docling/tests/data/groundtruth/docling_v2/2305.03393v1-pg9.md
Christoph Auer 3023f18ba0
feat: Support AsciiDoc and Markdown input format (#168)
* updated the base-model and added the asciidoc_backend

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updated the asciidoc backend

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Ensure all models work only on valid pages (#158)

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* ci: run ci also on forks (#160)


---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>

* fix: fix legacy doc ref (#162)

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>

* docs: typo fix (#155)

* Docs: Typo fix

- Corrected spelling of invidual to automatic

Signed-off-by: ABHISHEK FADAKE <31249309+fadkeabhi@users.noreply.github.com>

* add synchronize event for forks

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: ABHISHEK FADAKE <31249309+fadkeabhi@users.noreply.github.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>

* feat: add coverage_threshold to skip OCR for small images (#161)

* feat: add coverage_threshold to skip OCR for small images

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* filter individual boxes

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename option

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* chore: bump version to 2.1.0 [skip ci]

* adding tests for asciidocs

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* first working asciidoc parser

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* reformatted the code

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* adding test_02.asciidoc

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Drafting Markdown backend via Marko library

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* work in progress on MD backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* md_backend produces docling document with headers, paragraphs, lists

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Improvements in md parsing

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Detecting and assembling tables in markdown in temporary buffers

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added initial docling table support to md_backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Cleaned code, improved logging for MD

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixes MyPy requirements, and rest of pre-commit

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixed example run_md, added origin info to md_backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* working on asciidocs, struggling with ImageRef

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* able to parse the captions and image uri's

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* fixed the mypy

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* Update all backends with proper filename in DocumentOrigin

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update to docling-core v2.1.0

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fixes for MD Backend, to avoid duplicated text inserts into docling doc

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fix styling

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Added support for code blocks and fenced code in MD

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* cleaned prints

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added proper processing of in-line textual elements for MD backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixed issues with duplicated paragraphs and incorrect lists in pptx

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixed issue with group ordeering in pptx backend, added gebug log into run with formats

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Signed-off-by: ABHISHEK FADAKE <31249309+fadkeabhi@users.noreply.github.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Peter Staar <taa@zurich.ibm.com>
Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Co-authored-by: ABHISHEK FADAKE <31249309+fadkeabhi@users.noreply.github.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
2024-10-23 16:14:26 +02:00

2.7 KiB

order to compute the TED score. Inference timing results for all experiments were obtained from the same machine on a single core with AMD EPYC 7763 CPU @2.45 GHz.

5.1 Hyper Parameter Optimization

We have chosen the PubTabNet data set to perform HPO, since it includes a highly diverse set of tables. Also we report TED scores separately for simple and complex tables (tables with cell spans). Results are presented in Table. 1. It is evident that with OTSL, our model achieves the same TED score and slightly better mAP scores in comparison to HTML. However OTSL yields a 2x speed up in the inference runtime over HTML.

Table 1. HPO performed in OTSL and HTML representation on the same transformer-based TableFormer [9] architecture, trained only on PubTabNet [22]. Effects of reducing the # of layers in encoder and decoder stages of the model show that smaller models trained on OTSL perform better, especially in recognizing complex table structures, and maintain a much higher mAP score than the HTML counterpart.

# # Language TEDs TEDs TEDs mAP Inference
enc-layers dec-layers Language simple complex all (0.75) time (secs)
6 6 OTSL HTML 0.965 0.969 0.934 0.927 0.955 0.955 0.88 0.857 2.73 5.39
4 4 OTSL HTML 0.938 0.904 0.927 0.853 1.97
OTSL 0.952 0.923 0.909 0.938 0.843 3.77
2 4 HTML 0.945 0.897 0.901 0.915 0.931 0.859 0.834 1.91 3.81
4 2 OTSL HTML 0.952 0.944 0.92 0.903 0.942 0.931 0.857 0.824 1.22 2

5.2 Quantitative Results

We picked the model parameter configuration that produced the best prediction quality (enc=6, dec=6, heads=8) with PubTabNet alone, then independently trained and evaluated it on three publicly available data sets: PubTabNet (395k samples), FinTabNet (113k samples) and PubTables-1M (about 1M samples). Performance results are presented in Table. 2. It is clearly evident that the model trained on OTSL outperforms HTML across the board, keeping high TEDs and mAP scores even on difficult financial tables (FinTabNet) that contain sparse and large tables.

Additionally, the results show that OTSL has an advantage over HTML when applied on a bigger data set like PubTables-1M and achieves significantly improved scores. Finally, OTSL achieves faster inference due to fewer decoding steps which is a result of the reduced sequence representation.