fix pre-commit checks and added proper type safety

This commit is contained in:
Ken Steele
2025-10-02 04:53:49 -07:00
parent 94803317a3
commit 21905e8ace
7 changed files with 135 additions and 94 deletions

View File

@@ -611,17 +611,27 @@ def convert( # noqa: C901
ocr_options.psm = psm
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
# Auto-detect pipeline based on input file formats
if pipeline == ProcessingPipeline.STANDARD:
# Check if any input files are audio files by extension
audio_extensions = {'.mp3', '.wav', '.m4a', '.aac', '.ogg', '.flac', '.mp4', '.avi', '.mov'}
audio_extensions = {
".mp3",
".wav",
".m4a",
".aac",
".ogg",
".flac",
".mp4",
".avi",
".mov",
}
for path in input_doc_paths:
if path.suffix.lower() in audio_extensions:
pipeline = ProcessingPipeline.ASR
_log.info(f"Auto-detected ASR pipeline for audio file: {path}")
break
# pipeline_options: PaginatedPipelineOptions
pipeline_options: PipelineOptions

View File

@@ -10,34 +10,37 @@ from docling.datamodel.pipeline_options_asr_model import (
# AsrResponseFormat,
# ApiAsrOptions,
InferenceAsrFramework,
InlineAsrNativeWhisperOptions,
InlineAsrMlxWhisperOptions,
InlineAsrNativeWhisperOptions,
TransformersModelType,
)
_log = logging.getLogger(__name__)
def _get_whisper_tiny_model():
"""
Get the best Whisper Tiny model for the current hardware.
Automatically selects MLX Whisper Tiny for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Tiny.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(
@@ -66,27 +69,30 @@ def _get_whisper_tiny_model():
# Create the model instance
WHISPER_TINY = _get_whisper_tiny_model()
def _get_whisper_small_model():
"""
Get the best Whisper Small model for the current hardware.
Automatically selects MLX Whisper Small for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Small.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(
@@ -115,27 +121,30 @@ def _get_whisper_small_model():
# Create the model instance
WHISPER_SMALL = _get_whisper_small_model()
def _get_whisper_medium_model():
"""
Get the best Whisper Medium model for the current hardware.
Automatically selects MLX Whisper Medium for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Medium.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(
@@ -164,27 +173,30 @@ def _get_whisper_medium_model():
# Create the model instance
WHISPER_MEDIUM = _get_whisper_medium_model()
def _get_whisper_base_model():
"""
Get the best Whisper Base model for the current hardware.
Automatically selects MLX Whisper Base for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Base.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(
@@ -213,27 +225,30 @@ def _get_whisper_base_model():
# Create the model instance
WHISPER_BASE = _get_whisper_base_model()
def _get_whisper_large_model():
"""
Get the best Whisper Large model for the current hardware.
Automatically selects MLX Whisper Large for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Large.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(
@@ -262,27 +277,30 @@ def _get_whisper_large_model():
# Create the model instance
WHISPER_LARGE = _get_whisper_large_model()
def _get_whisper_turbo_model():
"""
Get the best Whisper Turbo model for the current hardware.
Automatically selects MLX Whisper Turbo for Apple Silicon (MPS) if available,
otherwise falls back to native Whisper Turbo.
"""
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
# Use MLX Whisper if both MPS and mlx-whisper are available
if has_mps and has_mlx_whisper:
return InlineAsrMlxWhisperOptions(

View File

@@ -60,9 +60,10 @@ class InlineAsrNativeWhisperOptions(InlineAsrOptions):
class InlineAsrMlxWhisperOptions(InlineAsrOptions):
"""
MLX Whisper options for Apple Silicon optimization.
Uses mlx-whisper library for efficient inference on Apple Silicon devices.
"""
inference_framework: InferenceAsrFramework = InferenceAsrFramework.MLX
language: str = "en"

View File

@@ -4,7 +4,7 @@ import re
import tempfile
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Union, cast
from typing import TYPE_CHECKING, List, Optional, Union, cast
from docling_core.types.doc import DoclingDocument, DocumentOrigin
@@ -32,8 +32,8 @@ from docling.datamodel.pipeline_options import (
AsrPipelineOptions,
)
from docling.datamodel.pipeline_options_asr_model import (
InlineAsrNativeWhisperOptions,
InlineAsrMlxWhisperOptions,
InlineAsrNativeWhisperOptions,
# AsrResponseFormat,
InlineAsrOptions,
)
@@ -263,7 +263,7 @@ class _MlxWhisperModel:
self.model_name = asr_options.repo_id
_log.info(f"loading _MlxWhisperModel({self.model_name})")
# MLX Whisper models are loaded differently - they use HuggingFace repos
self.model_path = self.model_name
@@ -308,10 +308,10 @@ class _MlxWhisperModel:
def transcribe(self, fpath: Path) -> list[_ConversationItem]:
"""
Transcribe audio using MLX Whisper.
Args:
fpath: Path to audio file
Returns:
List of conversation items with timestamps
"""
@@ -327,16 +327,16 @@ class _MlxWhisperModel:
)
convo: list[_ConversationItem] = []
# MLX Whisper returns segments similar to native Whisper
for segment in result.get("segments", []):
item = _ConversationItem(
start_time=segment.get("start"),
end_time=segment.get("end"),
text=segment.get("text", "").strip(),
words=[]
words=[],
)
# Add word-level timestamps if available
if self.word_timestamps and "words" in segment:
item.words = []
@@ -359,26 +359,27 @@ class AsrPipeline(BasePipeline):
self.keep_backend = True
self.pipeline_options: AsrPipelineOptions = pipeline_options
self._model: Union[_NativeWhisperModel, _MlxWhisperModel]
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
asr_options: InlineAsrNativeWhisperOptions = (
native_asr_options: InlineAsrNativeWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _NativeWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=self.artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
asr_options=native_asr_options,
)
elif isinstance(self.pipeline_options.asr_options, InlineAsrMlxWhisperOptions):
asr_options: InlineAsrMlxWhisperOptions = (
mlx_asr_options: InlineAsrMlxWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _MlxWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=self.artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
asr_options=mlx_asr_options,
)
else:
_log.error(f"No model support for {self.pipeline_options.asr_options}")

View File

@@ -43,7 +43,7 @@ def get_asr_converter():
implementation for your hardware:
- MLX Whisper Turbo for Apple Silicon (M1/M2/M3) with mlx-whisper installed
- Native Whisper Turbo as fallback
You can swap in another model spec from `docling.datamodel.asr_model_specs`
to experiment with different model sizes.
"""

View File

@@ -12,31 +12,31 @@ from pathlib import Path
# Add the repository root to the path so we can import docling
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.asr_model_specs import (
WHISPER_TINY,
WHISPER_BASE,
WHISPER_SMALL,
WHISPER_MEDIUM,
WHISPER_LARGE,
WHISPER_MEDIUM,
WHISPER_SMALL,
WHISPER_TINY,
WHISPER_TURBO,
)
from docling.datamodel.accelerator_options import AcceleratorOptions, AcceleratorDevice
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.document_converter import AudioFormatOption, DocumentConverter
from docling.pipeline.asr_pipeline import AsrPipeline
from docling.document_converter import DocumentConverter, AudioFormatOption
def transcribe_audio_with_mlx_whisper(audio_file_path: str, model_size: str = "base"):
"""
Transcribe audio using Whisper models with automatic MLX optimization for Apple Silicon.
Args:
audio_file_path: Path to the audio file to transcribe
model_size: Size of the Whisper model to use
("tiny", "base", "small", "medium", "large", "turbo")
Note: MLX optimization is automatically used on Apple Silicon when available
Returns:
The transcribed text
"""
@@ -49,21 +49,23 @@ def transcribe_audio_with_mlx_whisper(audio_file_path: str, model_size: str = "b
"large": WHISPER_LARGE,
"turbo": WHISPER_TURBO,
}
if model_size not in model_map:
raise ValueError(f"Invalid model size: {model_size}. Choose from: {list(model_map.keys())}")
raise ValueError(
f"Invalid model size: {model_size}. Choose from: {list(model_map.keys())}"
)
asr_options = model_map[model_size]
# Configure accelerator options for Apple Silicon
accelerator_options = AcceleratorOptions(device=AcceleratorDevice.MPS)
# Create pipeline options
pipeline_options = AsrPipelineOptions(
asr_options=asr_options,
accelerator_options=accelerator_options,
)
# Create document converter with MLX Whisper configuration
converter = DocumentConverter(
format_options={
@@ -73,16 +75,16 @@ def transcribe_audio_with_mlx_whisper(audio_file_path: str, model_size: str = "b
)
}
)
# Run transcription
result = converter.convert(Path(audio_file_path))
if result.status.value == "success":
# Extract text from the document
text_content = []
for item in result.document.texts:
text_content.append(item.text)
return "\n".join(text_content)
else:
raise RuntimeError(f"Transcription failed: {result.status}")
@@ -95,26 +97,30 @@ def main():
print("Model sizes: tiny, base, small, medium, large, turbo")
print("Example: python mlx_whisper_example.py audio.wav base")
sys.exit(1)
audio_file_path = sys.argv[1]
model_size = sys.argv[2] if len(sys.argv) > 2 else "base"
if not Path(audio_file_path).exists():
print(f"Error: Audio file '{audio_file_path}' not found.")
sys.exit(1)
try:
print(f"Transcribing '{audio_file_path}' using Whisper {model_size} model...")
print("Note: MLX optimization is automatically used on Apple Silicon when available.")
print(
"Note: MLX optimization is automatically used on Apple Silicon when available."
)
print()
transcribed_text = transcribe_audio_with_mlx_whisper(audio_file_path, model_size)
transcribed_text = transcribe_audio_with_mlx_whisper(
audio_file_path, model_size
)
print("Transcription Result:")
print("=" * 50)
print(transcribed_text)
print("=" * 50)
except ImportError as e:
print(f"Error: {e}")
print("Please install mlx-whisper: pip install mlx-whisper")

View File

@@ -1,25 +1,27 @@
"""
Test MLX Whisper integration for Apple Silicon ASR pipeline.
"""
import pytest
from pathlib import Path
from unittest.mock import Mock, patch
import pytest
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.asr_model_specs import (
WHISPER_TINY,
WHISPER_BASE,
WHISPER_SMALL,
WHISPER_MEDIUM,
WHISPER_LARGE,
WHISPER_MEDIUM,
WHISPER_SMALL,
WHISPER_TINY,
WHISPER_TURBO,
)
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.datamodel.pipeline_options_asr_model import (
InferenceAsrFramework,
InlineAsrMlxWhisperOptions,
)
from docling.datamodel.accelerator_options import AcceleratorOptions, AcceleratorDevice
from docling.pipeline.asr_pipeline import AsrPipeline, _MlxWhisperModel
from docling.datamodel.pipeline_options import AsrPipelineOptions
class TestMlxWhisperIntegration:
@@ -32,7 +34,7 @@ class TestMlxWhisperIntegration:
language="en",
task="transcribe",
)
assert options.inference_framework == InferenceAsrFramework.MLX
assert options.repo_id == "mlx-community/whisper-tiny-mlx"
assert options.language == "en"
@@ -45,24 +47,24 @@ class TestMlxWhisperIntegration:
# This test verifies that the models are correctly configured
# In a real Apple Silicon environment with mlx-whisper installed,
# these models would automatically use MLX
# Check that the models exist and have the correct structure
assert hasattr(WHISPER_TURBO, 'inference_framework')
assert hasattr(WHISPER_TURBO, 'repo_id')
assert hasattr(WHISPER_BASE, 'inference_framework')
assert hasattr(WHISPER_BASE, 'repo_id')
assert hasattr(WHISPER_SMALL, 'inference_framework')
assert hasattr(WHISPER_SMALL, 'repo_id')
@patch('builtins.__import__')
# Check that the models exist and have the correct structure
assert hasattr(WHISPER_TURBO, "inference_framework")
assert hasattr(WHISPER_TURBO, "repo_id")
assert hasattr(WHISPER_BASE, "inference_framework")
assert hasattr(WHISPER_BASE, "repo_id")
assert hasattr(WHISPER_SMALL, "inference_framework")
assert hasattr(WHISPER_SMALL, "repo_id")
@patch("builtins.__import__")
def test_mlx_whisper_model_initialization(self, mock_import):
"""Test MLX Whisper model initialization."""
# Mock the mlx_whisper import
mock_mlx_whisper = Mock()
mock_import.return_value = mock_mlx_whisper
accelerator_options = AcceleratorOptions(device=AcceleratorDevice.MPS)
asr_options = InlineAsrMlxWhisperOptions(
repo_id="mlx-community/whisper-tiny-mlx",
@@ -74,14 +76,14 @@ class TestMlxWhisperIntegration:
logprob_threshold=-1.0,
compression_ratio_threshold=2.4,
)
model = _MlxWhisperModel(
enabled=True,
artifacts_path=None,
accelerator_options=accelerator_options,
asr_options=asr_options,
)
assert model.enabled is True
assert model.model_path == "mlx-community/whisper-tiny-mlx"
assert model.language == "en"
@@ -101,8 +103,11 @@ class TestMlxWhisperIntegration:
logprob_threshold=-1.0,
compression_ratio_threshold=2.4,
)
with patch('builtins.__import__', side_effect=ImportError("No module named 'mlx_whisper'")):
with patch(
"builtins.__import__",
side_effect=ImportError("No module named 'mlx_whisper'"),
):
with pytest.raises(ImportError, match="mlx-whisper is not installed"):
_MlxWhisperModel(
enabled=True,
@@ -111,13 +116,13 @@ class TestMlxWhisperIntegration:
asr_options=asr_options,
)
@patch('builtins.__import__')
@patch("builtins.__import__")
def test_mlx_whisper_transcribe(self, mock_import):
"""Test MLX Whisper transcription method."""
# Mock the mlx_whisper module and its transcribe function
mock_mlx_whisper = Mock()
mock_import.return_value = mock_mlx_whisper
# Mock the transcribe result
mock_result = {
"segments": [
@@ -128,12 +133,12 @@ class TestMlxWhisperIntegration:
"words": [
{"start": 0.0, "end": 0.5, "word": "Hello"},
{"start": 0.5, "end": 1.0, "word": "world"},
]
],
}
]
}
mock_mlx_whisper.transcribe.return_value = mock_result
accelerator_options = AcceleratorOptions(device=AcceleratorDevice.MPS)
asr_options = InlineAsrMlxWhisperOptions(
repo_id="mlx-community/whisper-tiny-mlx",
@@ -145,18 +150,18 @@ class TestMlxWhisperIntegration:
logprob_threshold=-1.0,
compression_ratio_threshold=2.4,
)
model = _MlxWhisperModel(
enabled=True,
artifacts_path=None,
accelerator_options=accelerator_options,
asr_options=asr_options,
)
# Test transcription
audio_path = Path("test_audio.wav")
result = model.transcribe(audio_path)
# Verify the result
assert len(result) == 1
assert result[0].start_time == 0.0
@@ -165,7 +170,7 @@ class TestMlxWhisperIntegration:
assert len(result[0].words) == 2
assert result[0].words[0].text == "Hello"
assert result[0].words[1].text == "world"
# Verify mlx_whisper.transcribe was called with correct parameters
mock_mlx_whisper.transcribe.assert_called_once_with(
str(audio_path),
@@ -178,13 +183,13 @@ class TestMlxWhisperIntegration:
compression_ratio_threshold=2.4,
)
@patch('builtins.__import__')
@patch("builtins.__import__")
def test_asr_pipeline_with_mlx_whisper(self, mock_import):
"""Test that AsrPipeline can be initialized with MLX Whisper options."""
# Mock the mlx_whisper import
mock_mlx_whisper = Mock()
mock_import.return_value = mock_mlx_whisper
accelerator_options = AcceleratorOptions(device=AcceleratorDevice.MPS)
asr_options = InlineAsrMlxWhisperOptions(
repo_id="mlx-community/whisper-tiny-mlx",
@@ -200,7 +205,7 @@ class TestMlxWhisperIntegration:
asr_options=asr_options,
accelerator_options=accelerator_options,
)
pipeline = AsrPipeline(pipeline_options)
assert isinstance(pipeline._model, _MlxWhisperModel)
assert pipeline._model.model_path == "mlx-community/whisper-tiny-mlx"