This change enables users to extend the document conversion process with custom logic through plugins. - Introduced a PluginManager to handle preprocessing and postprocessing plugins in DocumentConverter. - Updated DocumentConverter to accept and initialize a list of plugins. - Implemented plugin execution within the document processing pipeline, enabling custom modifications before and after conversion. - Updated ConversionResult to include metadata about the plugins used during conversion. - Updated the CLI to accept plugin paths and load them dynamically. - Expanded documentation with examples for creating and using plugins. - Added test cases to verify plugin integration and ensure correct execution in various scenarios. Signed-off-by: Ayoub El Bouchtili <Ayoub.elbouchtili@gmail.com>
8.5 KiB
Conversion
Convert a single document
To convert individual PDF documents, use convert()
, for example:
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "### Docling Technical Report[...]"
CLI
You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
A simple example would look like this:
docling https://arxiv.org/pdf/2206.01062
To see all available options (export formats etc.) run docling --help
. More details in the CLI reference page.
Advanced options
Adjust pipeline features
The example file custom_convert.py contains multiple ways one can adjust the conversion pipeline and features.
Control PDF table extraction options
You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself. This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between TableFormerMode.FAST
(default) and TableFormerMode.ACCURATE
(better, but slower) to receive better quality with difficult table structures.
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
Provide specific artifacts path
By default, artifacts such as models are downloaded automatically upon first usage. If you would prefer to use a local path where the artifacts have been explicitly prefetched, you can do that as follows:
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
# # to explicitly prefetch:
# artifacts_path = StandardPdfPipeline.download_models_hf()
artifacts_path = "/local/path/to/artifacts"
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
Impose limits on the document size
You can limit the file size and number of pages which should be allowed to process per document:
from pathlib import Path
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869"
converter = DocumentConverter()
result = converter.convert(source, max_num_pages=100, max_file_size=20971520)
Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
from io import BytesIO
from docling.datamodel.base_models import DocumentStream
from docling.document_converter import DocumentConverter
buf = BytesIO(your_binary_stream)
source = DocumentStream(name="my_doc.pdf", stream=buf)
converter = DocumentConverter()
result = converter.convert(source)
Limit resource usage
You can limit the CPU threads used by Docling by setting the environment variable OMP_NUM_THREADS
accordingly. The default setting is using 4 CPU threads.
Chunking
You can chunk a Docling document using a chunker, such as a
HybridChunker
, as shown below (for more details check out
this example):
from docling.document_converter import DocumentConverter
from docling.chunking import HybridChunker
conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062")
doc = conv_res.document
chunker = HybridChunker(tokenizer="BAAI/bge-small-en-v1.5") # set tokenizer as needed
chunk_iter = chunker.chunk(doc)
An example chunk would look like this:
print(list(chunk_iter)[11])
# {
# "text": "In this paper, we present the DocLayNet dataset. [...]",
# "meta": {
# "doc_items": [{
# "self_ref": "#/texts/28",
# "label": "text",
# "prov": [{
# "page_no": 2,
# "bbox": {"l": 53.29, "t": 287.14, "r": 295.56, "b": 212.37, ...},
# }], ...,
# }, ...],
# "headings": ["1 INTRODUCTION"],
# }
# }
Plugins
Docling supports plugins that can modify documents during preprocessing (before conversion) and conversion results during postprocessing (after conversion). Plugins can be used to add custom metadata, modify text content, or implement custom processing logic.
Creating custom plugins
Create custom plugins by subclassing DoclingPlugin
and implementing preprocess
and/or postprocess
methods:
from docling.plugins import DoclingPlugin, PluginMetadata
from docling.datamodel.document import InputDocument, ConversionResult
class MyCustomPlugin(DoclingPlugin):
def __init__(self):
super().__init__(
name="MyCustomPlugin", # Must contain only letters, numbers, underscores, or hyphens
metadata=PluginMetadata(
version="0.1.0", # Must adhere to semantic versioning
description="A custom plugin example",
author="Your Name",
preprocess={},
postprocess={}
)
)
def preprocess(self, input_doc: InputDocument) -> InputDocument:
# Modify input document before conversion
return input_doc
def postprocess(self, result: ConversionResult) -> ConversionResult:
# Modify conversion result after conversion
return result
Using plugins in Python
To use plugins with Docling, create a plugin instance and pass it to the DocumentConverter:
from docling.document_converter import DocumentConverter
from docling.plugins import DoclingPlugin, PluginMetadata
# Create plugin instance
my_custom_plugin = MyCustomPlugin()
# Initialize converter with plugins
converter = DocumentConverter(plugins=[my_custom_plugin])
# Convert as usual
result = converter.convert("path/to/document.pdf")
Enriched plugin metadata are accessible through the plugins
attribute of the conversion result:
result = converter.convert("path/to/document.pdf")
plugin_metadata = result.plugins["MyCustomPlugin"]
Since plugins transform the document and conversion result, you can access the modified document and results through the result
object just like you would without plugins. For example:
print(result.document.texts[0].text)
For a complete example of plugin implementation, see plugin_basic.py.
Using plugins with CLI
You can use plugins through the CLI by specifying the module path and plugin class using the --plugin
(or -p
) option:
docling input.pdf --plugin "myapp.plugins:MyCustomPlugin"
Multiple plugins can be used by repeating the option:
docling input.pdf -p "myapp.plugins:FirstPlugin" -p "other.module:SecondPlugin"
The plugin specification must be in the format module.path:PluginClass
. For example:
myapp.plugins:MyCustomPlugin
- loads the MyCustomPlugin class from myapp.plugins moduledocling.plugins.examples:BasicPlugin
- loads the BasicPlugin from docling.plugins.examples
Note: The specified plugin module must be importable from your Python environment (i.e., installed or in the Python path).