mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-11 22:28:31 +00:00
feat(ASR): MLX Whisper Support for Apple Silicon (#2366)
* add mlx-whisper support * added mlx-whisper example and test. update docling cli to use MLX automatically if present. * fix pre-commit checks and added proper type safety * fixed linter issue * DCO Remediation Commit for Ken Steele <ksteele@gmail.com> I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit: a979a680e1dc2fee8461401335cfb5dda8cfdd98 I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit: 9827068382ca946fe1387ed83f747ae509fcf229 I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit: ebbeb45c7dc266260e1fad6bdb54a7041f8aeed4 I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit: 2f6fd3cf46c8ca0bb98810191578278f1df87aa3 Signed-off-by: Ken Steele <ksteele@gmail.com> * fix unit tests and code coverage for CI * DCO Remediation Commit for Ken Steele <ksteele@gmail.com> I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit: 5e61bf11139a2133978db2c8d306be6289aed732 Signed-off-by: Ken Steele <ksteele@gmail.com> * fix CI example test - mlx_whisper_example.py defaults to tests/data/audio/sample_10s.mp3 if no args specified. Signed-off-by: Ken Steele <ksteele@gmail.com> * refactor: centralize audio file extensions and MIME types in base_models.py - Move audio file extensions from CLI hardcoded set to FormatToExtensions[InputFormat.AUDIO] - Add support for additional audio formats: m4a, aac, ogg, flac, mp4, avi, mov - Update FormatToMimeType mapping to include MIME types for all audio formats - Update CLI auto-detection to use centralized FormatToExtensions mapping - Add comprehensive tests for audio file auto-detection and pipeline selection - Ensure explicit pipeline choices are not overridden by auto-detection Fixes issue where only .mp3 and .wav files were processed as audio despite CLI auto-detection working for all formats. The document converter now properly recognizes all audio formats through MIME type detection. Addresses review comments: - Centralizes audio extensions in base_models.py as suggested - Maintains existing auto-detection behavior while using centralized data - Adds proper test coverage for the audio detection functionality All examples and tests pass with the new centralized approach. All audio formats (mp3, wav, m4a, aac, ogg, flac, mp4, avi, mov) now work correctly. Signed-off-by: Ken Steele <ksteele@gmail.com> * feat: address reviewer feedback - improve CLI auto-detection and add explicit model options Review feedback addressed: 1. Fix CLI auto-detection to only switch to ASR pipeline when ALL files are audio - Previously switched if ANY file was audio, now requires ALL files to be audio - Added warning for mixed file types with guidance to use --pipeline asr 2. Add explicit WHISPER_X_MLX and WHISPER_X_NATIVE model options - Users can now force specific implementations if desired - Auto-selecting models (WHISPER_BASE, etc.) still choose best for hardware - Added 12 new explicit model options: _MLX and _NATIVE variants for each size CLI now supports: - Auto-selecting: whisper_tiny, whisper_base, etc. (choose best for hardware) - Explicit MLX: whisper_tiny_mlx, whisper_base_mlx, etc. (force MLX) - Explicit Native: whisper_tiny_native, whisper_base_native, etc. (force native) Addresses reviewer comments from @dolfim-ibm Signed-off-by: Ken Steele <ksteele@gmail.com> * DCO Remediation Commit for Ken Steele <ksteele@gmail.com> I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit:c60e72d2b5I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit:94803317a3I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit:21905e8aceI, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit:96c669d155I, Ken Steele <ksteele@gmail.com>, hereby add my Signed-off-by to this commit:8371c060eaSigned-off-by: Ken Steele <ksteele@gmail.com> * test(asr): add coverage for MLX options, pipeline helpers, and VLM prompts - tests/test_asr_mlx_whisper.py: verify explicit MLX options (framework, repo ids) - tests/test_asr_pipeline.py: cover _has_text/_determine_status and backend support with proper InputDocument/NoOpBackend wiring - tests/test_interfaces.py: add BaseVlmPageModel.formulate_prompt tests (RAW/NONE/CHAT, invalid style), with minimal InlineVlmOptions scaffold Improves reliability of ASR and VLM components by validating configuration paths and helper logic. Signed-off-by: Ken Steele <ksteele@gmail.com> * test(asr): broaden coverage for model selection, pipeline flows, and VLM prompts - tests/test_asr_mlx_whisper.py - Add MLX/native selector coverage across all Whisper sizes - Validate repo_id choices under MLX and Native paths - Cover fallback path when MPS unavailable and mlx_whisper missing - tests/test_asr_pipeline.py - Relax silent-audio assertion to accept PARTIAL_SUCCESS or SUCCESS - Force CPU native path in helper tests to avoid torch in device selection - Add language handling tests for native/MLX transcribe - Cover native run success (BytesIO) and failure (exception) branches - Cover MLX run success/failure branches with mocked transcribe - Add init path coverage with artifacts_path - tests/test_interfaces.py - Add focused VLM prompt tests (NONE/CHAT variants) Result: all tests passing with significantly improved coverage for ASR model selectors, pipeline execution paths, and VLM prompt formulation. Signed-off-by: Ken Steele <ksteele@gmail.com> * simplify ASR model settings (no pipeline detection needed) Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * clean up disk space in runners Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Ken Steele <ksteele@gmail.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
@@ -32,11 +32,23 @@ from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.asr_model_specs import (
|
||||
WHISPER_BASE,
|
||||
WHISPER_BASE_MLX,
|
||||
WHISPER_BASE_NATIVE,
|
||||
WHISPER_LARGE,
|
||||
WHISPER_LARGE_MLX,
|
||||
WHISPER_LARGE_NATIVE,
|
||||
WHISPER_MEDIUM,
|
||||
WHISPER_MEDIUM_MLX,
|
||||
WHISPER_MEDIUM_NATIVE,
|
||||
WHISPER_SMALL,
|
||||
WHISPER_SMALL_MLX,
|
||||
WHISPER_SMALL_NATIVE,
|
||||
WHISPER_TINY,
|
||||
WHISPER_TINY_MLX,
|
||||
WHISPER_TINY_NATIVE,
|
||||
WHISPER_TURBO,
|
||||
WHISPER_TURBO_MLX,
|
||||
WHISPER_TURBO_NATIVE,
|
||||
AsrModelType,
|
||||
)
|
||||
from docling.datamodel.base_models import (
|
||||
@@ -611,6 +623,7 @@ def convert( # noqa: C901
|
||||
ocr_options.psm = psm
|
||||
|
||||
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
|
||||
|
||||
# pipeline_options: PaginatedPipelineOptions
|
||||
pipeline_options: PipelineOptions
|
||||
|
||||
@@ -747,42 +760,74 @@ def convert( # noqa: C901
|
||||
InputFormat.IMAGE: pdf_format_option,
|
||||
}
|
||||
|
||||
elif pipeline == ProcessingPipeline.ASR:
|
||||
pipeline_options = AsrPipelineOptions(
|
||||
# enable_remote_services=enable_remote_services,
|
||||
# artifacts_path = artifacts_path
|
||||
)
|
||||
# Set ASR options
|
||||
asr_pipeline_options = AsrPipelineOptions(
|
||||
accelerator_options=AcceleratorOptions(
|
||||
device=device,
|
||||
num_threads=num_threads,
|
||||
),
|
||||
# enable_remote_services=enable_remote_services,
|
||||
# artifacts_path = artifacts_path
|
||||
)
|
||||
|
||||
if asr_model == AsrModelType.WHISPER_TINY:
|
||||
pipeline_options.asr_options = WHISPER_TINY
|
||||
elif asr_model == AsrModelType.WHISPER_SMALL:
|
||||
pipeline_options.asr_options = WHISPER_SMALL
|
||||
elif asr_model == AsrModelType.WHISPER_MEDIUM:
|
||||
pipeline_options.asr_options = WHISPER_MEDIUM
|
||||
elif asr_model == AsrModelType.WHISPER_BASE:
|
||||
pipeline_options.asr_options = WHISPER_BASE
|
||||
elif asr_model == AsrModelType.WHISPER_LARGE:
|
||||
pipeline_options.asr_options = WHISPER_LARGE
|
||||
elif asr_model == AsrModelType.WHISPER_TURBO:
|
||||
pipeline_options.asr_options = WHISPER_TURBO
|
||||
else:
|
||||
_log.error(f"{asr_model} is not known")
|
||||
raise ValueError(f"{asr_model} is not known")
|
||||
# Auto-selecting models (choose best implementation for hardware)
|
||||
if asr_model == AsrModelType.WHISPER_TINY:
|
||||
asr_pipeline_options.asr_options = WHISPER_TINY
|
||||
elif asr_model == AsrModelType.WHISPER_SMALL:
|
||||
asr_pipeline_options.asr_options = WHISPER_SMALL
|
||||
elif asr_model == AsrModelType.WHISPER_MEDIUM:
|
||||
asr_pipeline_options.asr_options = WHISPER_MEDIUM
|
||||
elif asr_model == AsrModelType.WHISPER_BASE:
|
||||
asr_pipeline_options.asr_options = WHISPER_BASE
|
||||
elif asr_model == AsrModelType.WHISPER_LARGE:
|
||||
asr_pipeline_options.asr_options = WHISPER_LARGE
|
||||
elif asr_model == AsrModelType.WHISPER_TURBO:
|
||||
asr_pipeline_options.asr_options = WHISPER_TURBO
|
||||
|
||||
_log.info(f"pipeline_options: {pipeline_options}")
|
||||
# Explicit MLX models (force MLX implementation)
|
||||
elif asr_model == AsrModelType.WHISPER_TINY_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_TINY_MLX
|
||||
elif asr_model == AsrModelType.WHISPER_SMALL_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_SMALL_MLX
|
||||
elif asr_model == AsrModelType.WHISPER_MEDIUM_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_MEDIUM_MLX
|
||||
elif asr_model == AsrModelType.WHISPER_BASE_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_BASE_MLX
|
||||
elif asr_model == AsrModelType.WHISPER_LARGE_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_LARGE_MLX
|
||||
elif asr_model == AsrModelType.WHISPER_TURBO_MLX:
|
||||
asr_pipeline_options.asr_options = WHISPER_TURBO_MLX
|
||||
|
||||
audio_format_option = AudioFormatOption(
|
||||
pipeline_cls=AsrPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
)
|
||||
# Explicit Native models (force native implementation)
|
||||
elif asr_model == AsrModelType.WHISPER_TINY_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_TINY_NATIVE
|
||||
elif asr_model == AsrModelType.WHISPER_SMALL_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_SMALL_NATIVE
|
||||
elif asr_model == AsrModelType.WHISPER_MEDIUM_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_MEDIUM_NATIVE
|
||||
elif asr_model == AsrModelType.WHISPER_BASE_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_BASE_NATIVE
|
||||
elif asr_model == AsrModelType.WHISPER_LARGE_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_LARGE_NATIVE
|
||||
elif asr_model == AsrModelType.WHISPER_TURBO_NATIVE:
|
||||
asr_pipeline_options.asr_options = WHISPER_TURBO_NATIVE
|
||||
|
||||
format_options = {
|
||||
InputFormat.AUDIO: audio_format_option,
|
||||
}
|
||||
else:
|
||||
_log.error(f"{asr_model} is not known")
|
||||
raise ValueError(f"{asr_model} is not known")
|
||||
|
||||
_log.info(f"ASR pipeline_options: {asr_pipeline_options}")
|
||||
|
||||
audio_format_option = AudioFormatOption(
|
||||
pipeline_cls=AsrPipeline,
|
||||
pipeline_options=asr_pipeline_options,
|
||||
)
|
||||
format_options[InputFormat.AUDIO] = audio_format_option
|
||||
|
||||
# Common options for all pipelines
|
||||
if artifacts_path is not None:
|
||||
pipeline_options.artifacts_path = artifacts_path
|
||||
# audio_pipeline_options.artifacts_path = artifacts_path
|
||||
asr_pipeline_options.artifacts_path = artifacts_path
|
||||
|
||||
doc_converter = DocumentConverter(
|
||||
allowed_formats=from_formats,
|
||||
|
||||
@@ -10,13 +10,394 @@ from docling.datamodel.pipeline_options_asr_model import (
|
||||
# AsrResponseFormat,
|
||||
# ApiAsrOptions,
|
||||
InferenceAsrFramework,
|
||||
InlineAsrMlxWhisperOptions,
|
||||
InlineAsrNativeWhisperOptions,
|
||||
TransformersModelType,
|
||||
)
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
WHISPER_TINY = InlineAsrNativeWhisperOptions(
|
||||
|
||||
def _get_whisper_tiny_model():
|
||||
"""
|
||||
Get the best Whisper Tiny model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Tiny for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Tiny.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-tiny-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="tiny",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_TINY = _get_whisper_tiny_model()
|
||||
|
||||
|
||||
def _get_whisper_small_model():
|
||||
"""
|
||||
Get the best Whisper Small model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Small for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Small.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-small-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="small",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_SMALL = _get_whisper_small_model()
|
||||
|
||||
|
||||
def _get_whisper_medium_model():
|
||||
"""
|
||||
Get the best Whisper Medium model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Medium for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Medium.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-medium-mlx-8bit",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="medium",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_MEDIUM = _get_whisper_medium_model()
|
||||
|
||||
|
||||
def _get_whisper_base_model():
|
||||
"""
|
||||
Get the best Whisper Base model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Base for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Base.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-base-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="base",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_BASE = _get_whisper_base_model()
|
||||
|
||||
|
||||
def _get_whisper_large_model():
|
||||
"""
|
||||
Get the best Whisper Large model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Large for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Large.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-large-mlx-8bit",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="large",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_LARGE = _get_whisper_large_model()
|
||||
|
||||
|
||||
def _get_whisper_turbo_model():
|
||||
"""
|
||||
Get the best Whisper Turbo model for the current hardware.
|
||||
|
||||
Automatically selects MLX Whisper Turbo for Apple Silicon (MPS) if available,
|
||||
otherwise falls back to native Whisper Turbo.
|
||||
"""
|
||||
# Check if MPS is available (Apple Silicon)
|
||||
try:
|
||||
import torch
|
||||
|
||||
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
|
||||
except ImportError:
|
||||
has_mps = False
|
||||
|
||||
# Check if mlx-whisper is available
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
|
||||
has_mlx_whisper = True
|
||||
except ImportError:
|
||||
has_mlx_whisper = False
|
||||
|
||||
# Use MLX Whisper if both MPS and mlx-whisper are available
|
||||
if has_mps and has_mlx_whisper:
|
||||
return InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-turbo",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
else:
|
||||
return InlineAsrNativeWhisperOptions(
|
||||
repo_id="turbo",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
timestamps=True,
|
||||
word_timestamps=True,
|
||||
temperature=0.0,
|
||||
max_new_tokens=256,
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
# Create the model instance
|
||||
WHISPER_TURBO = _get_whisper_turbo_model()
|
||||
|
||||
# Explicit MLX Whisper model options for users who want to force MLX usage
|
||||
WHISPER_TINY_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-tiny-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
WHISPER_SMALL_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-small-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
WHISPER_MEDIUM_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-medium-mlx-8bit",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
WHISPER_BASE_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-base-mlx",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
WHISPER_LARGE_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-large-mlx-8bit",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
WHISPER_TURBO_MLX = InlineAsrMlxWhisperOptions(
|
||||
repo_id="mlx-community/whisper-turbo",
|
||||
inference_framework=InferenceAsrFramework.MLX,
|
||||
language="en",
|
||||
task="transcribe",
|
||||
word_timestamps=True,
|
||||
no_speech_threshold=0.6,
|
||||
logprob_threshold=-1.0,
|
||||
compression_ratio_threshold=2.4,
|
||||
)
|
||||
|
||||
# Explicit Native Whisper model options for users who want to force native usage
|
||||
WHISPER_TINY_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="tiny",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -27,7 +408,7 @@ WHISPER_TINY = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_SMALL = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_SMALL_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="small",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -38,7 +419,7 @@ WHISPER_SMALL = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_MEDIUM_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="medium",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -49,7 +430,7 @@ WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_BASE = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_BASE_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="base",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -60,7 +441,7 @@ WHISPER_BASE = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_LARGE = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_LARGE_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="large",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -71,7 +452,7 @@ WHISPER_LARGE = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_TURBO = InlineAsrNativeWhisperOptions(
|
||||
WHISPER_TURBO_NATIVE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="turbo",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@@ -82,11 +463,32 @@ WHISPER_TURBO = InlineAsrNativeWhisperOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
# Note: The main WHISPER_* models (WHISPER_TURBO, WHISPER_BASE, etc.) automatically
|
||||
# select the best implementation (MLX on Apple Silicon, Native elsewhere).
|
||||
# Use the explicit _MLX or _NATIVE variants if you need to force a specific implementation.
|
||||
|
||||
|
||||
class AsrModelType(str, Enum):
|
||||
# Auto-selecting models (choose best implementation for hardware)
|
||||
WHISPER_TINY = "whisper_tiny"
|
||||
WHISPER_SMALL = "whisper_small"
|
||||
WHISPER_MEDIUM = "whisper_medium"
|
||||
WHISPER_BASE = "whisper_base"
|
||||
WHISPER_LARGE = "whisper_large"
|
||||
WHISPER_TURBO = "whisper_turbo"
|
||||
|
||||
# Explicit MLX models (force MLX implementation)
|
||||
WHISPER_TINY_MLX = "whisper_tiny_mlx"
|
||||
WHISPER_SMALL_MLX = "whisper_small_mlx"
|
||||
WHISPER_MEDIUM_MLX = "whisper_medium_mlx"
|
||||
WHISPER_BASE_MLX = "whisper_base_mlx"
|
||||
WHISPER_LARGE_MLX = "whisper_large_mlx"
|
||||
WHISPER_TURBO_MLX = "whisper_turbo_mlx"
|
||||
|
||||
# Explicit Native models (force native implementation)
|
||||
WHISPER_TINY_NATIVE = "whisper_tiny_native"
|
||||
WHISPER_SMALL_NATIVE = "whisper_small_native"
|
||||
WHISPER_MEDIUM_NATIVE = "whisper_medium_native"
|
||||
WHISPER_BASE_NATIVE = "whisper_base_native"
|
||||
WHISPER_LARGE_NATIVE = "whisper_large_native"
|
||||
WHISPER_TURBO_NATIVE = "whisper_turbo_native"
|
||||
|
||||
@@ -94,7 +94,7 @@ FormatToExtensions: dict[InputFormat, list[str]] = {
|
||||
InputFormat.XML_USPTO: ["xml", "txt"],
|
||||
InputFormat.METS_GBS: ["tar.gz"],
|
||||
InputFormat.JSON_DOCLING: ["json"],
|
||||
InputFormat.AUDIO: ["wav", "mp3"],
|
||||
InputFormat.AUDIO: ["wav", "mp3", "m4a", "aac", "ogg", "flac", "mp4", "avi", "mov"],
|
||||
InputFormat.VTT: ["vtt"],
|
||||
}
|
||||
|
||||
@@ -128,7 +128,22 @@ FormatToMimeType: dict[InputFormat, list[str]] = {
|
||||
InputFormat.XML_USPTO: ["application/xml", "text/plain"],
|
||||
InputFormat.METS_GBS: ["application/mets+xml"],
|
||||
InputFormat.JSON_DOCLING: ["application/json"],
|
||||
InputFormat.AUDIO: ["audio/x-wav", "audio/mpeg", "audio/wav", "audio/mp3"],
|
||||
InputFormat.AUDIO: [
|
||||
"audio/x-wav",
|
||||
"audio/mpeg",
|
||||
"audio/wav",
|
||||
"audio/mp3",
|
||||
"audio/mp4",
|
||||
"audio/m4a",
|
||||
"audio/aac",
|
||||
"audio/ogg",
|
||||
"audio/flac",
|
||||
"audio/x-flac",
|
||||
"video/mp4",
|
||||
"video/avi",
|
||||
"video/x-msvideo",
|
||||
"video/quicktime",
|
||||
],
|
||||
InputFormat.VTT: ["text/vtt"],
|
||||
}
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class BaseAsrOptions(BaseModel):
|
||||
|
||||
|
||||
class InferenceAsrFramework(str, Enum):
|
||||
# MLX = "mlx" # disabled for now
|
||||
MLX = "mlx"
|
||||
# TRANSFORMERS = "transformers" # disabled for now
|
||||
WHISPER = "whisper"
|
||||
|
||||
@@ -55,3 +55,23 @@ class InlineAsrNativeWhisperOptions(InlineAsrOptions):
|
||||
AcceleratorDevice.CUDA,
|
||||
]
|
||||
word_timestamps: bool = True
|
||||
|
||||
|
||||
class InlineAsrMlxWhisperOptions(InlineAsrOptions):
|
||||
"""
|
||||
MLX Whisper options for Apple Silicon optimization.
|
||||
|
||||
Uses mlx-whisper library for efficient inference on Apple Silicon devices.
|
||||
"""
|
||||
|
||||
inference_framework: InferenceAsrFramework = InferenceAsrFramework.MLX
|
||||
|
||||
language: str = "en"
|
||||
task: str = "transcribe" # "transcribe" or "translate"
|
||||
supported_devices: List[AcceleratorDevice] = [
|
||||
AcceleratorDevice.MPS, # MLX is optimized for Apple Silicon
|
||||
]
|
||||
word_timestamps: bool = True
|
||||
no_speech_threshold: float = 0.6 # Threshold for detecting speech
|
||||
logprob_threshold: float = -1.0 # Log probability threshold
|
||||
compression_ratio_threshold: float = 2.4 # Compression ratio threshold
|
||||
|
||||
@@ -4,7 +4,7 @@ import re
|
||||
import tempfile
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union, cast
|
||||
from typing import TYPE_CHECKING, List, Optional, Union, cast
|
||||
|
||||
from docling_core.types.doc import DoclingDocument, DocumentOrigin
|
||||
|
||||
@@ -32,6 +32,7 @@ from docling.datamodel.pipeline_options import (
|
||||
AsrPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.pipeline_options_asr_model import (
|
||||
InlineAsrMlxWhisperOptions,
|
||||
InlineAsrNativeWhisperOptions,
|
||||
# AsrResponseFormat,
|
||||
InlineAsrOptions,
|
||||
@@ -228,22 +229,157 @@ class _NativeWhisperModel:
|
||||
return convo
|
||||
|
||||
|
||||
class _MlxWhisperModel:
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
asr_options: InlineAsrMlxWhisperOptions,
|
||||
):
|
||||
"""
|
||||
Transcriber using MLX Whisper for Apple Silicon optimization.
|
||||
"""
|
||||
self.enabled = enabled
|
||||
|
||||
_log.info(f"artifacts-path: {artifacts_path}")
|
||||
_log.info(f"accelerator_options: {accelerator_options}")
|
||||
|
||||
if self.enabled:
|
||||
try:
|
||||
import mlx_whisper # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"mlx-whisper is not installed. Please install it via `pip install mlx-whisper` or do `uv sync --extra asr`."
|
||||
)
|
||||
self.asr_options = asr_options
|
||||
self.mlx_whisper = mlx_whisper
|
||||
|
||||
self.device = decide_device(
|
||||
accelerator_options.device,
|
||||
supported_devices=asr_options.supported_devices,
|
||||
)
|
||||
_log.info(f"Available device for MLX Whisper: {self.device}")
|
||||
|
||||
self.model_name = asr_options.repo_id
|
||||
_log.info(f"loading _MlxWhisperModel({self.model_name})")
|
||||
|
||||
# MLX Whisper models are loaded differently - they use HuggingFace repos
|
||||
self.model_path = self.model_name
|
||||
|
||||
# Store MLX-specific options
|
||||
self.language = asr_options.language
|
||||
self.task = asr_options.task
|
||||
self.word_timestamps = asr_options.word_timestamps
|
||||
self.no_speech_threshold = asr_options.no_speech_threshold
|
||||
self.logprob_threshold = asr_options.logprob_threshold
|
||||
self.compression_ratio_threshold = asr_options.compression_ratio_threshold
|
||||
|
||||
def run(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
audio_path: Path = Path(conv_res.input.file).resolve()
|
||||
|
||||
try:
|
||||
conversation = self.transcribe(audio_path)
|
||||
|
||||
# Ensure we have a proper DoclingDocument
|
||||
origin = DocumentOrigin(
|
||||
filename=conv_res.input.file.name or "audio.wav",
|
||||
mimetype="audio/x-wav",
|
||||
binary_hash=conv_res.input.document_hash,
|
||||
)
|
||||
conv_res.document = DoclingDocument(
|
||||
name=conv_res.input.file.stem or "audio.wav", origin=origin
|
||||
)
|
||||
|
||||
for citem in conversation:
|
||||
conv_res.document.add_text(
|
||||
label=DocItemLabel.TEXT, text=citem.to_string()
|
||||
)
|
||||
|
||||
conv_res.status = ConversionStatus.SUCCESS
|
||||
return conv_res
|
||||
|
||||
except Exception as exc:
|
||||
_log.error(f"MLX Audio transcription has an error: {exc}")
|
||||
|
||||
conv_res.status = ConversionStatus.FAILURE
|
||||
return conv_res
|
||||
|
||||
def transcribe(self, fpath: Path) -> list[_ConversationItem]:
|
||||
"""
|
||||
Transcribe audio using MLX Whisper.
|
||||
|
||||
Args:
|
||||
fpath: Path to audio file
|
||||
|
||||
Returns:
|
||||
List of conversation items with timestamps
|
||||
"""
|
||||
result = self.mlx_whisper.transcribe(
|
||||
str(fpath),
|
||||
path_or_hf_repo=self.model_path,
|
||||
language=self.language,
|
||||
task=self.task,
|
||||
word_timestamps=self.word_timestamps,
|
||||
no_speech_threshold=self.no_speech_threshold,
|
||||
logprob_threshold=self.logprob_threshold,
|
||||
compression_ratio_threshold=self.compression_ratio_threshold,
|
||||
)
|
||||
|
||||
convo: list[_ConversationItem] = []
|
||||
|
||||
# MLX Whisper returns segments similar to native Whisper
|
||||
for segment in result.get("segments", []):
|
||||
item = _ConversationItem(
|
||||
start_time=segment.get("start"),
|
||||
end_time=segment.get("end"),
|
||||
text=segment.get("text", "").strip(),
|
||||
words=[],
|
||||
)
|
||||
|
||||
# Add word-level timestamps if available
|
||||
if self.word_timestamps and "words" in segment:
|
||||
item.words = []
|
||||
for word_data in segment["words"]:
|
||||
item.words.append(
|
||||
_ConversationWord(
|
||||
start_time=word_data.get("start"),
|
||||
end_time=word_data.get("end"),
|
||||
text=word_data.get("word", ""),
|
||||
)
|
||||
)
|
||||
convo.append(item)
|
||||
|
||||
return convo
|
||||
|
||||
|
||||
class AsrPipeline(BasePipeline):
|
||||
def __init__(self, pipeline_options: AsrPipelineOptions):
|
||||
super().__init__(pipeline_options)
|
||||
self.keep_backend = True
|
||||
|
||||
self.pipeline_options: AsrPipelineOptions = pipeline_options
|
||||
self._model: Union[_NativeWhisperModel, _MlxWhisperModel]
|
||||
|
||||
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
|
||||
asr_options: InlineAsrNativeWhisperOptions = (
|
||||
native_asr_options: InlineAsrNativeWhisperOptions = (
|
||||
self.pipeline_options.asr_options
|
||||
)
|
||||
self._model = _NativeWhisperModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=self.artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
asr_options=asr_options,
|
||||
asr_options=native_asr_options,
|
||||
)
|
||||
elif isinstance(self.pipeline_options.asr_options, InlineAsrMlxWhisperOptions):
|
||||
mlx_asr_options: InlineAsrMlxWhisperOptions = (
|
||||
self.pipeline_options.asr_options
|
||||
)
|
||||
self._model = _MlxWhisperModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=self.artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
asr_options=mlx_asr_options,
|
||||
)
|
||||
else:
|
||||
_log.error(f"No model support for {self.pipeline_options.asr_options}")
|
||||
|
||||
Reference in New Issue
Block a user