docling/README.md
Maxim Lysak 2f72167ff6
feat: updated vlm pipeline (with latest changes from docling-core) (#1158)
* Draft implementation of Doctag backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated VLM pipeline doctags to docling conversion, now properly supports lists

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* preparing to migrate to new doctags deserializer

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* re-using DocTagsDocument.from_doctags_and_image_pairs

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* satisfying mypy and other checks

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added support for force_backend_text parameter

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed unnecessary transformation

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Cleaned up

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Update tests

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Updated readme

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

---------

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
2025-03-18 15:44:51 +01:00

156 lines
6.6 KiB
Markdown

<p align="center">
<a href="https://github.com/docling-project/docling">
<img loading="lazy" alt="Docling" src="https://github.com/docling-project/docling/raw/main/docs/assets/docling_processing.png" width="100%"/>
</a>
</p>
# Docling
<p align="center">
<a href="https://trendshift.io/repositories/12132" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12132" alt="DS4SD%2Fdocling | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
[![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)
[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://docling-project.github.io/docling/)
[![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docling)](https://pypi.org/project/docling/)
[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/docling-project/docling)](https://opensource.org/licenses/MIT)
[![PyPI Downloads](https://static.pepy.tech/badge/docling/month)](https://pepy.tech/projects/docling)
[![Docling Actor](https://apify.com/actor-badge?actor=vancura/docling?fpr=docling)](https://apify.com/vancura/docling)
Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
## Features
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, XLSX, HTML, images, and more
* 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
* 🧬 Unified, expressive [DoclingDocument][docling_document] representation format
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, and lossless JSON
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 💻 Simple and convenient CLI
### Coming soon
* 📝 Metadata extraction, including title, authors, references & language
* 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
* 📝 Complex chemistry understanding (Molecular structures)
## Installation
To use Docling, simply install `docling` from your package manager, e.g. pip:
```bash
pip install docling
```
Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.
More [detailed installation instructions](https://docling-project.github.io/docling/installation/) are available in the docs.
## Getting started
To convert individual documents, use `convert()`, for example:
```python
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]"
```
More [advanced usage options](https://docling-project.github.io/docling/usage/) are available in
the docs.
## Documentation
Check out Docling's [documentation](https://docling-project.github.io/docling/), for details on
installation, usage, concepts, recipes, extensions, and more.
## Examples
Go hands-on with our [examples](https://docling-project.github.io/docling/examples/),
demonstrating how to address different application use cases with Docling.
## Integrations
To further accelerate your AI application development, check out Docling's native
[integrations](https://docling-project.github.io/docling/integrations/) with popular frameworks
and tools.
## Apify Actor
<a href="https://apify.com/vancura/docling?fpr=docling"><img src="https://apify.com/ext/run-on-apify.png" alt="Run Docling Actor on Apify" width="176" height="39" /></a>
You can run Docling in the cloud without installation using the [Docling Actor](https://apify.com/vancura/docling?fpr=docling) on Apify platform. Simply provide a document URL and get the processed result:
```bash
apify call vancura/docling -i '{
"options": {
"to_formats": ["md", "json", "html", "text", "doctags"]
},
"http_sources": [
{"url": "https://vancura.dev/assets/actor-test/facial-hairstyles-and-filtering-facepiece-respirators.pdf"},
{"url": "https://arxiv.org/pdf/2408.09869"}
]
}'
```
The Actor stores results in:
* Processed document in key-value store (`OUTPUT_RESULT`)
* Processing logs (`DOCLING_LOG`)
* Dataset record with result URL and status
Read more about the [Docling Actor](.actor/README.md), including how to use it via the Apify API and CLI.
## Get help and support
Please feel free to connect with us using the [discussion section](https://github.com/docling-project/docling/discussions).
## Technical report
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
## Contributing
Please read [Contributing to Docling](https://github.com/docling-project/docling/blob/main/CONTRIBUTING.md) for details.
## References
If you use Docling in your projects, please consider citing the following:
```bib
@techreport{Docling,
author = {Deep Search Team},
month = {8},
title = {Docling Technical Report},
url = {https://arxiv.org/abs/2408.09869},
eprint = {2408.09869},
doi = {10.48550/arXiv.2408.09869},
version = {1.0.0},
year = {2024}
}
```
## License
The Docling codebase is under MIT license.
For individual model usage, please refer to the model licenses found in the original packages.
## IBM ❤️ Open Source AI
Docling has been brought to you by IBM.
[supported_formats]: https://docling-project.github.io/docling/usage/supported_formats/
[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/
[integrations]: https://docling-project.github.io/docling/integrations/