I32:
return S_CMP(ConditionOp::EQ, true, inst);
case Opcode::S_CMP_LG_I32:
return S_CMP(ConditionOp::LG, true, inst);
case Opcode::S_CMP_GT_I32:
return S_CMP(ConditionOp::GT, true, inst);
case Opcode::S_CMP_GE_I32:
return S_CMP(ConditionOp::GE, true, inst);
case Opcode::S_CMP_LT_I32:
return S_CMP(ConditionOp::LT, true, inst);
case Opcode::S_CMP_LE_I32:
return S_CMP(ConditionOp::LE, true, inst);
case Opcode::S_CMP_EQ_U32:
return S_CMP(ConditionOp::EQ, false, inst);
case Opcode::S_CMP_LG_U32:
return S_CMP(ConditionOp::LG, false, inst);
case Opcode::S_CMP_GT_U32:
return S_CMP(ConditionOp::GT, false, inst);
case Opcode::S_CMP_GE_U32:
return S_CMP(ConditionOp::GE, false, inst);
case Opcode::S_CMP_LT_U32:
return S_CMP(ConditionOp::LT, false, inst);
case Opcode::S_CMP_LE_U32:
return S_CMP(ConditionOp::LE, false, inst);
case Opcode::S_BITCMP0_B32:
return S_BITCMP(false, 32, inst);
case Opcode::S_BITCMP1_B32:
return S_BITCMP(true, 32, inst);
case Opcode::S_BITCMP0_B64:
return S_BITCMP(false, 64, inst);
case Opcode::S_BITCMP1_B64:
return S_BITCMP(true, 64, inst);
default:
LogMissingOpcode(inst);
}
}
void Translator::EmitSOPK(const GcnInst& inst) {
switch (inst.opcode) {
// SOPK
case Opcode::S_MOVK_I32:
return S_MOVK(inst, false);
case Opcode::S_CMOVK_I32:
return S_MOVK(inst, true);
case Opcode::S_CMPK_EQ_I32:
return S_CMPK(ConditionOp::EQ, true, inst);
case Opcode::S_CMPK_LG_I32:
return S_CMPK(ConditionOp::LG, true, inst);
case Opcode::S_CMPK_GT_I32:
return S_CMPK(ConditionOp::GT, true, inst);
case Opcode::S_CMPK_GE_I32:
return S_CMPK(ConditionOp::GE, true, inst);
case Opcode::S_CMPK_LT_I32:
return S_CMPK(ConditionOp::LT, true, inst);
case Opcode::S_CMPK_LE_I32:
return S_CMPK(ConditionOp::LE, true, inst);
case Opcode::S_CMPK_EQ_U32:
return S_CMPK(ConditionOp::EQ, false, inst);
case Opcode::S_CMPK_LG_U32:
return S_CMPK(ConditionOp::LG, false, inst);
case Opcode::S_CMPK_GT_U32:
return S_CMPK(ConditionOp::GT, false, inst);
case Opcode::S_CMPK_GE_U32:
return S_CMPK(ConditionOp::GE, false, inst);
case Opcode::S_CMPK_LT_U32:
return S_CMPK(ConditionOp::LT, false, inst);
case Opcode::S_CMPK_LE_U32:
return S_CMPK(ConditionOp::LE, false, inst);
case Opcode::S_ADDK_I32:
return S_ADDK_I32(inst);
case Opcode::S_MULK_I32:
return S_MULK_I32(inst);
default:
LogMissingOpcode(inst);
}
}
// SOP2
void Translator::S_ADD_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.IAdd(src0, src1)};
SetDst(inst.dst[0], result);
// SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// The above assumes tmp is a 64-bit value.
// It should be enough however to test that the truncated result is less than at least one
// of the operands. In unsigned addition the result is always bigger than both the operands,
// except in the case of overflow where the truncated result is less than both.
ir.SetScc(ir.ILessThan(result, src0, false));
}
void Translator::S_SUB_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ISub(src0, src1));
// SCC = S1.u > S0.u ? 1'1U : 1'0U;
ir.SetScc(ir.IGreaterThan(src1, src0, false));
}
void Translator::S_SUBB_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 borrow{ir.Select(ir.GetScc(), ir.Imm32(1U), ir.Imm32(0U))};
const IR::U32 result{ir.ISub(ir.ISub(src0, src1), borrow)};
SetDst(inst.dst[0], result);
const IR::U32 sum_with_borrow{ir.IAdd(src1, borrow)};
ir.SetScc(ir.ILessThan(src0, sum_with_borrow, false));
}
void Translator::S_ADD_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.IAdd(src0, src1)};
SetDst(inst.dst[0], result);
// SCC = ((S0.u[31] == S1.u[31]) && (S0.u[31] != Result.u[31]));
const IR::U32 shift{ir.Imm32(31)};
const IR::U32 sign0{ir.ShiftRightLogical(src0, shift)};
const IR::U32 sign1{ir.ShiftRightLogical(src1, shift)};
const IR::U32 signr{ir.ShiftRightLogical(result, shift)};
ir.SetScc(ir.LogicalAnd(ir.IEqual(sign0, sign1), ir.INotEqual(sign0, signr)));
}
void Translator::S_SUB_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ISub(src0, src1)};
SetDst(inst.dst[0], result);
// SCC = ((S0.u[31] != S1.u[31]) && (S0.u[31] != tmp.u[31]));
const IR::U32 shift{ir.Imm32(31)};
const IR::U32 sign0{ir.ShiftRightLogical(src0, shift)};
const IR::U32 sign1{ir.ShiftRightLogical(src1, shift)};
const IR::U32 signr{ir.ShiftRightLogical(result, shift)};
ir.SetScc(ir.LogicalAnd(ir.INotEqual(sign0, sign1), ir.INotEqual(sign0, signr)));
}
void Translator::S_ADDC_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 carry{ir.Select(ir.GetScc(), ir.Imm32(1U), ir.Imm32(0U))};
SetDst(inst.dst[0], ir.IAdd(ir.IAdd(src0, src1), carry));
}
void Translator::S_MIN_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result = ir.IMin(src0, src1, is_signed);
SetDst(inst.dst[0], result);
ir.SetScc(ir.IEqual(result, src0));
}
void Translator::S_MAX_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result = ir.IMax(src0, src1, is_signed);
SetDst(inst.dst[0], result);
ir.SetScc(ir.IEqual(result, src0));
}
void Translator::S_CSELECT_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], IR::U32{ir.Select(ir.GetScc(), src0, src1)});
}
void Translator::S_CSELECT_B64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
const IR::U1 src1{get_src(inst.src[1])};
const IR::U1 result{ir.Select(ir.GetScc(), src0, src1)};
switch (inst.dst[0].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
break;
default:
UNREACHABLE();
}
}
void Translator::S_AND_B32(NegateMode negate, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
IR::U32 src1{GetSrc(inst.src[1])};
if (negate == NegateMode::Src1) {
src1 = ir.BitwiseNot(src1);
}
IR::U32 result{ir.BitwiseAnd(src0, src1)};
if (negate == NegateMode::Result) {
result = ir.BitwiseNot(result);
}
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_AND_B64(NegateMode negate, const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
case OperandField::SignedConstIntNeg:
ASSERT_MSG(-s32(operand.code) + SignedConstIntNegMin - 1 == -1,
"SignedConstIntNeg must be -1");
return ir.Imm1(true);
case OperandField::LiteralConst:
ASSERT_MSG(operand.code == 0 || operand.code == std::numeric_limits<u32>::max(),
"Unsupported literal {:#x}", operand.code);
return ir.Imm1(operand.code & 1);
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
IR::U1 src1{get_src(inst.src[1])};
if (negate == NegateMode::Src1) {
src1 = ir.LogicalNot(src1);
}
IR::U1 result = ir.LogicalAnd(src0, src1);
if (negate == NegateMode::Result) {
result = ir.LogicalNot(result);
}
ir.SetScc(result);
switch (inst.dst[0].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
break;
case OperandField::ExecLo:
ir.SetExec(result);
break;
default:
UNREACHABLE();
}
}
void Translator::S_OR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.BitwiseOr(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_OR_B64(NegateMode negate, bool is_xor, const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
IR::U1 src1{get_src(inst.src[1])};
if (negate == NegateMode::Src1) {
src1 = ir.LogicalNot(src1);
}
IR::U1 result = is_xor ? ir.LogicalXor(src0, src1) : ir.LogicalOr(src0, src1);
if (negate == NegateMode::Result) {
result = ir.LogicalNot(result);
}
ir.SetScc(result);
switch (inst.dst[0].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
break;
default:
UNREACHABLE();
}
}
void Translator::S_XOR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.BitwiseXor(src0, src1)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_NOT_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 result{ir.BitwiseNot(src0)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_LSHL_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result = ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F)));
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_LSHL_B64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
const IR::U64 src1{GetSrc64(inst.src[1])};
const IR::U64 result = ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm64(u64(0x3F))));
SetDst64(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm64(u64(0))));
}
void Translator::S_LSHR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 shift_amt = ir.BitwiseAnd(src1, ir.Imm32(0x1F));
const IR::U32 result = ir.ShiftRightLogical(src0, shift_amt);
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ASHR_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ShiftRightArithmetic(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F)))};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ASHR_I64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
const IR::U64 src1{GetSrc64(inst.src[1])};
const IR::U64 result{ir.ShiftRightArithmetic(src0, ir.BitwiseAnd(src1, ir.Imm64(u64(0x3F))))};
SetDst64(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm64(u64(0))));
}
void Translator::S_BFM_B32(const GcnInst& inst) {
const IR::U32 src0{ir.BitwiseAnd(GetSrc(inst.src[0]), ir.Imm32(0x1F))};
const IR::U32 src1{ir.BitwiseAnd(GetSrc(inst.src[1]), ir.Imm32(0x1F))};
const IR::U32 mask{ir.ISub(ir.ShiftLeftLogical(ir.Imm32(1u), src0), ir.Imm32(1))};
SetDst(inst.dst[0], ir.ShiftLeftLogical(mask, src1));
}
void Translator::S_MUL_I32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.src[0]), GetSrc(inst.src[1])));
}
void Translator::S_BFE(const GcnInst& inst, bool is_signed) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 offset{ir.BitwiseAnd(src1, ir.Imm32(0x1F))};
const IR::U32 count{ir.BitFieldExtract(src1, ir.Imm32(16), ir.Imm32(7))};
const IR::U32 result{ir.BitFieldExtract(src0, offset, count, is_signed)};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_ABSDIFF_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.IAbs(ir.ISub(src0, src1))};
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
// SOPK
void Translator::S_MOVK(const GcnInst& inst, bool is_conditional) {
const s16 simm16 = inst.control.sopk.simm;
// do the sign extension
const s32 simm32 = static_cast<s32>(simm16);
IR::U32 val = ir.Imm32(simm32);
if (is_conditional) {
// if !SCC its a NOP
val = IR::U32{ir.Select(ir.GetScc(), val, GetSrc(inst.dst[0]))};
}
SetDst(inst.dst[0], val);
}
void Translator::S_CMPK(ConditionOp cond, bool is_signed, const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
const IR::U32 lhs = GetSrc(inst.dst[0]);
const IR::U32 rhs = ir.Imm32(simm16);
const IR::U1 result = [&] {
switch (cond) {
case ConditionOp::EQ:
return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
return ir.INotEqual(lhs, rhs);
case ConditionOp::GT:
return ir.IGreaterThan(lhs, rhs, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(lhs, rhs, is_signed);
case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
}
void Translator::S_ADDK_I32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
SetDst(inst.dst[0], ir.IAdd(GetSrc(inst.dst[0]), ir.Imm32(simm16)));
}
void Translator::S_MULK_I32(const GcnInst& inst) {
const s32 simm16 = inst.control.sopk.simm;
SetDst(inst.dst[0], ir.IMul(GetSrc(inst.dst[0]), ir.Imm32(simm16)));
}
// SOP1
void Translator::S_MOV(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc(inst.src[0]));
}
void Translator::S_MOV_B64(const GcnInst& inst) {
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), src);
break;
case OperandField::ExecLo:
ir.SetExec(src);
break;
case OperandField::VccLo:
ir.SetVcc(src);
break;
default:
UNREACHABLE();
}
}
void Translator::S_NOT_B64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
const IR::U1 result = ir.LogicalNot(src0);
ir.SetScc(result);
switch (inst.dst[0].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
break;
case OperandField::ExecLo:
ir.SetExec(result);
break;
default:
UNREACHABLE();
}
}
void Translator::S_BREV_B32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.BitReverse(GetSrc(inst.src[0])));
}
void Translator::S_BCNT1_I32_B32(const GcnInst& inst) {
const IR::U32 result = ir.BitCount(GetSrc(inst.src[0]));
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_BCNT1_I32_B64(const GcnInst& inst) {
const IR::U32 result = ir.BitCount(GetSrc64(inst.src[0]));
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
void Translator::S_FF1_I32_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 result{ir.FindILsb(src0)};
SetDst(inst.dst[0], result);
}
void Translator::S_FF1_I32_B64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
const IR::U32 result{ir.FindILsb(src0)};
SetDst(inst.dst[0], result);
}
void Translator::S_FLBIT_I32_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
// Gcn wants the MSB position counting from the left, but SPIR-V counts from the rightmost (LSB)
// position
const IR::U32 msb_pos = ir.FindUMsb(src0);
const IR::U32 pos_from_left = ir.ISub(ir.Imm32(31), msb_pos);
// Select 0xFFFFFFFF if src0 was 0
const IR::U1 cond = ir.INotEqual(src0, ir.Imm32(0));
SetDst(inst.dst[0], IR::U32{ir.Select(cond, pos_from_left, ir.Imm32(~0U))});
}
void Translator::S_FLBIT_I32_B64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
// Gcn wants the MSB position counting from the left, but SPIR-V counts from the rightmost (LSB)
// position
const IR::U32 msb_pos = ir.FindUMsb(src0);
const IR::U32 pos_from_left = ir.ISub(ir.Imm32(63), msb_pos);
// Select 0xFFFFFFFF if src0 was 0
const IR::U1 cond = ir.INotEqual(src0, ir.Imm64(u64(0u)));
SetDst(inst.dst[0], IR::U32{ir.Select(cond, pos_from_left, ir.Imm32(~0U))});
}
void Translator::S_BITSET_B32(const GcnInst& inst, u32 bit_value) {
const IR::U32 old_value{GetSrc(inst.dst[0])};
const IR::U32 offset{ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0U), ir.Imm32(5U))};
const IR::U32 result{ir.BitFieldInsert(old_value, ir.Imm32(bit_value), offset, ir.Imm32(1U))};
SetDst(inst.dst[0], result);
}
void Translator::S_SAVEEXEC_B64(NegateMode negate, bool is_or, const GcnInst& inst) {
// This instruction normally operates on 64-bit data (EXEC, VCC, SGPRs)
// However here we flatten it to 1-bit EXEC and 1-bit VCC. For the destination
// SGPR we have a special IR opcode for SPGRs that act as thread masks.
IR::U1 exec{ir.GetExec()};
const IR::U1 src = [&] {
switch (inst.src[0].field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[0].code));
case OperandField::ExecLo:
return ir.GetExec();
default:
UNREACHABLE();
}
}();
switch (inst.dst[0].field) {
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), exec);
break;
case OperandField::VccLo:
ir.SetVcc(exec);
break;
default:
UNREACHABLE();
}
// Update EXEC.
if (negate == NegateMode::Src1) {
exec = ir.LogicalNot(exec);
}
IR::U1 result = is_or ? ir.LogicalOr(exec, src) : ir.LogicalAnd(exec, src);
if (negate == NegateMode::Result) {
result = ir.LogicalNot(result);
}
ir.SetExec(result);
ir.SetScc(result);
}
void Translator::S_ABS_I32(const GcnInst& inst) {
const auto result = ir.IAbs(GetSrc(inst.src[0]));
SetDst(inst.dst[0], result);
ir.SetScc(ir.INotEqual(result, ir.Imm32(0)));
}
// SOPC
void Translator::S_CMP(ConditionOp cond, bool is_signed, const GcnInst& inst) {
const IR::U32 lhs = GetSrc(inst.src[0]);
const IR::U32 rhs = GetSrc(inst.src[1]);
const IR::U1 result = [&] {
switch (cond) {
case ConditionOp::EQ:
return ir.IEqual(lhs, rhs);
case ConditionOp::LG:
return ir.INotEqual(lhs, rhs);
case ConditionOp::GT:
return ir.IGreaterThan(lhs, rhs, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(lhs, rhs, is_signed);
case ConditionOp::LT:
return ir.ILessThan(lhs, rhs, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(lhs, rhs, is_signed);
default:
UNREACHABLE();
}
}();
ir.SetScc(result);
}
void Translator::S_BITCMP(bool compare_mode, u32 bits, const GcnInst& inst) {
const IR::U1 result = [&] {
const IR::U32 src0 = GetSrc(inst.src[0]);
const IR::U32 src1 = GetSrc(inst.src[1]);
IR::U32 mask;
switch (bits) {
case 32:
mask = ir.Imm32(0x1f);
break;
case 64:
mask = ir.Imm32(0x3f);
break;
default:
UNREACHABLE();
}
const IR::U32 bitpos{ir.BitwiseAnd(src1, mask)};
const IR::U32 bittest{ir.BitwiseAnd(ir.ShiftRightLogical(src0, bitpos), ir.Imm32(1))};
if (!compare_mode) {
return ir.IEqual(bittest, ir.Imm32(0));
} else {
return ir.IEqual(bittest, ir.Imm32(1));
}
}();
ir.SetScc(result);
}
} // namespace Shader::Gcn